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Two surrogate models are under development to
rapidly emulate the effects of the Fuel Matrix Degradation
(FMD) model in GDSA Framework. One is a polynomial
regression surrogate with linear and quadratic fits, and the
other is a k-Nearest Neighbors regressor (kNNr) method
that operates on a lookup table. Direct coupling of the
FMD model to GDSA Framework is too computationally
expensive. Preliminary results indicate these surrogate
models will enable GDSA Framework to rapidly simulate
spent fuel dissolution for each individual breached spent
fuel waste package in a probabilistic repository simulation.
This capability will allow uncertainties in spent fuel
dissolution to be propagated and sensitivities in FMD
inputs to be quantified and ranked against other inputs.

I. INTRODUCTION

High fidelity prediction of waste package and waste
form degradation processes for thousands of waste
packages in a probabilistic repository performance
assessment calculation is expensive. With thousands of
waste packages, thousands of time steps, and hundreds of
realizations in a simulation, these process models may need
to be called a billion times per simulation.

GDSA Framework is open source repository
simulation software built around the massively-parallel
multi-physics code PFLOTRAN.[1] GDSA stands for
Geologic Disposal Safety Assessment. An important short-
term goal of the development of GDSA Framework
(pa.sandia.gov) is to perform probabilistic repository
simulations to identify sources of uncertainty to help
prioritize future R&D. To achieve this short-term goal with
today's computer resources, developers must consider
ways to include the effects of expensive process models in
total system simulations.

One way to reduce computational expense is to
develop response surface surrogate models that can rapidly
emulate the mechanistic process models. An ideal response
surface surrogate model runs orders of magnitude faster
than its parent mechanistic model and provides outputs
identical to those of the mechanistic model. In practice, the

speed increase is easy to achieve. The challenge is
achieving acceptable accuracy.

In 2018, a team of modelers and mathematicians at
Sandia National Laboratories began exploring the potential
value of developing surrogate models for the Fuel Matrix
Degradation (FMD) model.[2] The FMD model has been
coupled with PFLOTRAN,[3] but the coupled model runs
too slowly for a set of probabilistic repository-scale
simulations. The surrogate modeling work has examined
polynomial regression, polynomial basis adaptation
methods for dimensionality reduction, tabulation using
tree-based lookup methods, and artificial neural networks.
Two approaches were chosen for continued development,
a polynomial regression surrogate model approach and a
lookup table approach that involves an advanced nearest
neighbor regression technique. Section II describes the
FMD process model, and Section III presents the two
surrogate models along with preliminary results.

II. FUEL DISSOLUTION PROCESS MODEL

The FMD model is a mechanistic spent fuel
dissolution model coded in Matlab and developed at
Argonne National Laboratory and Pacific Northwest
National Laboratory. The model calculates spent fuel
dissolution rates as a function of radiolysis, alteration layer
growth, diffusion of reactants through the alteration layer,
temperature, and interfacial corrosion potential.[4] During
execution it employs a one-dimensional (1D) reactive
transport model to simulate diffusion and chemical
reactions across this layer over time. The 1D domain,
depicted in Fig. 1, extends 0.05 m from the fuel surface to
the bulk water. It is divided into as many as 100 cells with
increasing length toward the bulk water boundary cell.

To couple the FMD model with PFLOTRAN, a
"coupleff FMD model was coded in Fortran. At each time
step, PFLOTRAN calls the coupled FMD model to obtain
a new dissolution rate. Coupling required PFLOTRAN to
keep track of the 1D chemical profiles across the domain
from the previous time step. It also required relevant inputs
from the main PFLOTRAN simulation, such as

SAND2019-1917C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



2019 International High-Level Radioactive Waste Management Conference, Knoxville, TN

temperature, time, and environmental concentrations in the
boundary cell. Dose rate is calculated in the coupled FMD
model from time and burnup. A full list of FMD model
inputs and outputs available for surrogate modeling is
presented in Table I.
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TABLE I. Inputs/Outputs of Coupled FMD Model
Available Inputs Outputs
• Initial concentration profiles • Final

across 1D corrosion/water concentration
layer (UO2(s), UO3(s), U04(s), profiles across 1D
H202, U022±, UC032 , UO2, corrosion/water
C032-, 02, Fe2±, and H2) layer

• Initial corrosion layer thickness • Final corrosion
• Dose rate at fuel surface (= f layer thickness

(time, burnup)) • Fuel dissolution
• Temperature rate
• Time and time step length
• Environmental concentrations
(C032-, 02, Fe2±, and H2)

The coupled Fortran FMD model was tested on a
problem involving a two-dimensional flow field containing
4 rows of 13 breached spent fuel waste packages. The
model successfully simulated fuel dissolution for each of
the waste packages over 100 time steps.[3] Of the 45
minutes of computational time required to run the
simulation, 30 minutes were used calculating the fuel
dissolution rates in the coupled FMD model.

III. SURROGATE MODELING

Two surrogate modeling approaches are presented, a
polynomial regression surrogate model (Section III.A) and
a k-nearest-neighbors surrogate model (Section III.B). The
former provides a polynomial expression to emulate the
FMD model while the latter uses an advanced technique to
interpolate between points in a loolum table generated by
the FMD model.

III.A. Polynomial Regression

It is often useful to construct a surrogate model to use
in uncertainty and sensitivity analysis of a computational
physics model when it is computationally demanding. A

surrogate model (sometimes called meta-model, emulator,
or response surface model) is an inexpensive input-to-
output mapping that replaces a simulation code. Once
constructed, this meta-model is relatively inexpensive to
evaluate so it is often used as a surrogate for the physics
model in uncertainty propagation, sensitivity analysis, or
optimization problems that may require thousands to
millions of function evaluations.[5]

There are many different types of surrogate models,
including neural networks, regression models, radial basis
functions, splines, etc. One popular approach in the
literature is to develop an emulator that is a stationary
smooth Gaussian process. [6,7] The popularity of Gaussian
processes is due to their ability to model complicated
functional forms and to provide an uncertainty estimate of
their predicted response value at a new input point. There
are many good overview articles that compare various
meta-model strategies. Various smoothing predictors and
nonparametric regression approaches are compared
elsewhere.[5,7,8] Simpson et al. provide an excellent
overview not just of various statistical meta-model
methods but also approaches that use low-fidelity models
as surrogates for high-fidelity models.[5] Haftka and his
students developed an approach that uses ensembles of
emulators or hybrid emulators.[9] Finally, polynomial
chaos expansions (PCE) have become popular surrogate
models over the past fifteen years.[10,11] These stochastic
expansion methods approximate the functional dependence
of the simulation response on uncertain model parameters
by expansion in an orthogonal polynomial basis. The
polynomials used are tailored to the characterization of the
uncertain input variables.

III.A.1 Procedure

Our goal for the coupled FMD modeling effort is to
develop a surrogate that can be called by PFLOTRAN as a
replacement for the FMD model. Such a surrogate must be
extremely fast to construct and evaluate, since it will be
called repeatedly from PFLOTRAN for thousands of time
steps and hundreds of waste packages. To start on this
effort, we used a standalone MATLAB version of the FMD
model to generate training data. The training data itself can
be very large. For example, we may have hundreds of
samples of FMD, where each sample involves a multi-
dimensional vector sample of inputs such as the
environmental concentrations, temperature, burnup, etc.
The output is also extensive, since each FMD run involves
hundreds of timesteps. So, a few hundred samples and a
few hundred timesteps results in a large training matrix
with tens of thousands of rows (each row being a training
point at one particular timestep) and several columns of
inputs (e.g., the left-hand quantities in Table 1) and one
colunm of output (the fuel dissolution rate). Note that for
this model, we are only interested in predicting the fuel
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dissolution rate although the other two output quantities
could be treated with a surrogate in similar manner

In our initial investigation, we decided to use
polynomial regression surrogates for FMD, due to the large
amount of training data, the smoothing characteristics of a
regression model, and the requirement that the evaluation
of the FMD surrogate be extremely fast. A linear regression
model f as a function of an m-dimensional input vector
x E 9rn is defined as:

f(x) co + xi (1)

Similarly, a second order polynomial regression (also
called a quadratic regression model) is defined as:

f(x) Co + Ci + ElAi Cif xixj (2)

To determine the coefficients of the polynomial
regression model, a least-squares formulation that
minimizes the sum-of-squared error (SSE) between the
surrogate model and the actual data is typically used.[12]
The SSE is the standard error metric for overdetermined
polynomial regression. It is a quadratic loss function which
tends to find solutions near zero SSE well. We use the
training data generated from the uncoupled Matlab FMD
model in the SSE formulation. We have a matrix of n
training samples, where each training sample has an input
x, and a corresponding outputy,. The coefficients minimize
the SSE:

SS E = Ell=1(f (xi) 2 (3)

For general nonlinear regression problems, one needs
to use optimization methods to find the vector of
coefficients c which minimize the SSE. However, for linear
regression models, the least squares problem reduces to a
linear solve. If we write the entire sample matrix of inputs
as X (of dimension n x m) and the sample matrix of outputs
as y (of dimension n x 1), the optimization problem
becomes:

_ argmin
c — llX • c — Yll2 = X-131 (4)

In practice, we do not take the explicit inverse of the
input sample matrix X-1 to solve for the optimal c but
instead use a matrix factorization such as a QR
factorization. This makes the determination of e very
efficient. Note also that this system is overdetermined for
FMD: typically n = 100K or more but m (the number of
coefficients) is on the order of 10 - 100.

A Latin hypercube sampling (LHS) study was
performed to generate training and validation data for

regression from the standalone Matlab FMD model. LHS
is a stratified sampling technique that generates "well-
spacer samples; it typically gives lower variance
statistical estimators than plain Monte Carlo sampling. [13]
The six-dimensional sample space contained the
parameters initial temperature, burnup, and the
environmental concentrations of C032-, 02, Fe', and H2.
The probability distributions for each parameter are given
in Table II.

TABLE II. LHS Sampling Input Parameters and Their
Distributions
Parameter Distribution Min. Max.
Init. Temp. (C) Uniform 298 373
Burnup (Gwd/MTU) Uniform 20 90
Env. C032- (mol/m3) Log-uniform 10-6 10°
Env. 02 (mol/m3) Log-uniform 10-6 104
Env. Fe' (mol/m3) Log-uniform 10-6 10-5
Env. H2 (mol/m3) Log-uniform 10-6 10-1

Nearly 5000 simulations were executed over the
course of the LHS study. The temporal discretization in
each problem consisted of 101 logarithmically-spaced
(base 10) points from 0 to 105 years. In some simulations
the UO2 surface flux would superfluously stagnate after 104
years. We filtered the LHS results to remove any such runs
and were left with data from approximately 3000
simulations. Our regression models were trained using data
sets comprised of 1400 time series and tested on a set of
1400 different time series.

We built linear and quadratic surrogate models for the
UO2 surface flux (also referred to as fuel dissolution rate)
using feature sets A and B. The members of feature set A
are: time, temperature, environmental concentrations of
C032-, 02, Fe', and H2, dose rate at the fuel surface (all at
the current timestep), and the previous timestep corrosion
layer thickness and "interstitiar concentrations of U022+,
UO2 (CO3)22-, UO2, and H202 located at the bulk water
boundary cell. For feature set B, the predictors from the
current timestep are the same as in set A, but the sole
predictor from the previous time step is the UO2 surface
flux. There is some hesitancy to use UO2 surface flux from
the previous time step (feature set B) because it does not
mechanistically affect the flux for the current time step,
neither in theory nor in the underlying FMD model.
However, as the preliminary results show (next section), it
is an excellent predictor for this model for the applied
conditions. Note that because the fuel dissolution rate,
time, and the environmental concentrations varied across
orders of magnitude, we used the log-transformed values
of these quantities in the regression model.

To assess the accuracy of the models for a specific
training data size, we analyzed the relative pointwise
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absolute error (RPWAE). At each data point, this error is
computed as:

RPWAE — 
lYpred—Ytruel 

— 
Ypred

Ytrue Ytrue
(5)

For each training data set size, this error is averaged to
obtain the mean RPWAE (M-RPWAE) metric for each test
run.

III.A.2 Preliminary Results

Fig. 2 through 5 display 200 UO2 surface flux traces
from the test set (for visibility) and the corresponding
predictions from the regression model. The results from the
linear and quadratic models computed using feature set A
are shown in Fig. 2 and 3. Fig. 4 and 5 present the results
from feature set B. Table III contains the number of terms
as well as the two test data validation metrics for each
model: R-squared and mean absolute error values.

The quadratic model for feature set A is clearly better
than the linear model. However, the use of higher-order
regression models may result in overfitting.

We note that for feature set B the predictions are
virtually identical between the linear and quadratic model.
Thus, for simplicity and parsimony with comparable
accuracy, we prefer the linear model.

TABLE III. Polynomial regression model summary for
feature set, polynomial order, number of terms, test R-
squared value, and test mean relative pointwise absolute
error (M-RPWAE).

F-Set P-Order Terms R2 M-
RPWAE

A 1 12 0.925 0.114
A 2 91 0.970 0.074
B 1 8 0.997 0.0256
B 2 45 0.997 0.0249
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Fig. 2. Feature set A linear regression model.
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Fig. 3. Feature set A quadratic regression model.
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Fig. 4. Feature set B linear regression model.
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Fig. 5. Feature set B quadratic regression model.

III.A.3 Ongoing Work

At this point, we are in the process of incorporating the
surrogate for FMD within PFLOTRAN, and we are also
investigating slightly different regression formulations and
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feature sets. Once implemented in PFLOTRAN, we will be
able to measure the performance and reduction in
computational time relative to the coupled Fortran code.

k-Nearest Neighbor

The k-Nearest Neighbors regressor (kNNr)[14] is a
supervised, non-parametric machine learning method that,
unlike polynomial regression or neural networks, does not
re-express the data in any way in order to make predictions.
In contrast to the latter pair of methods, which are active
learners, the k-Nearest Neighbors regressor is a lazy
learner that tabulates data points inside of a domain X with
labels Y to the end of using those values for predictions.
This makes the kNNr highly interpretable, as no
intermediate hypothesis selection process on the
parameters is undertaken as with the aforementioned active
leamers. Instead, the label for a point within the domain but
not in the "table is obtained as an average of the labels of
the k nearest neighbors of this new point, where k > 1 is
fixed. The definition of nearest depends on the metric
function one uses, though a typical choice is the

Minkowski metric (17_11x1 — yi IP) P , with p 1 . The
case of p = 2 is the popular Euclidean metric. The
tabulation of data points can be implemented with a matrix
representing entries in a table, however this is less efficient
than modern tabulation methods like the K-D Tree or the
Ball Tree. [15] The actual calculation of the predicted value
need not be a uniform average. An inverse of the distance
to each neighbor may be used to determine how influential
that neighbor is in the final calculation of the weighted
average.

One of the attractive features of kNNr is that it makes
predictions based on local information only, and therefore
does not require global smoothness over the input space.
On the other hand, the approach requires a sufficiently
dense table to get good predictive accuracy, and the cost of
table look-ups increases as the table density increases.

III.B.1 Procedure

The kNNr is being considered as a surrogate model for
predicting the UO2 surface flux (also called UO2
dissolution rate) in the waste package model component of
PFLOTRAN. To that end, a sufficiently-dense table is
generated based on samples from a MATLAB version of
the original model. To improve numerical stability and to
put all dimensions on similar footing despite the wide
range of tabulated values, we take the log of all the entries
of the table.

In this work, we utilized the kNNr method as
implemented by scikit-learn, vz. 0.19.1.[15] This version
of kNNr allows for several different kinds of distance

metrics, including the Minkowski one. It also provides
uniform and distance-based methods of weighting the
average. Additionally, it allows for a few different methods
of tabulation, one of which scales well with dimension: the
BallTree tabulation method.

To assess the suitability of kNNr as a surrogate model,
we analyzed the convergence of the kNNr accuracy of UO2
surface flux predictions as a function of the amount of
training data. The training data consists of time-traces of
UO2 surface flux obtained with the detailed FMD model
for the sampled values shown in Table II. With 101 time
points per trace and a number of runs M that is nearly 3000
runs, we have a total of about 3 x 105 data points. The 3000
runs are the same ones described in Section III.A.1 in the
Polynomial Regression surrogate section, after Table II
was introduced.

The number of runs from the dataset used for testing
was set to 10% of the overall data set, with the remaining
data available for training. In each experiment, 10 data sets
of linearly increasing size were selected as training data
sets to study the convergence as a function of the amount
of training data. To account for randomness, an ensemble
of 60 different permutations of the training data was
generated for each training data set size.

For the results that will be discussed in this paper, we
picked the Manhattan distance metric, or the Minkowski
metric for p = 1 , as it is better suited to higher-
dimensional domain spaces, which is the same reason as to
why the BallTree tabulation method was chosen. In the
averaging, the distance-weighted approach was used. To
predict the UO2 surface flux, we used the following five
features from the spatial mesh inside the FMD model bulk
reaction diffusion space (Fig. 1):

• H2 concentrations at the leftmost and rightmost
endpoints of the spatial mesh inside the FMD
model

• H2O2 concentrations at the le tmost and rightmost
endpoints of the spatial mesh

• Dose rate at the leftmost endpoint of the spatial
mesh

These features were selected as they showed a strong
functional connection to the UO2 surface flux, as
determined from scatter plots between the flux and feature
values.

As was done for the polynomial surrogate models, the
accuracy of the kNNr was analyzed using the relative
pointwise absolute error (RPWAE) and mean RPWAE (M-
RPWAE) metrics. The ensemble average of the error over
all 60 permutations of the test data sets of these M-RPWAE
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values is denoted as the ensemble average of the M-
RPWAE (EAM-RPWAE).

The selection of the k value was done through a model
selection experiment. Fig. 5 shows the average over the test
data set of the relative error at each predicted point, for a
set of k-values ranging from 1 to 52. The purple dashed
line indicates where the k with minimal error for the
different amounts of k considered, which is at k = 7 .

Model Selection Plot for 2646 Training Runs
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Fig. 5. Model selection results to determine the optimal
number of nearest neighbors k.

III.B.2 Preliminary Results

Representative Predictions for 2646 Training Runs
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Fig. 6. The results of the trained kNNr on three members
of the test set which are representative of the set with
respect to the M-RPWAE.
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Fig. 6 shows typical results of the kNNr with k = 7
for a table built on 2,646 training runs, where the lines with
diamond symbols represent the approximation to the true
time traces that are shown as lines without symbols of the
same color. The axes of the plot are both log-scaled. Based
on the plot, kNNr does rather well over the course of time.

As shown in Fig. 7, the average of the M-RPWAE
decreases with increasing training data sizes, and the range
of RPWAE averages per run also decreases, as indicated
by the distance between the whiskers of the box plot. In this
plot, the whiskers of the boxplot are the standard 1.5 * IQR
(interquartile range), the orange line in each box represents
the median, and outliers are not shown for the sake of
readability. This shows the convergence of the kNNr
regressor with increasing training data size. However, this
convergence of the EAM-RPWAE is fairly slow. To get a
better insight into the nature of the errors, we studied the
histogram of the relative errors over all points.

kNNr Performance over Training Set Size
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Fig. 7. Boxplots of M-RPWAE values as a function of
training run set size.

Fig. 8 and 9 show histograms of the RPWAE values
collected from all 60 random permutations of the training
data sets for the case of 293 and 2646 training runs. This
RPWAE distribution shrinks with increasing training size.
Given the log-scale for the y-axis, it is clear that most
RPWAE values are nearly zero, however there are outliers
that affect the M-RPWAE values which are plotted in Fig.
7. The range of the outliers does shrink with increasing
training data sizes.

To better understand the cause of the high errors, we
investigate how the approximation error depends on the
distances between the query point and its nearest
neighbors. To this end, Fig. 10 shows a scatter plot of the
RPWAE for each test point against the average distance to
its 7 nearest neighbors, for the case of 2646 training runs.
While most of the points show errors below 10%, they can
increase to way above 100% when the average Manhattan
distance to the nearest neighbors exceeds a threshold that
sits somewhere between 0.4 and 0.6 (denoted by black
hashes in Fig. 10). Introducing a distance cutoff in the table
look-up with this particular average Manhattan distance as
the threshold may improve the accuracy of the predictions
and drive the RPWAE values of Fig. 10 even further down.
Alternatively, this relationship between the prediction error
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and distance to the nearest neighbors in the table can be
used to determine the optimal density of the table.

Density Histogram of RPWAE for 293 Training Runs
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Fig. 8 and 9. Histogram density plots showing the
probability distribution of RPWAE values for the smallest
and largest training run set sizes used, respectively.

RPWAE vs. Distance to NN for 2646 Training Runs
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Fig. 10. Scatter plot of the RPWAE for each test point
against the average distance to its 7 nearest neighbors, for
the case of 2646 training runs.

III.B.3 Ongoing Work

To further improve the predictive fidelity of the kNNr,
we are continuing to optimize the choice of features, as
well as the amount of training data in the table. While
adding more training data improves the accuracy of the
predictions, a larger table requires more time to identify the
nearest neighbors. Therefore, we will implement
approaches to only add more data where it is needed to
improve the accuracy. Further, in order to make this
approach function as a standalone surrogate model for the
full FIVID model, we will build surrogate models for the
evolution of the H2 and H202 concentrations at the fuel
surface and boundary cell and dose rate at the fuel surface
as a function of the environmental conditions outside the
fuel cask. These species concentrations are inputs for the
surface flux surrogate model, but are currently integrated
in time by the full FMD model.

IV. CONCLUSIONS

Two surrogate models are under development to
rapidly emulate the effects of the Fuel Matrix Degradation
(FMD) model in GDSA Framework. One is a polynomial
regression surrogate with linear and quadratic fits, and the
other is a k-Nearest Neighbors regressor (kNNr) method
that operates on a lookup table. Preliminary results indicate
that both approaches have a high degree of accuracy.
However, more work is needed to refine the sample space,
optimize the predictors for the sample space, and test the
surrogate models in realistic repository PA simulations.

The aim of these surrogate models is to enable GDSA
Framework to simulate spent fuel dissolution for each
individual breached spent fuel waste package in a
probabilistic repository simulation. Having the ability to
emulate spent fuel dissolution in probabilistic PA
simulations will have the added capability of allowing
uncertainties in spent fuel dissolution to be propagated and
sensitivities in FMD inputs to be quantified and ranked
against other inputs.
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