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Systematic study of L-shell opacities with refined analysis validates
experiment reliability and suggest necessary model refinements

• Fe L-shell opacity is measured at solar interior
conditions and revealed severe model-data
discrepancy

4 Is opacity theory wrong? Is experiment flawed?

• Refined analysis improved shot-to-shot reproducibility,
demonstrating opacity experiment reliability

• Systematic measurement of Cr, Fe, and Ni opacities
suggests model refinements in three areas

• Window: Challenge associated with open L-shell config.

• BB: Inaccurate treatment of density effects

• Continuum: Peculiar dependence on atomic number

Window
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Results are improved over two years by collecting more data and refining analysis methods



Modeled solar structure disagrees with observations
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Modeled solar structure di aerees with observations
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10-30% mean-opacity increase in the solar model is needed to
resolve this discrepancy
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The Z machine uses 27 million Amperes to create x-rays

4 cm

Prad r%j 220TW (±10%), Yrad 1.6 MJ (±7%)
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i
. opacity sample

The Z x-ray source both heats and backlights samples to
stellar interior conditions.

Sample is: 
• Heated during plasma implosion
• Backlit at plasma stagnation

spectrometers

x-ray
source

Prad r%j 220TW (±10%), Yrad ri 1.6 MJ (±7%)
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High-temperature Fe opacities are measured using the Z-Pinch
opacity science platform

Requirements 

• Uniform heating

• Mitigating self emission

• Condition measurements

• Checking reproducibility

Z-pinch radiation source
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High-temperature Fe opacities are measured using the Z-Pinch
opacity science platform
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High-temperature Fe opacities are measured using the Z-Pinch
opacity science platform

Half-moon

sample

hv > 600 eV

Z-pinch radiation source

Requirements 

• Uniform heating

• Mitigating self emission

• Condition measurements

• Checking reproducibility

Sandia
National
Laboratories

l [1] Bailey et al., Phys Plasmas 16, 058101 (2009) 2] Nagayama et al., Phys Plasmas 21, 056502 (2014)1



High-temperature Fe opacities are measured using the Z-Pinch
opacity science platform

Half-moon

sample

hv > 600 eVP.MM.M

Z-pinch radiation source

Requirements 

• Uniform heating

• Mitigating self emission

• Condition measurements

• Checking reproducibility

Sandia
National
Laboratories

l [1] Bailey et al., Phys Plasmas 16, 058101 (2009) 2] Nagayama et al., Phys Plasmas 21, 056502 (2014)1



High-temperature Fe opacities are measured using the Z-Pinch
opacity science platform

Half-moon

sample

hv > 600 eV

Z-pinch radiation source

Requirements SNL Z satisfies: 

• Uniform heating   Volumetric heating

• Mitigating self emission

• Condition measurements

• Checking reproducibility

Sandia
National
Laboratories

l [1] Bailey et al., Phys Plasmas 16, 058101 (2009) 2] Nagayama et al., Phys Plasmas 21, 056502 (2014)1



High-temperature Fe opacities are measured using the Z-Pinch
opacity science platform

Half-moon

sample

Z-pinch radiation source

Requirements SNL Z satisfies: 

• Uniform heating   Volumetric heating

• Mitigating self emission

• Condition measurements

• Checking reproducibility

Sandia
National
Laboratories

l [1] Bailey et al., Phys Plasmas 16, 058101 (2009) 2] Nagayama et al., Phys Plasmas 21, 056502 (2014)1



High-temperature Fe opacities are measured using the Z-Pinch
opacity science platform

Half-moon

sample

Z-pinch radiation source

Requirements SNL Z satisfies: 

• Uniform heating   Volumetric heating

• Mitigating self emission

• Condition measurements

• Checking reproducibility

Sandia
National
Laboratories

l [1] Bailey et al., Phys Plasmas 16, 058101 (2009) 2] Nagayama et al., Phys Plasmas 21, 056502 (2014)1



High-temperature Fe opacities are measured using the Z-Pinch
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• Uniform heating   Volumetric heating

• Mitigating self emission 350 eV Planckian backlight

• Condition measurements (» 200eV sample self-emission)

• Checking reproducibility
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High-temperature Fe opacities are measured using the Z-Pinch
opacity science platform
KAP crystal Z-axis
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• Uniform heating   Volumetric heating

• Mitigating self emission 350 eV Planckian backlight

• Condition measurements Mg K-shell spectroscopy
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Modeled opacity shows severe disagreement as Te and ne
approach solar interior conditions
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Modeled opacity shows severe disagreement as Te and ne
approach solar interior conditions

Convection Zone Base: Te=185 eV, ne = 90e21 e/cc
20

n

10

n

Sandia
National
Laboratories

Data at Te=156 eV, ne= 7e21 e/cc

Calculated opacity*

• ••

Data at Te=182 eV, ne= 38e21 e/cc

Calculated opacity*

. . . .

If measured Fe opacity is correct, it would increase the solar mean opacity by —7%.
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Reported opacity discrepancy is complex and deserves further
scrutiny
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Reported opacity discrepancy is complex and deserves further
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Systematic study of L-shell opacities with refined analysis validates
experiment reliability and suggest necessary model refinements

• Fe L-shell opacity is measured at solar interior
conditions and revealed severe model-data
discrepancy

4 Is opacity theorv wrong? Is experiment flawed?
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• Refined analysis improved shot-to-shot reproducibility,
demonstrating opacity experiment reliability

• Systematic measurement of Cr, Fe, and Ni opacities
suggests model refinements in three areas

• Window: Challenge associated with open L-shell config.

• BB: Inaccurate treatment of density effects

• Continuum: Peculiar dependence on atomic number

Window

After (2018)

High reproducibility demonstrates unprecedented benchmark capability of SNL opacity platform
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Spectral image is resolved in space and wavelengths and
provides essential starting point for opacity analysis
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Spectral image is resolved in space and wavelengths and
provides essential starting point for opacity analysis
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Spectral image is resolved in space and wavelengths and
provides essential starting point for opacity analysis
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Old method: we take the spectral lineout and determine
unattenuated spectrum from multiple statistics
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Old method: we take the spectral lineout and determine
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Paradigm shift: Spectral lineout 4 Spatial lineout
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Paradigm shift: Spectral lineout 4 Spatial lineout
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Observing finite-area backlighter through half-moon
sample produces complicated spatial shape I
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Half-moon spatial profile has both attenuated and
unattenuated intensities, enabling accurate analysis
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Half-moon spatial profile has both attenuated and
unattenuated intensities, enabling accurate analysis
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Half-moon spatial profile has both attenuated and
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Half-moon spatial profile has both attenuated and
unattenuated intensities, enabling accurate analysis I
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Challenge comes from the fact that both shape and
brightness are known to limited accuracy

Reproducibility in unattenuated spatial shape and brightness
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New method: sample transmission probability distribution
is analytically derived spatial lineout I
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Example: transmission from boundary-slope statistics
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Transmission PDF as a function of is determined by
repeating HM-spatial-profile analysis at multiple wavelengths
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Transmission PDF as a function of il is determined by
repeating HM-spatial-profile analysis at multiple wavelengths I
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Transmission PDF as a function of il is determined by
repeating HM-spatial-profile analysis at multiple wavelengths I

0
10

Transmission PDF* as a function of À

12

Wavelength (A)

14

: P(T)

1
1•

1
I
I

l *PDF = Probabilit distribution function I



Op
ac

it
y,

 K
v
 
(
1
03
 c
m2
/g
) 

Transmission PDF is converted to opacity PDF using
Monte-Carlo technique, propagating various uncertainties I

o
15

10

5

010

Transmission PDF* as a function Of A

12

Wavelength (A)

14

: P(T)

Monte-Carlo to propagate errors:

• Transmission error

• Background subtraction error

• Areal density error

1
1
i
I

l *PDF = Probabilit distribution function I



Both refined analysis and more experiments helped to
improve shot-to-shot agreement on Anchor2 Fe
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Analysis from 2015 showed 2x higher quasi-continuum
opacity than astrophysical opacity-model prediction
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New analysis reduced the quasi-continuum disagreement
from 2.Ox to 1.6x, approaching to cold Fe opacity limit
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Revised Fe results still show statistically significant
disagreement; More work needed to update Fe results
• Anchor2:

• Mode-data disagreement is statistically significant 1.0

4 a 4 4 a (for OP*) 0.5

• Very little change in BB and Windows 0 0

• Impact on solar mean is still important

• More data to be included

• Anchor3:

• Biggest model-data discrepancy

4 Need to be reanalyzed.

• We acquire more data

• Anchorl:

• It helps to rule out various hypothesis for experiment flaws
(e.g., LTE, temporal gradient, areal density errors, etc)
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Bailey, Nagayama, et al, Nature (2015)

The systematic study of Cr, Fe, and Ni provides a holistic view on the complicated model-data discrepancy

* OP: Astro • h sics o• acit code b Seaton et al., MNRAS (1994)



Systematic study of L-shell opacities with refined analysis validates
experiment reliability and suggest necessary model refinements

• Fe L-shell opacity is measured at solar interior
conditions and revealed severe model-data
discrepancy

4 Is opacity theorv wrong? Is experiment flawed?
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demonstrating opacity experiment reliability

- Systematic measurement of Cr, Fe, and Ni opacities
suggests model refinements in three areas

• Window: Challenge associated with open L-shell config.

• BB: Inaccurate treatment of density effects

• Continuum: Peculiar dependence on atomic number

High reproducibility demonstrates unprecedented benchmark capability of SNL opacity platform
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If opacity theory is wrong, which part of calculations is wrong.

• Atomic data?
• Population?
• Density effects?
• Missing physics?
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Different elements interact with plasma differently, providing
unprecedented constraints for testing theory and experiments
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Excellent reproducibility is confirmed from all three elements,
demonstrating experiment/analysis reliability
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First systematic study of high-temperature L-shell opacities
were performed for Cr, Fe, and Ni at two conditions
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Anchorl: Modeled and measured opacities agree reasonably
well at lower temperature and density
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Anchor2: Interesting element-dependent disagreement
appears as approaching to stellar interior conditions
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Anchor2: Interesting element-dependent disagreement
appears as approaching to stellar interior conditions
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Window: Filled window observed from Cr and Fe, but not Ni
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Window: Filled window observed from Cr and Fe, but not Ni
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Window: Filled window observed from Cr and Fe, but not Ni
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Can we check accuracy of modeled line shapes?
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Can we check accuracy of modeled line shapes?
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Can we check accuracy of modeled line shapes?
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Can we check accuracy of modeled line shapes?

Cr

Data

Calculation'

' 1.0

181 eV, 2t
  Blended with

adjacent lines 10

8

6

4

2

183 eV, 29e21 e/cc

11.5 12.0 12. Sits above higho
Wavelength (A) quasi-continuum

20

15

1 0

11.0 11.5 12.0 12. 
o
8

Wavelength (A)

Sandia
National
Laboratories

187 eV, 29e21 e/cc

[..

Ni Ne-like Ni

2p-4d line'
/
I

9.0 10.0 10.5
(A)

Isolated

Low continuum
J

We use n=2 —> 4 lines from Ne-like Ni to assess the accuracy of calculated line shape

[1] SCRAM: S. Hansen et al, High Energ Dens Phys 3 (2007) 109.



Line-shape of Ne-like Ni 2p-4d is accurately measured and
appropriate to test approximations used in models

9.95 10.00
Wavelength (A)

10.05

• This line-shape is reproduced by five
experiments

Sandia
National
Laboratories

• Models employ simple approximations
for L-shell line shapes, which are not
tested.

• Electron broadening

• Static ion broadening
• Satellite contributions



Line-shape of Ne-like Ni 2p-4d is accurately measured and
appropriate to test approximations used in models
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Most models underestimate the L-shell line widths
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Models need to refine treatment of atomic interaction with plasma and excited states.



SCO-RCG model predicted the measured L-shell line width
reasonably well
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Anchor2: Interesting element-dependent disagreement
appears as approaching to stellar interior conditions
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Refined analysis on Fe does not fully remove the reported
quasi-continuum disagreement
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• Reanalysis on Fe reduced datakmodel> from +60% to +30%, still statistically significant
• Excellent reproducibility in all three elements suggests the Fe discrepancy is real

8.(

Any hypothesis has to explain not only Fe discrepancy but also better agreement in Cr and Ni



Refined analysis on Fe does not fully remove the reported
quasi-continuum disagreement
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• Reanalysis on Fe reduced datakmodel> from +60% to +30%, still statistically significant
• Excellent reproducibility in all three elements suggests the Fe discrepancy is real
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Any hypothesis has to explain not only Fe discrepancy but also better agreement in Cr and Ni

* OP: Astro • h sics o• acit code b Seaton et al., MNRAS (1994)



Future work: exciting new investigations and further scrutiny
are on the horizon

New investigations: Further scrutiny:

• Opacity at higher Te and ne : • Fe quasi-continuum puzzle
• Higher Te: • Anchor2

• Window disagreement • Anchor3
• Higher ne • Revisiting errors

• Line-shape disagreement • Areal density
• Closer to solar CZB conditions • Background

• O opacity for solar problem 

• Time-resolved measurement (UXI*) 
• Comparable S/N to x-ray film

• Potentially, Te and ne points from single experiment

Sandia
National
Laboratories

*UXI = Ultra-fast X-ray Imager



Systematic study of L-shell opacities with refined analysis validates
experiment reliability and suggest necessary model refinements

• Fe L-shell opacity is measured at solar interior
conditions and revealed severe model-data
discrepancy

4 Is opacity theory wrong? Is experiment flawed?

• Refined analysis improved shot-to-shot reproducibility,
demonstrating opacity experiment reliability

• Systematic measurement of Cr, Fe, and Ni opacities
suggests model refinements in three areas

• Window: Challenge associated with open L-shell config.

• BB: Inaccurate treatment of density effects

• Continuum: Peculiar dependence on atomic number

Window
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Laboratories

E At solar interior Te, Tie
pData

E Model

1 1 i

After

.Continuum
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GA has developed and kept refining fabrication and metrology
techniques to deliver us high-quality foam and opacity samples

CH foam 

*

Opacity sample 

The high-quality targets enabled us to perform high-quality HED opacity benchmark experiments



High quality CH foam is necessary for high radiation
output and good reproducibility
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• Z-pinch hohlraum radiation is produced
by W wires imploding on to the CH foam
and the generating radiative shock

• Criteria for CH foam
• Density
• Composition
• Cosmetic defects/void/pore
• Morphism

1
•

1

Schematic from G. A. Rochau et al, Phys. Plasmas 21, 056308 (2014).



High quality CH foam is necessary for high radiation
output and good reproducibility
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Schematic from G. A. Rochau et al, Phys. Plasmas 21, 056308 (2014).



High quality CH foam is necessary for high radiation
output and good reproducibility

Tungsten
Z-Pinch
Plasma

Radiating
Shock

CH2
foam

4 mrn 0
Rad iat ion
Exit Hole

Tungsten
6 mm Wires

40 mrn

• Z-pinch hohlraum radiation is produced
by W wires imploding on to the CH foam
and the generating radiative shock

• Criteria for CH foam
• Density
• Composition
• Cosmetic defects/void/pore
• Morphism

1
•

1

Schematic from G. A. Rochau et al, Phys. Plasmas 21, 056308 (2014).



Unexpected contamination can affect the source
radiation yield
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Where Al lines comes from? 4 CH foam contamination i

Concernl: Change in radiation output

Concern2: Potential impact on Mg line analysis



Cosmetic defects/void/pore may affect implosion
dynamics

Optical X-ray 

Voids or density
gradients



Diameter and foam straightness are important to insert CH
foam to the hardware and to perform symmetric implosion I

Hardware

• Diameter needs to be within the
specified tolerance
• If larger, it won't fit
• If smaller, radiation could be lower

• The top surface and the body needs to
be perpendicular
• If not perpendicular, it can

introduce asymmetry into the
implosion

1
1
I
I



Diameter and foam straightness are important to insert CH
foam to the hardware and to perform symmetric implosion I

Hardware

• Diameter needs to be within the
specified tolerance
• If larger, it won't fit
• If smaller, radiation could be lower

• The top surface and the body needs to
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Well-characterized high-quality opacity sample are
essential for accurate opacity measurements

Opacity sample

4-- Criterial: accurate and uniform pL

Criteria4: Flat and smooth surface

Criteria2: No contamination

Criteria3: No artifacts such as

pinholes or cracks



GA has developed and kept refining fabrication and metrology
techniques to deliver us high-quality foam and opacity samples

CH foam 

*

Opacity sample 

The high-quality targets enabled us to perform high-quality HED opacity benchmark experiments


