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What Are We Doing?

Brine availability test in salt at WIPP (BATS)

Monitoring brine distribution, inflow, and chemistry
from heated salt using geophysical methods
and direct liquid & gas sampling.

Boreholes currently being drilled in WIPP underground, testing begins
Spring 2019, into FY20. Shakedown equipment tests ongoing.

LA) * 3
bErTFII 2.5, - 4.31
DATE: a/7/a0/9

Kuhlman & Stauffer: Salt Research at WIPP (NWTRB Feb 2019) energy.gov/ne



Motivation: Importance to Safety Case

Brine Availability: Distribution of brine in salt & how it
flows to excavations or boreholes

• Initial conditions to post-closure safety assessment
— Brine migration and re-distribution

— Evolution of disturbed rock zone (DRZ) porosity and permeability

• Brine causes corrosion of waste package / waste form

• Brine is primary radionuclide transport vector

• Liquid back-pressure can resist drift creep closure
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Motivation: Salt as Disposal Medium

• Salt long-term benefits as disposal medium
Low connected porosity (0.1 vol-%) and permeability (< 10-22 m2)

High thermal conductivity (-5 W/(m • K))

No flowing groundwater (< 5 wt-% water)

Hypersaline brine is biologically simple, has less-stable colloids

CI (-190 g/L) and B (-1 g/L) in brine reduce criticality concerns

Excavations, DRZ, and fractures will creep closed

Mined salt reconsolidates and heals to intact salt properties

• Near-field short-term complexities
Hypersaline brine is corrosive

Salt is very soluble in fresh water

Brine chemistry requires Pitzer

Salt creep requires drift maintenance
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Motivation: Test Conceptual Model

Cartoon representation of test interval

relative to observed DRZ at WIPP
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Motivation: Test Design
Pressure, Humidity

& Tem erature

• Behind packer
— Circulating dry N2

— Quartz lamp heater (750 W) traps at

Desiccant

Outflow

— Borehole closure gage Heater Power

Controller

— Gas permeability before / after

• Samples

Gas

Outlet

Gas Inlet

DRZ
Packer

Thermocouples
Gas inlet (routed near
back)

Borehole Closure
Centralizer Gage

Radiative Heater Element

Valve, Flowme er &

Pressure Sensors

Satellite Observation Borehole

— Cores (X-Ray CT and X-Ray Fluorescence at NETL)

— Gas stream (natural / applied tracers, humidity and isotopic makeup)

— Liquid brine (natural chemistry and natural / applied tracers)

• Geophysics
— 3 x Electrical resistivity tomography (ERT)

— 3 x Acoustic emissions (AE) / ultrasonic wave velocity

— 2 x Fiber optic distributed strain / temperature

— Many thermocouples
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Motivation: Brine in Salt

• No flowing groundwater, but not dry wt-% water)

• Water sources in salt
1. Hydrous minerals (clay, gypsum, bassanite)

2. lntragranular brine (fluid inclusions)

3. lntergranular brine (interconnected pores)

• Brine content correlates with clay content

• Only intergranular brine moves under pressure gradient

• Water types respond differently to heat
— Hydrous minerals evolve water vapor, which can become brine

— lntragranular brine migrates under thermal gradient

• Brine types have different chemical / isotopic composition

• Q: How do 3 brines contribute to Brine Availability?
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Thermally-driven THMC Conceptual Model

• Salt HMC is "thermally activated"
— High temperatures speed up creep closure

— More of brine types available in hot salt

— Salt solubility higher in hot brine

• High temperatures lead to dry-out
— Water driven off as vapor, forming salt crust

— Near-package permeability reduced

— Less corrosion in dry environment

• THMC modeling (A porosity / permeability)
— Creep, damage & healing

— Precipitation & dissolution

— Brine migration (rel. permeability)

• Gas-filled fractures

• Liquid-saturated far field
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Motivation: Test Data

• Brine composition samples
— Define how mix of brine sources change with temperature

• Geophysics
— Map temporal 3D evolution of saturation / porosity / permeability

distribution around heater

• Temperature distribution
— More brine available at high temp (inclusions + hydrous minerals)

— Thermal expansion brine driving force

— Salt dry-out near borehole

• Gas permeability and borehole closure
— THMC evolution of salt during heating

• Tracer migration through salt
— Estimate rate of brine / vapor movement through salt DRZ
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Salt - GDSA Integration

• Integration with engineered barriers systems (EBS):
— WIPP heater test has an EBS / seal component — some field data

on effects of heat on salt / cement interface

• GDSA model improvements to PA/ process models:
— Models used to design the heater test

— Models used to interpret data collected during the test

— Field test model improvements benefit GDSA

• Follow-on tests may benefit dual-purpose canisters (DPC)
direct disposal issues
— Possibly: higher temperatures, buoyancy issues
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International Collaboration

• Strong int'l salt repository research community
— usUSA (SNL, LANL, LBNL), DEGermany (BGR, DBE, GRS), NL

Netherlands (COVRA), GBUK (RWM)

• Variety of salt deposits around world
— Bedded salt: flat-lying salt @ WIPP

— Domal salt: less brine, but more complex geometry

— Pillow salt: between bedded & domal

• International meetings
- loth US / German Workshop (May 2019, in

Rapid City SD)

— OECD Nuclear Energy Agency "Salt Club"

— Model validation to lab experiments:

• WEIMOS, KOMPASS, RANGERS

• Possible salt DECOVALEX 2023 task
US/GERMAN WORKSHOP

Salt Repository Research,
Design, & Operation
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Process-level Modeling Goals

• Simulation tools demonstrate understanding
of repository processes

• Gain confidence in long-term predictions

• Explore uncertain processes and inputs prior
to designing new experiments to reduce
uncertainty

• Integrate process-level physics into the
generic Generic Disposal System Analysis
(GDSA) performance assessment (PA) tool

Model

Data
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THMC Process-Level Modeling

• Thermal-Hydrological-Mechanical-Chemical (THMC)

• TOUGH-FLAC simulates large-deformation THMC

• FEHM numerical model simulates small-deformation THMC

• Isolating specific processes allows more rapid validation

• Some processes are validated using TH, TM, THC, or THM
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Salt THMC Couplings

• Deformation

• Vapor pressure lowering

• Porosity

• Thermal conductivity

• Permeability

• Capillary pressure

• Water vapor diffusion

• Clay dehydration

Dehydration of salt sampies
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THC Couplings : Evaporation example

• WIPP evaporation
experiment
— Joint DOE-EM / DOE-NE

— Ran in WIPP underground
by LANL Carlsbad

• Simulated using FEHM
— Implemented a new time-

dependent FEHM relative
humidity (RH) boundary
condition

• Mine ventilation (RH)
impacts better included in
future test simulations

Temp, RH and

Wind Velocity

Measurements

5

Evaporation Data
vs

Simulation

D a ys

FEHM

Measured

1 2
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Importance of HMC Processes

Crushed salt backfill
(geotechnical barrier)

(cosToslon)

TOUGH2
Multiphase flow and

transport

FLAC3D
Geomechanics

• Performance Assessment

- Development of DRZ, a potential path for transport

- Compaction, sealing and healing (solidification)

• Safety Case

- Post-closure SA [4.2], including barrier / safety function

- Post-closure FEPs [3.3], including host rock / DRZ

- Confidence enhancement [4.3], including validation

• Roadmap

THMC model development

Validation against field (WIPP) and lab experiments

THMC model demonstration (long-term, GDSA)

• International

• Salt constitutive model development and validation with
Clausthal Technical University (Germany)

• Access to field test data in various salt types (e.g. bedded
vs. domal salt in Asse Mine URL, possible WIPP
contributions)
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International: Heater Test at Asse Mine

4

Blanco-Martin et al. (2016)
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• THM model validation of compaction to 8 years
(backfill and host rock THM constitutive models)

• Compaction driven by tunnel convergence

• Fastest compaction in the heated section (high
temperature accelerates creep)

• Constitutive model validation includes temperature dependent creep

• Constitutive model does not include moisture impact on creep (still good
agreement with laboratory tests)

8 9

• How long does it take to complete compaction and sealing of backfill?
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Salt Constitutive Models

• Salt behavior is complex (elastic / creep / damage / healing)
— Models are in general good, but

• Constitutive laws have many parameters

• Require carefully controlled lab experiments

— temperature, moisture, loading path

• Strain at low deviatoric stress
— Recent international focus

— Important for far field and long times

— Lab vs. field conditions make tests difficult

• Granular salt reconsolidation
— Water content (faster with moisture)

— Temperature (faster at high temp)

— Loading history

Oedometer tests in REPOPERM 2
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WIPP Heater Test: THC Model of Field Test

Shakedown Test
3D Borehole heater
simulation domain
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WIPP Heater Test: Simulations Assist Design
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WIPP Heater Test: Modeling Thermal Step Test
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WIPP Heater Test: THM Model of Field Test

Prediction of WIPP heater test THM behavior: TOUGH-FLAC

• The constitutive THM model (Lux-Wolters) was developed from a
large number of Iaboratory experiments in domal salt (Germany)

• Parameters for bedded salt more uncertain

• WIPP heater test will provide in situ data for improving confidence in
heat-driven salt convergence and brine release
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• WIPP Borehole Heater Test
— FY19 execution (-120 °C & unheated)

— Possible follow-on tests at higher temp

• Possible Follow-on Tests
— Further borehole test configurations

— Moving towards larger-scale tests

— Intermediate-scale testing

1. Large-scale granular salt reconsolidation

2. Single-canister thermal test

• Laboratory / Modeling Investigations
— Investigations supporting field test design or

data interpretation

Advancing Critical Zone Science

Clearante Annulus

Total kngth might
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upon test interval
foe permeabfhty.

Pressure Cell
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Salt Research and WIPP Test: Summary

• FY19-20: Brine Availability Test in Salt at WIPP
— Monitoring brine sources, inflow, and composition in heated salt

through geophysical methods and direct liquid & gas sampling

— Characterize brine source and their response to temperature

— Assess new methods to characterize salt DRZ

• THMC process-model developments to better design &
interpret field tests

• International collaborations on field test and models to
leverage expertise in Germany, Netherlands, UK

• Possible salt DECOVALEX 2023 task

• Improve safety salt case for heat-generating waste
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Questions?

Clean. Reliable. Nuclear.
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WIPP Underground Layout
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WIPP Underground Stratigraphy

Map
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WIPP Test Borehole L

BOREHOLE HEATER TEST CONFIGURATION (FINAL 02/18/2019)
T = Temp Only Holes
AE = Acoustic Emissions
SL = Seal
D = D20 + Tracer Source
E = ERT Electrodes
F = Fiber Optic (T and/or Strain)
SM = Sampling
HP = Heater and Packer
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Brine Inflow Expectations

• Brine inflow

— Highest inflow rate initially

— Exponential decay of rate with time

• More brine inflow at higher T

— Vapor from dehydration of clay & gypsum

— Brine from fluid inclusions

• 1997 Unheated brine inflow study

— INTRAVAL Study (Beauheim et al., 1997)

Kuhlman et al. (2017)
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Gas Composition Expectations

• Gases from
- Possible volatiles in salt (e.g., hydrocarbons at Asse)

- Dissolved gas in brine (-15 MPa pore pressure in far field)

- Components in seals and packers?

• Water Vapor from brine
— Natural H20

— "Light" water breakthrough

• Transport time through salt

• Fractionation in borehole

• D20 tracer at Avery Island salt dome
(Krause, 1983)

• Acid gas from salt / brine
— Decomposition of hydrous Mg salts

— Equilibration of PHCl(g) into
condensed steam

• Site 1 (-195°C) Asse Gas Composition
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• Data from Coyle et al. (1987) BMI/ONWI-624
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ERT / AE Expectations

• Electrical Resistivity Tomography (ERT)
- ERT electrodes cemented into 2 boreholes

• Salt Apparent Resistivity

- Function of porosity and brine saturation

• Conduct 3D ERT surveys through time
- Estimate evolution of porosity / saturation
- ERT conducted in heated test only

• Acoustic Emissions (AE)
- AE monitored during heat up & cooldown

- Locate AE sources near heated borehole

- AE correlated with permeability increases

- AE system installed in heated test only

• Ultrasonic Wave Travel-time Data
- May estimate extent/evolution of DRZ
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Cementitious Seals Expectation

• Emplace pre-fabricated cement plug
— Snug fit into satellite borehole

— Gas line embedded in plug

— Monitor seal evolution as borehole closes

• Upscale German laboratory seals tests

• Compliment field scale sealing tests
— ERAM Test Seal - salt concrete

— Asse tests - Sorel cement and salt concrete

— WIPP Field Seals Tests

• Post-test overcore of salt / cement interface
PRESSURE AND
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