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What Are We Doing?

Brine availability test in salt at WIPP (BATS)

Monitoring brine distribution, inflow, and chemistry
from heated salt using geophysical methods
and direct liquid & gas sampling.

Boreholes currently being drilled in WIPP underground, testing begins
Spring 2019, into FY20. Shakedown equipment tests ongoing.
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Motivation: Importance to Safety Case

Brine Availability: Distribution of brine in salt & how it
flows to excavations or boreholes

« Initial conditions to post-closure safety assessment
— Brine migration and re-distribution
— Evolution of disturbed rock zone (DRZ) porosity and permeability

* Brine causes corrosion of waste package / waste form
* Brine is primary radionuclide transport vector
« Liquid back-pressure can resist drift creep closure
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Motivation: Salt as Disposal Medium

« Salt long-term benefits as disposal medium
— Low connected porosity (0.1 vol-%) and permeability (< 10722 m?)
— High thermal conductivity (~5 W/(m - K))
— No flowing groundwater (< 5 wt-% water)
— Hypersaline brine is biologically simple, has less-stable colloids
— CI(~190 g/L) and B (~1 g/L) in brine reduce criticality concerns
— Excavations, DRZ, and fractures will creep closed
— Mined salt reconsolidates and heals to intact salt properties

» Near-field short-term complexities
— Hypersaline brine is corrosive
— Salt is very soluble in fresh water
— Brine chemistry requires Pitzer
— Salt creep requires drift maintenance
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Motivation: Test Conceptual Model

Cartoon representation of test interval Contours of gas flowrate at
relative to observed DRZ at WIPP fixed pressure (measure of damage)
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Motivation: Test Design

* Behind packer
— Circulating dry N,
— Quartz lamp heater (750 W)
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— Gas permeability before / after

« Samples |
— Cores (X-Ray CT and X-Ray Fluorescence at NETL)
— Gas stream (natural / applied tracers, humidity and isotopic makeup)
— Liquid brine (natural chemistry and natural / applied tracers)
» (Geophysics
— 3 X Electrical resistivity tomography (ERT)
— 3 X Acoustic emissions (AE) / ultrasonic wave velocity
— 2 X Fiber optic distributed strain / temperature
— Many thermocouples
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Motivation: Brine in Salt

* No flowing groundwater, but not dry (< 5 wt-% water)

« Water sources in salt ’
1. Hydrous minerals (clay, gypsum, bassanite)
2. Intragranular brine (fluid inclusions)
3. Intergranular brine (interconnected pores)

« Brine content correlates with clay content
* Only intergranular brine moves under pressure gradient
« Water types respond differently to heat

— Hydrous minerals evolve water vapor, which can become brine
— Intragranular brine migrates under thermal gradient

* Brine types have different chemical / isotopic composition

Q: How do 3 brines contribute to Brine Availability?
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Thermally-driven THMC Conceptual Model

« Salt HMC is “thermally activated”
— High temperatures speed up creep closure
— More of brine types available in hot salt
— Salt solubility higher in hot brine

« High temperatures lead to dry-out
— Water driven off as vapor, forming salt crust
— Near-package permeability reduced
— Less corrosion in dry environment

« THMC modeling (A porosity / permeability)

— Creep, damage & healing Boiling region C°“de?ﬁ°" =
— Precipitation & dissolution ¥ e
— Brine migration (rel. permeability) Vo fhin
» Gas-filled fractures
» Liquid-saturated far field LOW‘”“‘?@@@
rin
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Motivation: Test Data

* Brine composition samples
— Define how mix of brine sources change with temperature
« (Geophysics

— Map temporal 3D evolution of saturation / porosity / permeability
distribution around heater

« Temperature distribution
— More brine available at high temp (inclusions + hydrous minerals)
— Thermal expansion brine driving force
— Salt dry-out near borehole

« (Gas permeability and borehole closure
— THMC evolution of salt during heating

« Tracer migration through salt
— Estimate rate of brine / vapor movement through salt DRZ
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Salt - GDSA Integration

 Integration with engineered barriers systems (EBS):

— WIPP heater test has an EBS / seal component — some field data
on effects of heat on salt / cement interface

 GDSA model improvements to PA / process models:
— Models used to design the heater test
— Models used to interpret data collected during the test
— Field test model improvements benefit GDSA

* Follow-on tests may benefit dual-purpose canisters (DPC)
direct disposal issues
— Possibly: higher temperatures, buoyancy issues
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International Collaboration

« Strong int'l salt repository research community
— usUSA (SNL, LANL, LBNL), peGermany (BGR, DBE, GRS), NnL
Netherlands (COVRA), ceUK (RWM)
« Variety of salt deposits around world
— Bedded salt: flat-lying salt @ WIPP
— Domal salt: less brine, but more complex geometry
— Pillow salt: between bedded & domal
 International meetings
— 10t US / German Workshop (May 2019, in
Rapid City SD)
— OECD Nuclear Energy Agency “Salt Club”
— Model validation to lab experiments: [ =
« WEIMOS, KOMPASS, RANGERS US/GERMAN WORKSHOP

» Possible salt DECOVALEX 2023 task " esion, & Operation
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Process-level Modeling Goals

« Simulation tools demonstrate understanding
of repository processes

« Gain confidence in long-term predictions

« Explore uncertain processes and inputs prior
to designing new experiments to reduce
uncertainty

 Integrate process-level physics into the
generic Generic Disposal System Analysis
(GDSA) performance assessment (PA) tool

Model

\w
, -
5

Data
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THMC Process-Level Modeling

Thermal-Hydrological-Mechanical-Chemical (THMC)

TOUGH-FLAC simulates large-deformation THMC

FEHM numerical model simulates small-deformation THMC

Isolating specific processes allows more rapid validation

Some processes are validated using TH, TM, THC, or THM
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Salt THMC Couplings

 Deformation F(temperature, stress, time, saturation)

» Vapor pressure lowering F(capillary pressure, salinity)

* Porosity F(dissolution, precipitation, stress, strain)
» Thermal conductivity F(temperature, porosity, saturation)

» Permeability F(porosity, saturation)

» Capillary pressure F(porosity, saturation, temperature)

» Water vapor diffusion F(porosity, saturation, temperature)

» Clay dehydration F(temperature)

Model for water release |
Intact salt :
' - TRANSPORT IN
Numerical model o POROUS MEDIA
6 \ o ("" i e .
3 04— \ N 04

RoM Salt

100 200 300 i i i
S bt L6 utatah Capillary pressure / porosity function
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THC Couplings : Evaporation example

« WIPP evaporation

evap  RoM satn Bucket
experiment

— Joint DOE-EM / DOE-NE

— Ran in WIPP underground
by LANL Carlsbad

« Simulated using FEHM

— Implemented a new time-
dependent FEHM relative
humidity (RH) boundary
condition

* Mine ventilation (RH)
Impacts better included In

future test simulations

™ 2 L > - . > >
- Evaporation Data
< Vs

Simulation

Mass Change %
0.13
-

-0.15.
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Importance of THMC Processes

: ‘Rock salt
(geologic barrier)

Performance Assessment

- Development of DRZ, a potential path for transport
- Compaction, sealing and healing (solidification)
Safety Case
| - Post-closure SA [4.2], including barrier / safety function
T = - Post-closure FEPs [3.3], including host rock / DRZ
- Confidence enhancement [4.3], including validation
Roadmap
- THMC model development
- Validation against field (WIPP) and lab experiments
- THMC model demonstration (long-term, GDSA)
International

« Salt constitutive model development and validation with
Clausthal Technical University (Germany)

» Access to field test data in various salt types (e.g. bedded
vs. domal salt in Asse Mine URL, possible WIPP
contributions)

TOUGH2
Multiphase flow and
heat transport

FLAC3D
Geomechanics
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International: Heater Test at Asse Mine
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« THM model validation of compaction to 8 years
. (backfill and host rock THM constitutive models)
e I « Compaction driven by tunnel convergence
T =364 °C Ll | L ; :
: ’1 B « Fastest compaction in the heated section (high
Blanco Marti ctal, (2016) | Lptper | L= temperature accelerates creep)

Average porosity (crushed salt)

» Constitutive model validation includes temperature dependent creep

» Constitutive model does not include moisture impact on creep (still good

agreement with laboratory tests)

*  How long does it take to complete compaction and sealing of backfill?
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Long-term Compaction and Sealing

« THMC modeling of compaction with salt
dissolution / precipitation in backfill (Blanco-Martin

et al., 2018)

* Thermal-mechanical-induced compaction most
important at this scale

1200 m

Asse Mine Validation Future Prediction to Complete Sealing

Porosity .
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Simulation indicates areas of
about 10% porosity at 1000 years
(permeability = 10-15 m?)
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Salt Constitutive Models

« Salt behavior is complex (elastic / creep / damage / healing)

LEDE -

we Field — | Lab
== conditions. —_conditigns

BEGE

1508 1

— Models are in general good, but
« Constitutive laws have many parameters
» Require carefully controlled lab experiments
— temperature, moisture, loading path

Under-

Steady-state Strain Rate [1/sec]

« Strain at low deviatoric stress - ] deamcnon
— Recent international focus - _"fi"l*:“ i
e & infie
— Important for far field and long times - i |
— Lab vs. field conditions make tests difficult Deviatoric Stress [Pa]
0.3 iﬁkkaO% | !:100
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WIPP Heater Test: THC Model of Field Test

Shakedown Test Side view along the horizontal hole

3D Borehole heater
j - : Packer
simulation domain Packer
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Meters from the drift face

3m

Drift view
looking into
horizontal hole

Zoom into the heater mesh
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WIPP Heater Test: Simulations Assist Design

Full contact Small contact
(radiation) sim (conduction) sim

A AT L TS Y

\ £ —rA ¥ IW\\ D < | \bi,lr
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View into heated borehole

Simulations
compared to
shakedown data
show that
infrared heating
would better
transfer heat to
the rock salt.
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WIPP Heater Test: Modeling Thermal Step Test
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WIPP Heater Test: THM Model of Field Test

Prediction of WIPP heater test THM behavior: TOUGH-FLAC

* The constitutive THM model (Lux-Wolters) was developed from a
large number of laboratory experiments in domal salt (Germany)

« Parameters for bedded salt more uncertain

« WIPP heater test will provide in situ data for improving confidence in
heat-driven salt convergence and brine release
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Salt Disposal R&D “Five-Year Plan”

Advancing Critical Zone Science

 WIPP Borehole Heater Test
— FY19 execution (~120 °C & unheated)
— Possible follow-on tests at higher temp

* Possible Follow-on Tests
— Further borehole test configurations
— Moving towards larger-scale tests

— Intermediate-scale testing
1. Large-scale granular salt reconsolidation/
2. Single-canister thermal test

« Laboratory / Modeling Investigations

— Investigations supporting field test design or
data interpretation
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Salt Research and WIPP Test: Summary

FY19-20: Brine Availability Test in Salt at WIPP

— Monitoring brine sources, inflow, and composition in heated salt
through geophysical methods and direct liquid & gas sampling

— Characterize brine source and their response to temperature
— Assess new methods to characterize salt DRZ

« THMC process-model developments to better design &
interpret field tests

* International collaborations on field test and models to
leverage expertise in Germany, Netherlands, UK

* Possible salt DECOVALEX 2023 task
* Improve safety salt case for heat-generating waste
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Questions?

Clean. Reliable. Nuclear.
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WIPP Location
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WIPP Underground Layout
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WIPP Underground Stratigraphy

Clay D (locally overiain by 0.01 m anhydrite).
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10.36
6 Clear to reddish-orange halite, trace polyhalite.
W= 4/ NI =N
..................................... ™ i b i 3 il — DR
5 |Clear halite, trace argillaceous
| F_| . |materal. __ - — —— 274
4 Clear to reddish-brown argillaceous = =
halite with discontinuous clay wow oy
partings in upper half. . .
.... 3 Clear to reddish-orange halite, trace Typma; 4.0-m ngh = AT
ofyhalite. " P
b yh Waste-Storage ~ -4.18
1 Room . -4.27
1 442
Reddish-orange halite, trace Top of
polyhalite. 1: g:‘n ]
Reddish-brown to bluish-gray = '
Q0 | argillaceous halite.
e, /L J
== WS CYEL/EWNEN = 8.18
Clear to reddish-orange and reddish-brown halite, argillacecus in upper part, trace polyhalite.
.................................................................................................. — 571
PH-4 Clear to reddish-orange polyhalitic halite, locally grading downward to polyhalite.
vﬁx : -7.71
N . :
0 : N \ nhydrite underlain by clay sea X\
N E O Marker Bed (MB) 139.
Clay E e -8.60
H-4 Clear to moderate reddish-orange and light gray halite.
.................................................................................................. e +9, 51
PH-3 Clear to moderate reddish-orange halite, trace polyhalite and argillaceous matstal.
o D ‘1 0.97
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WIPP Test Borehole Layout

BOREHOLE HEATER TEST CONFIGURATION (FINAL 02/18/2019)

T = Temp Only Holes

AE = Acoustic Emissions
SL = Seal

D = D20 + Tracer Source
E = ERT Electrodes 7
F = Fiber Optic (T and/or Strain) Dzt
SM = Sampling

HP = Heater and Packer

DIA 175"
LEN 180"

DIA2.1"

o7 | | | DA 175

DIA 175" _A
LEN-18.0| LN 180

LEN 200"
|

DIA 175"
LEN 18D\

DIA 175"
LEN 180"

DA
LEN SO,
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Brine Inflow Expectations

« Brine inflow wl® o 50°C
— Highest inflow rate initially S:
— Exponential decay of rate with time ; ;e% 2

« More brine inflow at higher T ik m“q’w
— Vapor from dehydration of clay & gypsum ‘ .,
— Brine from fluid inclusions :; e .

« 1997 Unheated brine inflow study -
_ INTRAVAL Study (Beauheim et al., 1997) vertical V¥IFr borehales

Kuhlman et al. (2017) a 13O:C

— OH20 — OH26 —— L4X01
— OH23 — L4BO1

9/day

o888 83888:s888838
4 I B R S0 NS S5

Rate,

brine flux [g/m?/day]
o b N w £ w o

i D i i i i h
200 400 600 800 1000 1200 1400 1600 1800

Vertical boreholes intersected
Unheated borehole brine inflow at WIPP in MU-0 clay layers (Rooms A & B)
(did not cross mapped clay layer) Nowak & McTigue (1987)
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Gas Composition Expectations

« (Gases from

— Possible volatiles in salt (e.g., hydrocarbons at Asse)
— Dissolved gas in brine (~15 MPa pore pressure in far field)

— Components in seals and packers?

« Water Vapor from brine
— Natural H,0
— “Light” water breakthrough
« Transport time through salt
 Fractionation in borehole

» D,O tracer at Avery Island salt dome
(Krause, 1983)

* Acid gas from salt / brine
— Decomposition of hydrous Mg salts

— Equilibration of Py,¢, into
condensed steam

Volume Fraction

+ Site 1 (~195°C) Asse Gas Composition

e f

100 oo

ndense

(after con

0.01

——H2 —e—02

0.001
—— N2 coz2

——C0

0.0001
0 200 400 600

Days

—&— Hydrocarbons

800

» Data from Coyle et al. (1987) BMI/ONWI-624
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ERT / AE Expectations

Electrical Resistivity Tomography (ERT)
— ERT electrodes cemented into 2 boreholes
« Salt Apparent Resistivity
— Function of porosity and brine saturation
Rothfuchs et a. (1988)

 Conduct 3D ERT surveys through time S LB i s
— Estimate evolution of porosity / saturation

— ERT conducted in heated test only

FLOOR

RDED BEFORE CODL~DOVN

* Acoustic Emissions (AE) ol
— AE monitored during heat up & cooldown oo eta @y "

— Locate AE sources near heated borehole — werees==*sesenentee

— AE correlated with permeability increases s ooy

— AE system installed in heated test only S, ee%eee®%e oo

Ultrasonic Wave Travel-time Data 1§ g e sesessesee

— May estimate extent/evolution of DRZ

QGU37 —>QGU3s, P

Vp (kmisec)

Depth (m)
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Cementitious Seals Expectation

Emplace pre-fabricated cement plug

— Snug fit into satellite borehole

— Gas line embedded in plug

— Monitor seal evolution as borehole closes
« Upscale German laboratory seals tests

« Compliment field scale sealing tests
— ERAM Test Seal - salt concrete

— Asse tests - Sorel cement and salt concrete Czaikowski & Wieczorek (2016)
— WIPP Field Seals Tests T s s
« Post-test overcore of salt / cement interface °l R
P_WW% o S \Nk'“\«x
J— B wl R S
B -—-st:::r;onm%?) - c “'”‘?“‘“' ot
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