This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019-1882C

Recent Trends and Challenges for
High Performance Sparse Linear
Algebra

Michael A. Heroux
Sandia National Laboratories

Contributors: Mark Hoemmen, Siva Rajamanickam

https://trilinos.github.io

Sandia National Laboratories is a multimission laboratory managed and operated

by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned Sandi
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s : ia
National Nuclear Security Administration under contract DE-NA0003525. National

1 Laboratories

Outline)

= Brief Overview of Trilinos.

= Some lessons learned (I think).
" On-node parallelism.

" Embedded Resilience.

= Non-accelerated systems return.

Sandia
m National
Laboratories

Trilinos Overview

What is Trilinos?)

= Object-oriented software framework for...

= Solving big complex science & engineering problems.
= |Large collection of reusable scientific capabilities.
= More like LEGO™ bricks than Matlab™.

Optimal Kernels to Optimal Solutions:
¢ Geometry, Meshing
¢ Discretizations, Load Balancing.

¢ Scalable Linear, Nonlinear, Eigen,
Transient, Optimization, UQ solvers.

¢ Scalable 1/0, GPU, Manycore

¢ 60+ Packages.
¢ Distributions:

¢ GitHub repo.

¢ Cray LIBSCI, Linux
¢ Thousands of Users.

Laptops to
Leadership systems

I Systems of systems

Optimization under Uncertainty

Quantify Uncertainties/Systems Margins

Optimization of Design/System

Robust Analysis with Parameter Sensitivities

Accurate & Efficient Forward Analysis

Forward Analysis

. L. . Each stage requires greater performance and error control of prior stages:
¢ Worldwide distribution. Always will need: more accurate and scalable methods.

more sophisticated tools.

Trilinos Highlights) .
= Huge library of algorithms

= Linear and nonlinear solvers, preconditioners, ...
= Optimization, transients, sensitivities, uncertainty, ...

= Solid support for multicore & hybrid CPU/GPU

= Built into the new Tpetra linear algebra objects
= Therefore into iterative solvers with zero effort!
= Unified intranode programming model: Kokkos
= Spreading into the whole stack:
= Multigrid, sparse factorizations, element assembly...
= Support for mixed and arbitrary precisions
= Don’t have to rebuild Trilinos to use it

= Support for flexible 2D sparse partitioning

= Useful for graph analytics, other data science apps.

Trilinos linear solvers 1) .

= Sparse linear algebra
(Kokkos/KokkosKernels/Tpetra)
= Threaded construction, Sparse graphs, (block)

sparse matrices, dense vectors, parallel solve
kernels, parallel communication & redistribution

= |terative (Krylov) solvers (Belos)
= CG, GMRES, TFQMR, recycling methods

= Sparse direct solvers (Amesos2)

= Algebraic iterative methods (Ifpack2)
= Jacobi, SOR, polynomial, incomplete factorizations, additive Schwarz

= Shared-memory factorizations (ShyLU)
= LU, ILU(k), ILUt, IC(k), iterative ILU(k)
= Direct+iterative preconditioners

= Segregated block solvers (Teko)
= Algebraic multigrid (MuelLu) 7

National

ShyLU and Subdomain Solvers : Overview) S

r

§P1 (\\ Amesos2 lfpack2
::lg:‘ep:‘ * MPI Procs ghyl'.1U on ;he ' : - S
. with verlappe
::;alm \ L Thredds ./ matrix ShyLU

............... lps! \\ KLU2 Basker Tacho {FAST-ILUJ
Compute ———

o nain2 KokkosKernels —
N 7 SGS, Tri-Solve (HTS)

p—

MPI+X based subdomain solvers

Decouple the notion of one MPI rank as one subdomain: Subdomains can span
multiple MPI ranks each with its own subdomain solver using X or MPI+X

Subpackages of ShyLU: Multiple Kokkos-based options for on-node parallelism
Basker : LU or ILU (t) factorization
Tacho: Incomplete Cholesky - IC (k)
Fast-ILU: Fast-ILU factorization for GPUs

KokkosKernels: Coloring based Gauss-Seidel (M. Deveci), Triangular Solves (A.
Bradley)

Sandia
m National
Laboratories

Some Lessons Learned

Sandia
Simultaneous heterogeneous execution is hard) fess

= HPCG on Trinity

= 9380 Haswell, 9984 KNL compute \l'/lF’ItCG)On SIERRA (Power9's + 4
oltas):
nodes. » About 10% of performance is
= Haswell from Power9’s
: L « Summit 6 GPUs: Power9’s less
Processor dimensions: 27x42x17 important.
" Local grid dimensions: 160x160x112 Both:
= KNL . CodeT complexity challeng_ing.
, , * Runtime system complexity
" Processor dimensions: 27x42x34 (MPI).
= Local dimensions: 160x160x152 * Work partitioning.
= HPCG result: 546 TF/s (4" at ISC18).

= Previous 180 TF/s for Haswell only.
= Key Point: For sparse codes, it's about the memory system.

= For accelerated systems, simultaneous heterogeneous
execution seems unwise: Keep all computation on the GPUs.

Porting to accelerated systems
2-phase strategy: TaihuLight

= Management Processing Element (MPE)

64-bit RISC core

support both user and system modes
256-bit vector instructions

32 KB L1 i-cache, 32 KB L1 data, both 4 way
set associative.

256 KB L2 cache, 8 way set associative

= Computing Processing Element (CPE)

8x8 CPE mesh

64-bit RISC core

support only user mode

256-bit vector instructions

64 KB Scratch Pad Mem (1 private per CPE)

Can be configured as explicit local mem or SW
managed $.

Each CPE has own 16KB direct mapped i-
cache.

Initial port:

* Vanilla MPI, 1 rank per MPE
« 23.2 GF/s /core

* 4 vector FMA

« 2 pipes

* 16 Flops/cycle FMA

« Peak: 2/65 of node peak

Subsequent optimization:

« Offload any work to CPEs
* 11.6 GF/s /core

* 4 vector FMA

* 1 pipe

» 8 Flops/cycle FMA

-

Sandia
National
Laboratories

Sandia
|‘I1 National
Laboratories

CAM-SE to Taihulight: 2017 Gordon Bell Finalist

= CAM-SE: Spectral Element Atmospheric dynamical core

= Reported:
= 754,129 SLOC.
= 152,336 SLOC modified for TaihuLight (20%).
= 57,709 SLOC added (8%).
= 12+ team members.
= Challenges:
= Reusability of code seems low: Much of the optimization is specific to

Sunway CPE processor.
= Translation effort difficult to accomplish while still delivery science

results: Disruptive.
= Other notable example: Uintah (see Dec 2017 ASCAC talk)
= Separation of runtime concerns seems to really help, but app-specific.

Sandia
rl1 National
Laboratories

Some Observations from these Efforts

= Even the simplest simultaneous heterogeneous execution is
difficult.
= Best option seems to keep all significant computation on accelerator.
= More generally: Heterogeneous execution is fine, if it’s not simultaneous.

= MPI-backbone approach is very attractive.
= |nitial app port to host backbone, hotspot optimization.
= |nvestment in portable programming expressions seems essential.

= Separation of functionality expression and work/data mapping seems
essential.

Sandia

Pattern for parallel dynamic allocation di:..

= Pattern:
1. Count/ estimate allocation size; may use Kokkos parallel_scan
2. Allocate; use Kokkos::View for best data layout & first touch

3. Fill: parallel_reduce over error codes; if you run out of space, keep
going, count how much more you need, & return to (2)

4. Compute (e.g., solve the linear system) using filled data structures

= Compare to Fill, Setup, Solve sparse linear algebra use pattern

= Semantics change: Running out of memory not an error!
= Always return: Either no side effects, or correct result
= Callers must expect failure & protect against infinite loops
= Generalizes to other kinds of failures, even fault tolerance

= Thread-scalable execution of mundane code is
”straightforward” but hard work.
14

Sandia
m National
Laboratories

On-node data & execution

Sparse LA Challenges vs Dense

= Dynamic tasking:
= Fine grain work migration is not effective.

= Cost of data migration is too high.

= Best to make sure data are mapped to make most efficient use of
bandwidth.

= Coarse grain can work:
* Encapsulate memory allocation, initialization and computation.
= Assures co-location of work and data.

" |ndirect addressing:
= Gather/scatter.
= Atomic writes vs. coloring.
= Data structure polymorphism:
= “Sparse” encompasses many kinds of problems.
= Architecture details impact data structure choices.

= Response: Encapsulate data/work in polymorphic layer

Sandia
National
Laboratories

16

Must support multiple architectures

Sandia

National
Laboratories

= Systems to support

= Trinity (Intel Haswell & KNL)

= Sierra: NVIDIA GPUs + IBM
multicore CPUs

= Astra: Arm manycore
= Plus “everything else”
= 3 different architectures
- Ml ~PUs (b |
= Manycore CPUs (small cores)
= GPUs (highly parallel)

= MPI only, & MPI + threads

= Threads don’t always pay on
non-GPU architectures today

= Porting to threads must not
slow down the MPI-only case

17

Kokkos: Performance, Portability, & Productivity @ ="

Trilinos Sierra

LAMMPS

Albany

- Kokkos - - - -

n

/

i

g J) d Y

Multi-Core Many-Core APU CPU + GPU

Kokkos Programming Model) e,
Goal: One Code gives good performance on every platform

Laboratories

e Machine model:

« N execution space + M memory spaces
* NxM matrix for memory access performance/possibility
« Asynchronous execution allowed

* Implementation approach

« A C++ template library

 C++11 now required

» Target different back-ends for different hardware architecture

« Abstract hardware details and execution mapping details away

Distribution

* Open Source library
» Available on GitHub

* Long Term Vision
« Move features into the C++ standard

Abstraction Concepts rh) i

Execution Pattern: parallel_for, parallel_reduce, parallel_scan, task, ...

Execution Policy : how (and where) a user function is executed
E.g., data parallel range : concurrently call function(i) for i = [0..N)
User’s function is a C++ functor or C++11 lambda

Execution Space : where functions execute
Encapsulates hardware resources; e.g., cores, GPU, vector units, ...

Memory Space : where data resides
» AND what execution space can access that data

Also differentiated by access performance; e.g., latency & bandwidth

Memory Layout : how data structures are ordered in memory
» provide mapping from logical to physical index space

Memory Traits : how data shall be accessed
» allow specialisation for different usage scenarios (read only, random, atomic, ...)

Execution Pattern i) e

Laboratories

#include <Kokkos_Core.hpp>
#include <cstdio>

int main(int argc, char* argv[]) {
// Initialize Kokkos analogous to MPI_Init()
// Takes arguments which set hardware resources (number of threads, GPU Id)
Kokkos::initialize(argc, argv);

// A parallel_for executes the body in parallel over the index space, here a simple range 0<=1<10
// It takes an execution policy (here an implicit range as an int) and a functor or lambda
// The lambda operator has one argument, and index_type (here a simple int for a range)
Kokkos: :parallel_for(10,[=](int i){
printf(”Hello %i\n",1i);
s

// A parallel_reduce executes the body in parallel over the index space, here a simple range 0<=1<1@ and
// performs a reduction over the values given to the second argument
// It takes an execution policy (here an implicit range as an int); a functor or lambda; and a return value
double sum = 0;
Kokkos: :parallel_reduce(10,[=](int i, int& 1lsum) {
lsum += 1i;
},sum);
printf("Result %Lf\n",sum);

// A parallel_scan executes the body in parallel over the index space, here a simple range 0<=1<10 and
// Performs a scan operation over the values given to the second argument
// If final == true lsum contains the prefix sum.
double sum = 0;
Kokkos: :parallel_scan(10,[=](int i, int& lsum, bool final) {
if(final) printf(”ScanValue %i\n",lsum);
lsum += 1i;

s
Kokkos::finalize(Q);

Kokkos protects us against... .

= Hardware divergence
= Programming model diversity

= Threads at all
= Kokkos::Serial back-end

= Kokkos’ semantics require
vectorizable (ivdep) loops

= Expose parallelism to exploit later
= Hierarchical parallelism model
encourages exploiting locality
= Kokkos protects our HUGE time
investment of porting Trilinos

Kokkos is our hedge

22

Other Node-Parallel Abstractions [@E=.

= An underlying node-parallel data/loop abstraction seems
necessary for sparse computations:
= To reduce redundant coding for different targets.
= To provide good data placement strategies.

= Kokkos is one approach. Others include:
= RAJA.
= OCCA.
= OpenACC.
= OpenMP (ramping up).
= Without some abstraction, these things are especially hard:

= Porting to different architectures.
= Execution on heterogeneous architectures.

23

Sandia
m National
Laboratories

Resilient Sparse Solvers

Our Luxury in Life (wrt FT/Resilience)

The privilege to think of a computer as a
reliable, digital machine.

Conjecture: This privilege will persist through
Exascale.

Reason: Vendors will not give us a unreliable
system until we are ready to use one, and
we will not be ready by 2020 — 2023.

Take away message h

If we want unreliable systems,

W)
we must work harder on resilience. N~

Four Resilience Programming Models @
= Relaxed Bulk Synchronous (rBSP)
= Skeptical Programming. (SP)

= Local-Failure, Local-Recovery (LFLR)

= Selective (Un)reliability (SU/R)

Toward Resilient Algorithms and Applications
Michael A. Heroux arXiv:1402.3809v2 [cs.MS]
https://arxiv.org/abs/1402.3809

Skeptical Programming i

National
Laboratories

| might not have a reliable digital machine

» Expect rare faulty computations

« Use analysis to derive cheap “detectors” to filter large errors
* Use numerical methods that can absorb bounded error

Algorithm 1: GMRES algorithm GMRES

for! =1 to do
b-Ax"Y7 !

ond

r.
q !
for j = 1 to restart do

r/|

WwWo .
for

hes :

wy
end

h"[') p

q;-l .

I
rily

Aq,
| to ; do
ql 'w‘*;
= Wi.1 ’_ll‘.)q.

liwl,
erh)‘,,l.)

f Theoretical Bounds on the \
Arnoldi Process

Iwall = FAq,ll < [[Allzllq;ll
Iwoll < FAll: = HAllP

From isometry of orthogonal projections,

\ |"L)l s “A})

Find y = min|[H,y - |b]|e,||,| * My form Hessenberg Matrix _
Evaluate convergence criteria | * Bound only computed once, valid for entire solve

Optionally, compute x; = Q,y
end

Evaluating the Impact of SDC in Numerical Methods
J. Elliott, M. Hoemmen, F. Mueller, SC’13

What is Needed for)
Skeptical Programming?
= Skepticism.

= Meta-knowledge:
= Algorithms,
= Mathematics,
" Problem domain.

= Nothing else, at least to get started.

= FEM ideas:
, — Note: These same ideas are
" Invariant subspaces. useful for the Artifact
= Conservation principles. - Evaluation Appendix, used
= More generally: by SC18 Tech Papers
" " Program.
= pre-conditions, post-conditions,

—

invariants.

Every calculation matters

vea Sandia
Soft Error Resilience () o

H =
Residual
Error

All Correct 343 4.6e-15 1.0e-6 *

Calcs

Iter=2, y[1] +=

1.0 35 343 6.7e-15 3.7e+3

SpMV incorrect M

Ortho

subspace ¢

Q[1][1] +=1.0 N/C N/A 7.7e-02 5.9e+5
Non-ortho
subspace

= Small PDE Problem: ILUT/GMRES
= Correct result:35 Iters, 343M FLOPS
= 2 examples of a single bad op.

= Solvers:
= 50-90% of total app operations.

New Programming Model Elements:
« SW-enabled, highly reliable:
« Data storage, paths.
« Compute regions.
ldea: New algorithms with minimal
usage of high reliability.
First new algorithm: FT-GMRES.
* Resilient to soft errors.
« Outer solve: Highly Reliable
* Inner solve: “bulk” reliability.
General approach applies to many
algorithms.

= Soft errors most likely in solver.

= Well-conditioned wrt errors.

= Decay proportional to number of errors. arXiv:1206.1390v1 [math.NA]

Fault-tolerant linear solvers via selective

= Need new algorithms for soft errors: ||| reliability,
Patrick G. Bridges, Kurt B. Ferreira,

Michael A. Heroux, Mark Hoemmen

= Minimal impact when no errors.

FT-GMRES Algorithm)
Input: Linear system Ax = b and initial guess xp
fo := b— Axp, B := ||ioll2, @y := /B
forj = 1,2,... until convergence do
Inner solve: Solve for Z; in g = Az

Visr := AZ

ori=12,..., k do > Orthogonalize v,
H(i,J) = G Vi1, Visr == Vigr — GH(1,)

end for

H +1,)) := [[Vs1ll2

Update rank-revealing decomposition of H(1:/,1:j)

it H(j + 1.)) is less than some tolerance then
Try recovery strategie

else
Converged; return after end of this iteration

end if
else

Gt = Vjur [H(j + 1)
end if
yj = argmin, |[H(1:j+1,1:j)y — Be&s||2 > GMRES projected problem
Xj =X+ [21,22,.... 2]y & Solve for approximate solution

end for

Sandia

Selective Reliability Highlights) 5.

w0
oS
X

w
N

79%

= The Selective Reliability Model
is Implementable, even today.

=
[e2]

163%

= SDC (Bit-flips) are not equally
impactful.

(-]

147%

B 31%

N

Additional Preconditioner Applies

Number of Faulty Subdomains

= Bit protection can be selective:
= |ntegers, Pointers — Use high bits. 1

16% 5%

0%
63

= FP— Exponent blts : e Bit P()s:i”tzi(m Flip}')(‘.?lz
= (Lowlight) Work in this area is stalled.
= Waiting for the next call-to-arms.

= Beyond Moore may be next opportunity (unreliable digital).

James Elliott, Mark Hoemmen, and Frank Mueller. 2015. A Numerical Soft Fault Model for
Iterative Linear Solvers. In Proceedings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing (HPDC '15). ACM, New York, NY, USA,
271-274. DOI=http://dx.doi.org/10.1145/2749246.2749254

NON-ACCELERATOR SYSTEMS

Non-accelerate systems didn’t disappear: @z

Laboratories

Sandia “Astra” System

Cavium ThunderX2 ARM based system.

System performance: 2.3 PF.

Number of nodes: 2,592

Cores/node: 56 (2 socket, 28 cores)

Better than average memory performance (8-channel design.)
Total # cores: 145152

Core spec:
= 2GHz
= 2 128-bit FP units, 4 fmadds
= 8 DP flops/core/clock/

Also: Diskless storage system.

ThunderX3 SVE (Future capability) &

Sandia
National _
Laboratories

= Scalable vector length allowing each implementation to choose

the amount of parallelism.
= Rich addressing modes including non-linear data accesses.

= Per-lane predication allowing vectorization of loops with
complex control flow.

= Predicate-driven loop control and management to reduce
vectorization overhead relative to scalar code.

= Horizontal operations for reducible loop-carried dependencies.

= Vector partitioning and software-managed speculation to
vectorize loops with data-dependent exits.

= Scalarized intra-vector sub-loops to allow vectorizing loops with

complex loop-carried dependencies.

J

Alejandro Rico, José A. Joao, Chris Adeniyi-Jones, and Eric Van Hensbergen. 2017. ARM HPC
Ecosystem and the Reemergence of Vectors: Invited Paper. In Proceedings of the Computing Frontiers

Conference (CF'17). ACM, New York, NY, USA, 329-334. DOI: https://doi.org/10.1145/3075564.3095086 L

35

Final Take-Away Points)

Laboratories

Development for accelerated sparse solvers in full swing.
Critical mass of sparse solver code exists, continues to grow.

Simultaneous heterogeneous execution is hard.

Sequenced heterogeneous is OK, but need code generation
tools for multiple targets (e.g., Kokkos).

Intra-node parallelism is still biggest challenge:

Kokkos provides vehicle for reasoning and implementing on-
node parallel.

Eventual goal: Search and replace Kokkos:: with std::
Node-parallel algorithms are already available.
Fully node parallel execution is hard work.

Take Away points, cont.) 2,

Laboratories

= Resilience will be an issue, really.

= But only as we are ready to adapt algorithms and codes.

= The longer we delay, the more likely we will have a future system
installed but never accepted.

= Already is:

= Performance variability is result.
= Latency tolerant algorithms are key.
= Delays in system delivery, others.

= Checkpoint/restart will continue to improve:
= NVRAM, Compression
= Moving away from this model is very expensive.

= Embedded soft error detection/correction could be useful:
= Skeptical programming (meta-computations).

= Selective reliability (managing key bits and pointers).
= Does not require any special support outside of solvers.

Take Away points, cont.) 2,

Laboratories

= Manycore systems are re-emerging.
= Far from exascale-ready.
= Astra: 2.3 PF on 2600 nodes.

= Exascale possible with 430X:
= Combination node/core/VL increases.
= Example (440X):
* Nodes: 2600 - 250,000
= Cores: 56 - 64
= VL: 4> 16
= Targeting accelerators and manycore with same code base:
= Kokkos-like abstractions needed.
= Will still be challenging.

= Plenty of work to do, and we didn’t talk about asynchronous
tasking!

