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ot ivat ion

• Many-query problems can impose a formidable computational burden

• Solution approximations can exchange fidelity for speed

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions C3Sandia National Laboratories
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o ution pproximations

Inexact solutions: When
end the iterative process

• Lower-fidelity models: Neglect physical phenomena, coarsen the
mesh, or use lower-order finite differences or elements

• Reduced-order models: Approximate solution with a linear
combination of mu < Aru basis functions
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Solution Approximations

• Inexact solutions: When solving nonlinear equations, prematurely
end the iterative process

• Lower-fidelity models: Neglect physical phenomena, coarsen the
mesh, or use lower-order finite differences or elements

• Reduced-order models: Approximate solution with a linear
combination of mu < Aru basis functions
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Solution Approximations

Inexact solutions: When
end the iterative process

• Lower-fidelity models: Neglect physical phenomena, coarsen the
mesh, or use lower-order finite differences or elements

• Reduced-order models: Approximate solution with a linear
combination of mu < Nu basis functions
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Solution Approximations

Inexact solutions: When
end the iterative process

• Lower-fidelity models: Neglect physical phenomena, coarsen the
mesh, or use lower-order finite differences or elements

• Reduced-order models: Approximate solution with a linear
combination of mu < Nu basis functions

11(µ) = (1),,,U(µ)
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• Solution approximations require less time than high-fidelity models
but introduce an error (i.e., epistemic uncertainty)

• Ultimate task should account for all sources of uncertainty

• We quantify the uncertainty by

1) engineering features informative of the error

• cheaply computable

• generated by approximate model

2) applying machine learning regression techniques to construct a
mapping from these features to a distribution of the error

• This work matures our previously developed capabilities:
— Hand-selecting one feature and applying Gaussian process regression

M. Drohmann and K. Carlberg (2015)

— Modeling dynamical systems error using machine learning methods
S. Trehan et al (2017)

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Parameterized Systems of Nonlinear Equations

Parameterized systems of nonlinear equations

r(u(µ); = 0

• r : RNu x RNA —> RNu residual, nonlinear in at least u(µ)

• u : RNA KN. state (solution vector)

• p, E D parameters in parameter domain D C RNA

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Quantity of Interest

Scalar-valued quantity of interest

s(µ) := g(u(µ))

• s : quantity of interest

• g : RNu R quantity of interest functional

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories



Introduction Parameterized Nonlinear Equations Approach Experiments Summary
000 000000000000o 000000000000 0000000000000000 oo

Approximate Solutions

• Computing the exact solution u(it) can be

— prohibitively expensive (large Ar,i)

— unnecessary (inexact solutions suffice for optimization convergence)

• Such cases require an approximate solution ii : RNA —> RN.

• Approximate solution leads to approximated quantity of interest

§(µ) := g(11(µ)),

where š : RNA R

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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pproximate o utions continue

We consider 3 approaches for computing approximate solutions:

1) Inexact solutions

2) Lower-fidelity models

3) Model reduction

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Inexact Solutions

• Iterative solution to nonlinear equations: sequence of approximations

u(k) , k = 0, , K

• Approximate solution u(k) can be obtained after iteration k

ii(µ) = u(K)
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Lower-Fidelity Models

Fidelity reduction approaches

• Neglect physical phenomena

• Reduce spatial accuracy

— Use lower-order finite differences or elements

— Coarsen the mesh and prolongate (interpolate) the solution:

p : RNuLF RNu

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Model reduction restricts approximate solution u to mu-dimensional

affine trial subspace Ran(ku) C RNu with mu < Nu:

11(P) = (131111(11) +

• .11.0 E Xvuxmu trial basis, computed using

— proper orthogonal decomposition (POD)
— the reduced-basis method
— variants that employ gradient information

• U : u generalized coordinates of the approx. solution

• u E RNu prescribed reference state

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0Sandia National Laboratories
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Model Reduction (continued)

• r(4,01(µ) + ii) = 0 is overdetermined: Nu equations, mu unknowns

• Second step projects residual onto an mu-dimensional test subspace
Ran(Tu) C RN.:

E'r(cDua(µ) + a; pt) = 0

• E Illu'rnu test basis, common choices include

— Galerkin projection: = (Du

ar
— Least-squares Petrov—Galerkin projection: Wu = + u;kt)Wu

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions cjSandia National Laboratories
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Approaches for Error Quantification

• Regardless of approach, it is essential to quantify error incurred by
employing approximate solution CI in lieu of exact solution u

• Existing approaches include

— Data-fit mapping between parameters and the error

• Inspired by multifidelity design optimization

— Reduced-Order Model Error Surrogates (ROMES) method

M. Drohmann and K. Carlberg, 2015

• Quantity-of-interest error approximated using dual-weighted residuals

• Normed state-space error approx. using residual norm and error bounds

• This work focuses on quantifying two errors:

1) Error in quantity of interest: õs(µ):= s(µ) — š(µ)

2) Normed state-space error: 6.(µ) := lle(P)1121 where e(µ) := u(µ) — 11(µ)

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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State-Space Error

The residual can be approximated about the approximate solution ii:

r(u(µ); µ) = 0 = r(µ) + J(µ)e(µ) + O(Ile(p)112)

and rearranged to approximate the state-space error:

e(p) = -J(P)-1r(p) + 0(11e(P)112)

• r(p) := r(ii(p); tt) E 11: residual from approximate solution

• J(µ) := 
Or 

(u(µ); µ) E RNU'Nu Jacobian of residual at ii(µ)

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Error in the Quantity of Interest

The quantity of interest also can be approximated:

ag
s(p) = š(p) + (u(I-t))e(p)+ 0(iie(1-)112)

and combined with the state-space error approximation to yield

Ss (it) = --av(u(it))J(p)-1 r(it) O(Ile(it)112)

y(A)T

• y(µ) is the dual or adjoint

• dual-weighted residual d is weighted sum of residual elements:

Nu

d(ia) := y(p)Tr(p) = L, yi(µ)ri(µ)
i=1

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Drawbacks to using the Dual-Weighted Residual

• Computational Cost: requires solving Nu linear equations

• Implementation: requires Jacobian — not always available

• Uncertainty Quantification: low-bias error estimate not assured

Nonetheless, structure provides insight into quantity-of-interest error

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Normed State-Space Error

• Residual-based bounds commonly used a posteriori to quantify Su(µ)
A. Buffa et al., 2012; M. A. Grepl and A. T. Patera, 2005; G. Rozza et al., 2008

• Assuming Lipschitz continuity for the residual r(-; p,), then

llr(P)11 < 6 

u r- 

() < Ilr(11)11 

)3(1-t) a(P)

where a and are Lipschitz constants

• Drawbacks to using error bounds

— Sharpness: upper/lower bounds can overpredict/underpredict actual
error by several orders of magnitude

— Implementation: difficult to compute true Lipschitz constants

— Uncertainty Quantification: do not produce statistical distribution
over (5„(µ) — cannot quantify epistemic uncertainty

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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verview

• We aim to construct statistical models of

— quantity-of-interest error 8,

— normed state-space error 8„

• We apply high-dimensional regression methods from machine learning

• We use a larger number of inexpensive error indicators, resulting in
less costly, more accurate error models

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Error Model

• Assume there exist Nx error indicators or features X(p) E RN'

— available from solution approximation

— cheaply computable

— informative of the error 6(µ) c R

• We model the nondeterministic mapping x(u) (5(µ)

(5(m) = f (x(P)) + e(x(m))

• f: deterministic regression function

• €: stochastic noise

— Mean-zero random variable

— Accounts for irreducible error due to omitted explanatory variables

— Epistemic — additional features can enable zero noise

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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-gmumramanira 

• Regression function defines conditional expectation of error given the
features:

Ek5 (ea) I x(itt)] = f (x(itt))

• We construct models of

— deterministic regression function f)

— stochastic noise e(c.-_, c),
which yield a statistical model for the approximate-solution error

i(tt) = f(x(11)) + e(x(m))

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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egression o e jeetives

• Low Cost: Should employ cheaply computable features x

• Low Noise Variance: Should exhibit low noise variance, reduce
epistemic uncertainty introduced by approximate solution

• Generalize: Empirical distributions of S and 6 should be close on test
set not used to train model — should not overfit on training data

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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egression o e onstruction teps

1) Feature engineering

— Cheaply computable features x from approximate model

— Informative of the error — construct low-noise-variance model

— Low dimensional (small N.) such that less training data is needed

2) Regression-function approximation

— Construct f using regression methods from machine learning

— Approximate mapping from features x to error 6 using a training set

3) Noise approximation

— Mean-zero, constant-variance Gaussian random variable: e JV(0, 8-2)

— i3-2 is sample variance of regression-model noise on a test set
(mean squared error on test set)

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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ummary

Training

Parameters p,
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Summary

Training

Parameters p,
. 

High-Fidelity Model

—>( Approximate Model
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Training
•

High-Fidelity Model —> u(p)
•

Parameters p,

—>( Approximate Model —> Mit)
.

Features x(µ)
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Training

Parameters p,
. 

•

High-Fidelity Model —> u(p) —

Approximate Model —> ti(p) —

Error (5 ( ft)

Features x(µ)
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Training

High-Fidelity Model

Parameters µ

Approximate Model

Error 8(µ)

Features x(µ)

Error b(µ)

 > Features x(µ)
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Training

Parameters µ
. 

Error (5(µ)

Features X(1.1)

High-Fidelity Model —> u(µ) —

• •

Approximate Model —> 11W —
•

Regression Model Creation
. 

Error (5 ( ft)

Features x(µ)
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Training
•

High-Fidelity Model —> u(µ) —

Parameters µ
. 

Approximate Model —> 11W —

Error (5(µ)

Regression Model Creation

Features x(µ)

Error (5 ( ft)

Features x(µ)

 >{(tt) f(x(p))
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Training

High-Fidelity Model —> u(µ) —

Parameters µ Error (5 ( ft)
.e•—•

Approximate Model —> 11(µ) —

Features x(µ)

Error (5(µ)

Regression Model Creation

Features x(µ)

Application

Parameters µ

 >{(tt) f(x(p))
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Training

High-Fidelity Model —> u(µ) —

Parameters µ Error (5 ( ft)
.e•-•

Approximate Model —> 11W —
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Error (5(µ)

Features x(µ)

Application

Parameters µ

Regression Model Creation

>( Approximate Model

 >{(tt) f(x(p))
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Training

Parameters µ

Error (5(µ)

Features x(µ)

Application

Parameters µ

High-Fidelity Model —> u(µ) —

.e•-•

Approximate Model —> il(p) —

Regression Model Creation

> Approximate Model

Features x(µ)

Error (5 ( ft)

Features x(µ)

 >{(tt) f(x(p))
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Training

Parameters µ

Error (5(µ)

Features x(µ)

Application

Parameters µ

High-Fidelity Model —> u(µ) —

.e•-•

Approximate Model —> il(p) —

Regression Model Creation

> Approximate Model

Features x(µ) —>

 > la(tt)

Error (5 ( ft)

Features x(µ)

 >{(tt) f(x(p))

Regression Model
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Training

Parameters µ

Error (5(µ)

Features x(µ)

Application

Parameters µ

High-Fidelity Model —> u(µ) —

Approximate Model —> il(p) —

Regression Model Creation

> Approximate Model

Features x(µ)

 > la(tt)

Error (5 ( ft)

Features x(µ)

Regression Model —> 65(p) f (x(µ))
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Training

Parameters µ

Error (5(µ)

Features x(µ)

Application

Parameters µ

High-Fidelity Model —> u(µ) —

Approximate Model —> il(p) —

Regression Model Creation

> Approximate Model

Features x(µ) —>

( tt )

Regression Model

Error (5(µ)

Features x(µ)

( ) (x(N-))

8(tt) ̂  g(tt) + 5s(1-1)

65(p) f(x(p))
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eat ure ngineering: arameters

x(tt) =

• The mapping it H ö(f.t) is deterministic, but often complex

— Can be oscillatory for ROMs since S(µ) 0 when µ E

• Could yield zero noise variance if

— Large amount of training data

— High-capacity regression model

• Typically low-quality features

• Inspired by 1multifidelity correction' methods for optimization
Alexandrov et al., 2001; Gano et al., 2005; Eldred et al., 2004

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Feature Engineering: Dual-Weighted Residual

x(p) = d(I-t) := 3r(1-t)Tr(p)

• First-order approximation of QoI error Ss(µ)

• Small number (Nx = 1) of high-quality features

• High computational cost and significant implementation effort

• ROMES method uses approximation for dual-weighted residual
M. Drohmann and K. Carlberg, 2015

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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eature ngineering: arameters an esi ua pproximations

x(ii) = [i-t; 1'(µ)]

• DWR is weighted sum of residual vector elements d(p) := y(p)Tr(p)

• Avoids implementation and costs associated with dual vector y(p)

• Large number (Nx = N + Nu) of low-quality features

• Approaches to reduce number of features and improve quality

— Use mr < Nu principal component coefficients: f(A)

— Sample nr < Nu elements of residual: Pr(P,), where P c {0, 
l}ur x Nu

— Use mi. < Nu gappy principal component coefficients: ig(µ)

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Feature Engineering: Residual Norm with/without Parameters

x(p) = 11r(p)11 or x(p) = [11;

• DWR can be bounded using the Cauchy—Schwarz inequality:

Id(A)1 5_ H340112111'4011

• Normed state-space error Su(µ) can be bounded:
M. Drohmann and K. Carlberg, 2015

11r(m)II < fi (it) < 11r(A)II O(A) — u\ — a(A)

• µ can be omitted (x(µ) = r (p) ) if

— µ is not indicative of error

— NA is too large relative to training data

• Requires computing entire residual vector r(µ)

• Small number of potentially low-quality features
Freno & Carlberg Machine-Learning Error Models for Approximate Solutions cjSandia National Laboratories
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egression- unction pproximat ion

We consider several different regression models

• Ordinary least squares (OLS)

— Linear (OLS: Linear)

— Quadratic expansion of features (OLS: Quadratic)

• Support vector regression (SVR)

— Linear kernel (SVR: Linear)

— Gaussian (radial basis function) kernel (SVR: RBF)

• Random forest (RF)

• k-nearest neighbors (k-NN)

• Artificial neural network (ANN)

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Training and Test Data

Training Data

• Set of parameter training instances Dtrain C D

• Train regression models from high-fidelity and approx. solutions

— Cross-validated to tune regression-model hyper-parameters

• Used to compute principal components of residuals

Test Data

• Set of parameter test instances Dtest c D not used for training

(Dtrain n Dtest = 0)

• Used to assess regression models and quantify stochastic noise

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Outline
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• Summary

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories



Introduction Parameterized Nonlinear Equations Approach Experiments Summary
000 0000000000000 000000000000 *00000000000000o oo

Cube: Reduced-Order Modeling

• Applied traction (Neumann boundary condition)

• Planar constraint (Dirichlet boundary condition)

• Complete constraint (Dirichlet boundary condition)

• Node of interest

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Cube: Overview

• Nu = 3410 — deliberately small to compute d(µ) and use r(P)

• N, = 3 parameters: µ = [E; v; t]

— E E [75, 125] GPa, v E [0.20, 0.35], t E [40, 60] GPa

• 8 HF runs —> up to mu = 8 ROM basis functions (2 used — 99.49%)

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories
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Cube: Variance Unexplained for QoI Error Prediction
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Cube: Variance Unexplained for QoI Error Prediction
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Cube: Variance Unexplained for QoI Error Prediction
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Cube: Variance Unexplained for QoI Error Prediction

OLS: Linem:

7S1 OLS: Quadratic

.f3 SVR: Linear
CSVR: RBFRF

c.

.

6,5: log10 (1 — r2)

. 

II 'V

k-NN

(ANN LJ

tY,

S„: log10 (1 — r2)

• hrll yields highest variance unexplained

• cl„, and cl„, yield moderate variance unexplained, but are costly

• SVR: RBF and ANN yield lowest variance unexplained
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Cube: Variance Unexplained for QoI Error Prediction
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• hrll yields highest variance unexplained
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Features

• 4, and cl„., yield moderate variance unexplained, but are costly

• SVR: RBF and ANN yield lowest variance unexplained

• [11; rg] and [A; Pr] yield low variance unexplained with only 10 samples (compared to Nu = 3410)
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Cube: Variance Unexplained for QoI Error Prediction
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Features

• ilr11 yields highest variance unexplained

• d„, and d„ yield moderate variance unexplained, but are costly

• SVR: RBF and ANN yield lowest variance unexplained

• [a; fg] and [µ; Pr] yield low variance unexplained with only 10 samples (compared to Nu = 3410)

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories



Introduction Parameterized Nonlinear Equations Approach Experiments Summary
000 0000000000000

Cube: QoI Error Predictions
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• Our method beats previous
state-of-the-art methods with
r2 > 0.9999 in both cases

Predicted error, 8, [s10-1

Exact

1142
• ANN

l'=0.21063, MSE=2.668 x10-4

• SVR: RBF
t'=0.99944, MSE=1.000x10-e

d,
• ANN

rx=0.99578, MSE=1.426 511:0

41; (r=10)
• SVR: RBF

i'=0.99995, MSE=1.772x10-

Exact

Ilrlla
SVR: Linear
r'=0.06719, MSE=1.686 510-x

SVR: RBF
7'2=0.99989, MSE=1.925x10-a

d,
• SVR: RBF

rx=0.99868, MSE=2.378 010-e

[la; (ri,.=10)
• SVR: RBF

r'=1.00000, MSE=6.681 010-m
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Cube: Variance Unexplained for Normed State-Space Error Prediction
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Cube: Variance Unexplained for Normed State-Space Error Prediction
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Cube: Variance Unexplained for Normed State-Space Error Prediction
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Features

• yields highest variance unexplained

• SVR: RBF and ANN yield lowest variance unexplained
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Cube: Variance Unexplained for Normed State-Space Error Prediction
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Features
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• 411 yields highest variance unexplained

• SVR: RBF and ANN yield lowest variance unexplained

• [it; fg] yields low variance unexplained with few samples (compared to N. = 3410)
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Cube: Variance Unexplained for Normed State-Space Error Prediction
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• 11r11 yields highest variance unexplained

• SVR: RBF and ANN yield lowest variance unexplained

• [it; fg] yields low variance unexplained with few samples (compared to N. = 3410)
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u e: orme tate- pace rror re ictions

2 3 4 5

Predicted error, 45.

6 7

— Exact

1011a
OLS: Linear
r2=0.63613, MSE=2.757x10-i

• ANN
r2=0.98981, MSE=7.717 x10-3

[P; ia] Or•=10)
• ANN

i'=0.99652, MSE=2.636x10-

• Our method beats previous state-of-the-art methods with r2 > 0.996
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Predictive Capability Assessment Project: Reduced-Order Modeling

Deformation

Magnitude [m]

0.011

0.010

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

• Applied pressure (Neumann boundary condition)

• Planar constraint (Dirichlet boundary condition)

• Complete constraint (Dirichlet boundary condition)
▪ Ne r „rest
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PCAP: Overview

• Nu = 274, 954 for quarter of domain

• No = 3 parameters: p, = [E; v; p]

— E c [50, 100] GPa, v E [0.20, 0.35], p c [6, 10] GPa

• 8 HF runs —> up to mu = 8 ROM basis functions (5 used — 99.90%)

• 30 parameter training instances for regression model
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: • asis unctions

1: 85.03%

4: 99.77%

2: 95.69%

5: 99.90%

3: 99.35%
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PCAP: Variance Unexplained for QoI Error Prediction
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PCAP: Variance Unexplained for QoI Error Prediction
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• llrll, [Pt; llrll], and /2 yield highest variance unexplained
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PCAP: Variance Unexplained for QoI Error Prediction
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• 4-11, [µ; 11q], and it yield highest variance unexplained

• RF and k-NN yield highest variance unexplained

aa

ii 1.1 3
af .7 47,
A. A A

Features

M
a
i
i
=
3
2
 

z.

•

a

—2

—3

Freno & Carlberg Machine-Learning Error Models for Approximate Solutions 0 Sandia National Laboratories



Introduction Parameterized Nonlinear Equations Approach Experiments Summary
000 0000000000000 000000000000 0000000000000000 oo

PCAP: Variance Unexplained for QoI Error Prediction
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• Hrll, [P; 11,1], and it yield highest variance unexplained

• RF and k-NN yield highest variance unexplained

• SVR: RBF and ANN yield lowest variance unexplained
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PCAP: Variance Unexplained for QoI Error Prediction
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• ilrll, [P; llrr, and it yield highest variance unexplained

• RF and k-NN yield highest variance unexplained

• SVR: RBF and ANN yield lowest variance unexplained

• [Ii; Fg] and [A; Pr] yield low variance unexplained with only 10 samples (compared to Nu = 274, 954)
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PCAP: Variance Unexplained for QoI Error Prediction
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• llrll, [Pt; OH, and /2 yield highest variance unexplained

• RF and k-NN yield highest variance unexplained

• SVR: RBF and ANN yield lowest variance unexplained

• [ii; kg] and [µ; Pr] yield low variance unexplained with only 10 samples (compared to Nu = 274, 954)
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• Our method beats previous
state-of-the-art methods with
r2 > 0.9994 in both cases

-3 -2 -1

Predicted error, Sw. [310-0]

Predicted :1-ror, [ir 101

Exact

iirlie
SVR: RBF
i'=0.99011, MSE=1.419 x10-8

• RF
r'=0.99511, MSE=7.014510'

[ic; (r4.-10)
• SVR: RBF

i'=0.99990, MSE=1.408310-10

— Exact

SVR: RBF
r'=0.24712, MSE=2.424x10'

• ANN
r2=0.96851, MSE=1.444x10-0

[tr; (rir=10)
• ANN

r2=0.29944, MSE=2.554310-
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PCAP: Variance Unexplained for Normed State-Space Error Prediction
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PCAP: Variance Unexplained for Normed State-Space Error Prediction

I
M
=
M
F
A
 M
I
N
N
 

OLS: Linear

OLS: Quadratic

SVR: Linear

SVR: RBF

RF

k-NN

( ANN

8u: log10 (1 — r2)

7

4;

Features

• ANN yields lowest variance unexplained
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PCAP: Variance Unexplained for Normed State-Space Error Prediction
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• ANN yields lowest variance unexplaincd

• [a; fg] and [ii; Pr] yield low variance unexplained with only 10 samples (compared to Nu = 274, 954)
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PCAP: Variance Unexplained for Normed State-Space Error Prediction
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• ANN yields lowest variance unexplained

• [a; fg] and [µ; Pr] yield low variance unexplained with only 10 samples (compared to Nu = 274, 954)
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PCAP: Normed State-Space Error Predictions

0.2 0.4 0.6 0.8

Predicted error, S,„,

1.0 1 2

— Exact

1911a
OLS: Quadratic
rt=0.97544, MSE=1.759 x 10-s

• ANN
r2=0.98475, MSE=1.092 x10-3

[A; f'd Ort=10)
• ANN

7'=0.99837, MSE=1.170 x10-8

• Our method beats previous state-of-the-art methods with r2 > 0.998
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Burgers' Equation: Inexact Solutions and Coarse Solution Prolongation

uux — —
1
uxx = a sin 27rx

u(0) = ua, u(1) = —u,

3
0 0

• Nu = 1999

• N, = 3 parameters: /..t = [a; ua; R]

— a E [0.1, 2.0], '0,, E [0.1, 2.0], R E [50, 1000]

• Quantity of interest s is the slope m at x =

• k = 1 and k = 2

0.2 0.4 0.6

or Nu„ = 499 and NuLF = 999

0.8 1 0
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Burgers' Equation, Inexact Solutions: QoI Error Predictions

— Exact

11.12
• ANN

7.2=0.26913, MSE=1.395x105

[p; (se=10)
• ANN

7.2=0.99995, MSE=9.944

—20 —15 —10 —5

Predicted error, 3„, [x102]

• Our method beats previous state-of-the-art method with r2 > 0.9999
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Burgers' Equation, Coarse Mesh Prolongation: QoI Error Predictions

Ex
ac
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er
ro
r,
 6
,.

 [
x1
0a
] 

—8 —6 —4 —2

Predicted error, :3„, [8102]

— Exact

11r112
OLS: Quadratic
l'=0.97913, MSE=4.032

Fi
• SVR: RBF

er=0.99979, MSE=4.091

ig] (rt,.=10)
• SVR: REF

7:2=0.99996, MSE=7.853

• Our method beats previous state-of-the-art methods with r2 > 0.9999
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• Introduction

• Parameterized Systems of Nonlinear Equations

• Proposed Approach

• Numerical Experiments

• Summary
— Feature Choices
— Feature Reduction
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eature oices

• Norm of the residual,

— Low-quality single feature

— Expensive to compute and performs poorly

• Dual-weighted residual, d
— High-quality single feature

— Performs well for small amounts of training data

— Very expensive to compute

• Parameters it

— Only perform well with SVR: RBF or ANN

— Do not perform well with OLS: Linear

• Parameters and gappy principal components of residual, [it; fg]
— Perform the best with r2 > 0.996 for each experiment

— Only require about 13 features
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eature es uction

• Gappy PCA more effective than directly sampling the residual

• Little benefit to using mi. > 100 samples; more samples are more
expensive and do not perform much better

• Often, only nr = 10 samples are necessary to get accurate prediction
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uest ions .

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia,

LLC, a wholly owned subsidiary of Honeywell International Inc., for the

U.S. Department of Energy's National Nuclear Security Administration

under contract DE-NA0003525.

This presentation describes objective technical results and analysis. Any

subjective views or opinions that might be expressed in the presentation
do not necessarily represent the views of the U.S. Department of Energy

or the United States Government.
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