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Condensed Phase Deactivation of Solid Brgnsted Acids in the Dehydration of
Fructose to Hydroxymethylfurfural

Abstract

Catalyst deactivation resulting from the hydrothermal leaching of sulfonic acid residues and the
deposition of carbonaceous residues were studied using condensed phase flow reactor experiments
along with state-of-the-art solid-state NMR. Several commercially available sulfonic acid-containing
heterogeneous Brgnsted acids were compared by measuring the rates of sulfonic acid breakdown at
hydrothermal flow conditions of 160 oC. Amberlyst 45 was found to show higher hydrothermal stability
when compared to both Nafion and Amberlyst 15, with <10% loss in acidity after 48 h. The dehydration
reaction of fructose to hydroxymethylfurfural (HMF) was used as a model system to compare
deactivation rates from carbon deposition (fouling) to those from sulfur leaching, and deactivation from
fouling was shown to be dramatically faster than that from sulfonic acid leaching alone. Fouling rates
were then investigated in greater detail by comparing the influence of several factors including reactant,
solvent, residence time, and feed concentration. The only successful approach to minimize fouling was
the use of a polar aprotic solvent (DMSO) with dilute (50 mM) reactant streams. In aqueous systems
operating the reactor in a regime with low conversion conditions (short residence times) does not
significantly improve the longevity of the catalyst. Spent catalysts were characterized using 13C solid-
state NMR spectroscopy enhanced by dynamic nuclear polarization (DNP). Additionally, in situ TH and
13C high-resolution magic angle spinning (HR-MAS) solid-state NMR spectroscopy was used to
investigate the solvent influence at the catalyst interface. The HR-MAS NMR studies showed that in polar
aprotic solvents, the increased acidity leads to greater selectivity towards HMF; more importantly, that the
dehydration products do not readily adhere to the surface in DMSQO, in contrast to their behavior in water.
The results demonstrate that more active and longer-lived acid catalysts could be obtained by tuning the
solvent and surface polarity to allow for efficient desorption of products, thereby reducing the catalyst
deactivation that occurs due to fouling.
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45 in polar aprotic solvents, the increased acidity leads to greater selectivity towards HMF; more importantly,
46 that the dehydration products do not readily adhere to the surface in DMSO, in contrast to their behavior in
47 water. The results demonstrate that more active and longer-lived acid catalysts could be obtained by tuning
48 the solvent and surface polarity to allow for efficient desorption of products, thereby reducing the catalyst
49 deactivation that occurs due to fouling.
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1. INTRODUCTION

The substitution of bio-based chemicals and fuels
for those derived from petroleum feedstocks has
attracted renewed interest in the last decade.””® One
of the promising platforms for these efforts is the
conversion of carbohydrates into furanic
molecules, which can then be used to produce a
large number of molecules analogous to those
derived from petroleum.”® Isomerization of
glucose to fructose followed by Brensted acid-
catalyzed dehydration leads to
hydroxymethylfurfural (HMF). HMF obtained
from biomass can then be used to produce a variety
of industrially relevant products.® Unlike with
petroleum, the series of reactions for converting
carbohydrates into HMF requires condensed phase
processing conditions. To date, batch reactions in
polar  aprotic  solvents, catalyzed  with
homogeneous acid, have been demonstrated as the
most effective strategy for obtaining high yields of
HMF from fructose." Although this route is
effective, improvement in the environmental
footprint and processing cost may be possible
through substitution of the homogeneous acid
catalyst with a heterogeneous catalyst.

The replacement of homogeneous catalysts
requires a heterogeneous acid catalyst that remains
active in the relevant condensed phase reaction
conditions (containing 5-100% H,0) at elevated
temperatures (ranging from 100-200 °C). The issue
of acid catalyst stability under hydrothermal
conditions has been a central investigative theme
for catalyst research in the area of biomass
conversion.'+'s Brgnsted/Lewis acid catalysts, such
as silica-alumina, y-AL O, and zeolites7*® are
known to break down under hydrothermal
conditions. Catalyst materials containing sulfonic
acid active sites, including polymeric resins and
sulfonated carbon materials, are also susceptible to
breakdown under hydrothermal conditions,
despite the carbon scaffold being hydrothermally
stable. Under hydrothermal conditions, sulfonic
acid groups are readily hydrolyzed, leading to
leaching.®'92° For example, common resins such as
Amberlyst 15, sulfonated carbon materials, as well
as porous silica with sulfonic acid groups grafted
onto the silica surface, rapidly deactivate at
hydrothermal conditions above 120 °C. Considering
that the temperatures required for dehydration of
fructose to HMF need to reach between 140 to 160
°C with the water content in the solvent system
exceeding 30%, the vast majority of available
sulfonated materials lack sufficiently stable
sulfonic acid groups to be viable catalysts for
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converting fructose to HMF under realistic
processing conditions.

Significant improvement in sulfonic acid
hydrothermal stability has been reported for
Amberlyst 45, a heavily cross-linked and
halogenated sulfonated polystyrene resin having a
stabilized  macromolecular  structure  and
strengthened sulfonic acid linkage.>* Surprisingly,
after treatment in batch conditions for 6 h at 180
°C, only a 9% reduction in acidity was observed.»
An alternative class of materials to carbon and
resins is sulfated zirconia.?> Recently, a method to
synthesize mesoporous sulfated zirconia was
reported, wherein SBA-15 was used as a template
for deposition of zirconium oxide monolayers.
These materials were confirmed to have excellent
catalytic properties with the silica effectively
protected from hydrothermal breakdown.?? Both of
these reports, however, did not rigorously test the
hydrothermal stability of these materials, since the
reactions were carried out under batch conditions
instead of flow reactor conditions, and the
exposure times were limited. Furthermore, the
evidence used to validate the hydrothermal
stability of templated sulfated zirconia was based
only on porosimetry and XRD measurements
which does not provide a direct measurement of
the number of active sites on the material.??

Previous research on catalyst stability for solid
Brensted acids in condensed phase applications
has focused primarily on reducing the rate of active
site leaching by improving the strength of the
sulfonic acid linkage. However, it has not yet been
clearly established that leaching of sulfur is the
dominant mechanism of catalyst deactivation
when using state-of-the-art solid Brensted acid
catalysts. For example, it is well known that for
palladium-catalyzed condensed phase
hydrogenation reactions, the catalyst deactivation
from fouling is quite rapid compared to rates of
sintering or metal leaching. A  better
understanding of deactivation mechanisms in solid
Bronsted acid catalysts is required in order to
develop catalysts with improved stability.

To the best of our knowledge, no previous
comparison of deactivation rates from fouling and
leaching of sulfur has been performed for
heterogeneous Breonsted acid catalysts under
relevant processing conditions. To address this
question, we performed a series of experiments to
independently measure the rates of hydrothermal
sulfur leaching and fouling. Moreover, we
investigated the critical factors for reducing the
rate of catalyst fouling. Lastly, 3C NMR
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experiments were performed on both fresh
catalysts and deactivated catalyst materials to
elucidate the mechanisms responsible for carbon
deposition when reactions are run using water as
the solvent.

2. MATERIALS AND METHODS

2.1 Reagents

All chemicals were purchased from Sigma-Aldrich
(St. Louis, MO, USA) and used without additional
purification. UHP+ quality gases (99.995%) for BET
were purchased from Airgas (Radnor, PA, USA).
Water was filtered using a Barnstead E-pure system
and allowed to reach 18.1 MQ resistance for all
applications. U-3C-enriched fructose (99.8%) and
ds-DMSO were purchased from Cambridge Isotope
Laboratories (Tewksbury, MA, USA).

2.2 Materials synthesis

Synthesis of sulfated zirconia was carried out
according to a previously reported method?# using
open pore Davisil silica. Materials were compressed
into pellets and sieved to collect particles ranging
from 450 to 600 pm. The pelletized materials were
dried in a muffle furnace at 300 °C for 4 h and
transferred to a glove box. Then, 2.2 g (total surface
area of approximately 616 m?) of silica was mixed
with 6 g of zirconium (IV) propoxide (70 wt% in
propanol) in 30 mL of anhydrous hexane and
allowed to reflux at 70 °C overnight. The material
was filtered, rinsed three times with hexane to
remove any residual wunreacted precursor,
rehydrated with 30 mL of deionized water with
stirring for 4 h, and finally dried at 8o °C overnight.
Sulfation was carried out by soaking materials (1
g/30 ml) in 0.25 M H,SO, at room temperature for
5 h. Samples were then filtered and dried at 8o °C
overnight followed by calcination at 550 °C for 3 h.

2.3 Hydrothermal treatments of solid acids

Hydrothermal treatments were performed using a
high-pressure flow reactor system capable of
operation at pressures up to 8o bar and 400 °C.
Material flow was regulated using a Brooks SLA
5850 mass flow controller for gases (Brooks
Instruments, Hatfield, PA, USA) and a Series I
HPLC pump for liquids (Scientific Systems, State
College, PA, USA). The temperature was controlled
using an Omega CSi32 series temperature
controller with a K-type thermocouple (Omega
Engineering, Norwalk, CT, USA). Temperature was
maintained within = 1°C during the treatments.
(See SI for schematic and pictures.) A liquid flow
rate of 0.02 mL/min was used. Liquids were
removed and stored in a —4 °C freezer until analysis.
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Remaining solids were removed from the reactor
bed and dried at 105 °C prior to final analysis.

2.4 Dehydration reactions

Samples were analyzed using a Waters Alliance
HPLC system equipped with having a Phenomenex
size exclusion column (65 °C) equipped with a
Waters PDA/refractive index detector (Waters
Corporation, Milford, MA, USA). Samples were
eluted isocratically with a 5 mM sulfuric acid
mobile phase at a flow rate of 0.7 mL/min.

2.5 Acid site quantification

The number of strong acid sites was determined via
titration using a Titrino autotitrator (Metrohm AG,
Herisau, CH). The titration mixtures were prepared
by mixing approximately 200-500 mg of wet solid
in 30 ml of a1 M potassium chloride solution, which
was then titrated with a 0.05 M sodium hydroxide
solution at a dosing rate of 0.25 mL/min. Samples
were degased prior to titration for 5 minutes by
bubbling nitrogen with constant stirring. The
number of acid sites was calculated based on the
number of moles of sodium hydroxide required to
reach the equivalence point, i.e., the inflection
point in the titration curve, and was normalized on
a dry mass basis.

2.6 DNP-enhanced 3C solid-state NMR

DNP-enhanced solid-state NMR experiments were
performed using a Bruker AVANCE III 400 MHz
MAS-DNP NMR system (Bruker Corp, Billerica,
MA, USA) equipped with a 3.2-mm low-
temperature magic angle spinning (MAS) probe
and a 9.7 T gyrotron. The 20 mg catalyst sample was
impregnated with a 10 mM solution of the AMUPol
polarizing  agent>>  (Cortecnet,  Voisins-le-
Bretonneux, France) in H,O and packed into a 3.2-
mm sapphire rotor, which was then sealed with a
Teflon plug. The sample temperature was
approximately 1o K and the MAS frequency was set
to 10 kHz. A 1D 3C NMR spectrum was acquired
using cross-polarization (CP) using a 2.75 ps 'H
excitation pulse and a 1.5 ms contact time. A total
of 16k scans were accumulated with a 1 s recycle
delay. A 2D 1H-3C HETCOR spectrum was
obtained with PRESTO-II (phase-shifting effects a
smooth transfer of polarization)** for the 'H—3C
coherence transfer step since it has been shown
that PRESTO-II transfers vyield only 1-bond
correlations with improved sensitivity when
compared with through-bond transfers.?” Six pulse
pairs of Ri87, heteronuclear recoupling were used
for the transfer and a 3C rf pulse magnetic field of
50 kHz was used for all the 3C pulses. Frequency-
switched Lee-Goldburg (FSLG)*® 'H homonuclear
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decoupling was applied during ¢, to improve the 'H
resolution. Thirty-two t, increments of 48 ps, each
consisting of 5120 scans, were acquired, and the
States-TPPI method was used for phase-sensitive
2D acquisition.

2.7 Solid-State NMR Experiments on
Impregnated Catalysts

Impregnated materials were prepared inside a
glovebox for analysis with in situ NMR by weighing
out approximately 10 mg of catalyst material into a
2-mL screw-cap polypropylene tube. Liquid was
then applied to the solid material and allowed to
equilibrate for a minimum of 6 h (typically
overnight). Since the solid substrates were coated
with 0.667 pL/mg catalyst and the average surface
area for the solids was 300 m?/g, this translated, on
average, to an approximately 2-nm layer of catalyst
deposited onto the samples. Following an
equilibration period, samples were agitated using a
spatula and then packed in the 2.5-mm MAS rotor
in the glove box. Rotors were weighed before and
after NMR experiments to ensure that no liquid was
lost during the experiments. 'H, 3C and 29Si NMR
experiments were carried out on a Bruker Avance
III HD 400 MHz solid-state NMR spectrometer
(Bruker Corp, Billerica, MA, USA) equipped with a
triple resonance 2.5-mm HXY probe. The 'H solid-
state NMR spectra were acquired using a spin echo
sequence under static and 25 kHz MAS, with 100
kHz excitation and refocusing pulses, 8-16 scans, 2
s repetition delay and an echo delay of 40 ps. The
3C solid-state NMR spectra were acquired using
either Bloch decay or cross-polarization (CP) pulse
sequences. The MAS frequency was 25 kHz and
SPINAL-64 heteronuclear decoupling applied
during acquisition with a 100 kHz ‘H rf field. For
the Bloch decay spectra the 3C excitation pulse
with an rf field of 73.5 kHz was used with 32 to 512
scans and a recycle delay between 5-10 s. For the 'H-
5C CPMAS NMR experiments the initial ‘H
excitation had a 100 kHz 1f field and the CP match
condition used 77 kHz and 121 kHz rf field spin-lock
pulses for 3C and 'H, respectively, with a 3 ms CP
contact time. The 'H spin lock pulses rf was linearly
ramped from 85% to 100% of the 1f field. CPMAS
spectra were acquired with a 2 s recycle delay and
128 scans.

2D 'H-'*H NOESY spectra were acquired on a Varian
600 MHz NMR System spectrometer equipped
with a 1.6-mm triple-resonance MAS probe. The
samples were packed into zirconia rotors and spun
at 20 kHz. The spectra were obtained using a *H rf
pulse magnetic field of 100 kHz, 800 t, points with
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an interval of 100 us, 8 scans per ¢, point and the
STATES-TPPI method for quadrature detection.

3. RESULTS AND DISCUSSION

3.1 Deactivation from sulfur leaching vs.
carbon deposition

Our initial objective was to examine the relative
rates of acid site loss due exclusively to
hydrothermal leaching of sulfonic acid groups. To
this end, several commercially available sulfonic
acid-containing resins (Amberlyst 15, 45, and
Nafion) were tested under hydrothermal flow
conditions, using more rigorous criteria than
repeated batch conditions. The changes in acid
sites, determined by titration after the packed beds
were subjected to a continuous stream of ultra-
purified water heated to 160 °C and pressurized to
550 psi, are shown in Figure 1 (solid symbols).
Nafion coated onto porous silica was quite labile
under these conditions and showed no detectable
strong acid groups after only 24 h on stream. This
finding was not surprising considering the
relatively weak O-ether linkage that binds the
perfluorinated side group to the polymer
backbone. Amberlyst 15, a typical sulfonated
polystyrene resin, displayed far better stability than
Nafion, although the acid sites on Amberlyst 15 still
decomposed quite rapidly with an observed
reduction from 4.8 mmol/g to 1.8 mmol/g in 24 h
on stream. In addition to the loss of acid sites, the
polymeric backbone was observed to decompose
under these conditions, as evidenced by residue on
the filter paper. However, Amberlyst 45 (previously
known as Amberlyst 70)* only showed a minor loss
(<10%) of acid sites after 48 h on stream; after 120 h
only 25-33% was lost. Furthermore, in contrast to
Amberlyst 15, the polymeric backbone integrity
seemed to be maintained as no residues were
observed following the filtration. The results under
hydrothermal flow conditions confirmed previous
reports of this material's high extent of
hydrothermal stability. The demonstration of
hydrothermal stability for time periods of days on
stream was especially remarkable given the severity
of these treatments.

To expand on the results demonstrating the
relative time scales required for hydrothermal
breakdown of Amberlyst 45 acid groups, a series of
experiments were conducted under identical
pressure/temperature/flow conditions with the
addition of two different polyol reactants. From
these experiments, a relative comparison of the
deactivation rates from carbon deposition to that
of sulfur leaching could be obtained. The two
polyol reactants were fructose and 1,2,6-
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hexanetriol, specifically selected because they
provide a comparison between furan and pyran
dehydration products and because they are
relevant systems for condensed phase biomass
conversion schemes.

The resulting loss of acidity for Amberlyst 45 was
striking when a 1 M fructose solution was
substituted for water, resulting in 9o% reduction of
acid sites after only 12 h on stream and 95%
reduction after 24 h on stream. This corresponded
to a 25-fold greater deactivation rate from fouling
compared to hydrothermal leaching of sulfur. A
similar, albeit weaker, trend was observed when 1.6
M 1,2,6-hexanetriol was used under the same flow
and temperature conditions. Here, the fouling rate
from 1,2,6-hexanetriol was less than that from
fructose, corresponding to a deactivation rate that
was only 5.6-fold greater than that due to sulfur
leaching alone.

The difference in the fouling rates for fructose and
1,2,6-hexanetriol was not surprising considering
that different reaction pathways lead to the
formation of different classes of dehydration
products, namely pyrans in the case of 1,2,6-
hexanetriol and furans from fructose.? It is known
that humin formation rapidly occurs when furanic
compounds polymerize during exposure to
hydrothermal conditions. Furthermore, the
dehydration of fructose has a lower activation
energy than that of 1,2,6-hexanetriol, since a more
labile hydroxyl group is attached to the anomeric
carbon. Importantly, these experiments showed
that hydrothermal deactivation via fouling, when
using the state-of-the-art sulfonated resins,
occurred on the time scale of hours, as compared
to days for the hydrothermal leaching of sulfur.
These findings clearly implied that the main issue
for hydrothermal stability is not the leaching of
acid or decomposition of support material but the
rate of fouling.

@ Amberlyst45 (Hydrothermal)

SO3H / (SO3H Fresh Material)
o
[9)]

0.4 \ @ Nafion (Hydrothermal)
03 @ Amberlyst15 (Hydrothermal)
02 DAmberIyst45 (1.0 M Fructose)
01 <> Amberlyst45 (1.6 M 1,2,6 Hexane Triol)
° 0 50 100
TOS (h)

Figure 1. Change in the number of strong acid sites
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(as determined via titration) as a function of time
on stream (TOS) in plug flow hydrothermal
treatments at 160 °C with a flow rate of o.02
ml/min.

3.2 Deactivation under reaction conditions

To determine other factors influencing
deactivation, additional experiments were run in
which changes in the conversion/selectivity of
fructose towards HMF were measured under a
variety of reaction conditions. These experiments
were designed to elucidate what factors could be
leveraged to reduce the rate of fouling. First, the
reactor was run under conditions of low conversion
to mitigate deactivation. Second, the influence of
the solvent on the rate of fouling was compared by
running a series of experiments using a polar
aprotic solvent (DMSO) instead of water. Finally,
the relationship between the initial feed
concentration and rate of deactivation was
determined.

3.2.1 Reactions in H,O

Results comparing deactivation as a function of
conversion, i.e., residence time (Figure 24, filled
circles), showed that the deactivation rate was
lower when the reactor was run at lower conversion
condition (0.175 h* at 40% initial conversion vs.
0334 h* at 80% initial conversion). The
deactivation rate at 80% conversion was 110 times
greater than the rate of hydrothermal sulfur
leaching, suggesting that the fouling rate
determined in the previous experiment was limited
by the molar flow rate of fructose. Notably, even
when the reactor was run with low initial
conversion (<50%), the rate of fouling was still 60
times greater than the hydrothermal leaching of
sulfur, with the catalyst being deactivated in hours.

When the reactor was run at a high fructose
conversion condition, the HMF selectivity was
initially very low and then increased as the fructose
conversion precipitously dropped. Conditions with
lower fructose conversion lead to improved HMF
selectivity. One possible explanation of this
observation was that on clean, highly acidic
surfaces, the formed HMF strongly adsorbed onto
the surface, resulting in a rapid reduction of
accessible strong acid sites on the catalyst surface.
In turn, the reduction in accessible strong acid sites
led to the rapid reduction in the fructose
conversion. Since the surface became sufficiently
covered with fructose and fructose breakdown
products (e.g., levulinic acid, formic acid, and
humins), it is plausible that the residual acidity
from these organic acids was responsible for the
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residual low level production of HMF, despite the
catalyst containing only minimal amounts of
accessible strong acid sites (Figure 2B).

To test whether a different catalyst would perform
better than the polymeric resin, a mesoporous
sulfated zirconia was synthesized using the
procedure previously described.> The acidity of
this material was determined (via titration) to
contain 0.36 mmol/g strong acid sites, which was
consistent with reported values. Unfortunately, the
sulfated zirconia surface was as susceptible to
fouling Amberlyst 45, with nearly the same rate of
deactivation (Figure 2A). Additionally, under these
conditions, the selectivity towards HMF was much
lower than with Amberlyst 45, which may reflect
the distribution of acid-base sites typical of sulfated
zirconia.

3.2.2 Reactions in DMSO

From the perspective of reaction engineering, the
substitution of water with polar aprotic solvents is
advantageous for several reasons. Most
importantly, as the water content is reduced, the
reaction kinetics are accelerated in a non-linear
manner along with dramatic improvement in HMF
selectivity, with yields in excess of 90% commonly
reported.®3° Previous work has shown that fructose
dehydration follows a specific acid-catalyzed
mechanism that has an inverse kinetic isotope
effect when comparing reactions in 5% D,O vs 5%
H,O. This mechanism depends on the [H,0*] and
is therefore highly influenced by the water content
of the solvent. Using thin-film HR-MAS NMR, a
previous work reported direct observation of
increased [H,0O*] character with decreasing water
content and showed that the acidic protons are
localized predominantly within 2 nm of the
surface3* The kinetic and selectivity effects
between fructose dehydration in water and polar
aprotic solvents have been well characterized.
Although no direct comparison of the solvent effect
on deactivation from fouling has been performed,
it is a central factor to consider when deciding
whether homogeneous or heterogeneous acid
catalysts are most suitable for a particular system.

A direct comparison of deactivation and selectivity
(see open circles in Figure 2) demonstrates that the
use of DMSO led to far slower deactivation, along
with much higher selectivity. Given the dramatic
effect on the reaction rate and the more labile
nature of DMSO compared to water, the reaction
conditions needed to be modified in order to
minimize DMSO breakdown while achieving
similar initial fructose conversions. For 1 M fructose
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489
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491
492
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494
495

496

in DMSO, 85% conversion was achieved at a
temperature of 120 °C and flow rate of 0.05 ml/min,
which was comparable to the conversion rates in
water at 0.20 ml/min and 160 °C. As expected,
much higher HMF selectivity (80%) was observed
with high fructose conversion (>80%) when the
reaction was run in DMSO.
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Figure 2. (A) Conversion and (B) HMF selectivity
for 1 M fructose run in PFR with water at 160 °C
(solid symbols) and DMSO at 120 °C (open
symbols).

To provide a normalized comparison of the
deactivation rates of 1 M fructose in DMSO and
water, Figure 3 gives the conversion as a function of
moles fructose/moles SO;H, which accounts for the
different flow rates. The normalized deactivation
rates showed that deactivation was five times
slower in DMSO than in water. Essentially, this
comparison demonstrates that the deactivation in
water occurred in nearly stoichiometric ratios so
that fouling was the primary issue in terms of
improving catalyst stability. Moreover, substitution
of DMSO for water as the solvent was not sufficient
to eliminate catalyst fouling with a 1 M fructose
feed.
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Figure 3. Comparison of catalyst deactivation in
H,O (blue circles) and DMSO (red open circles)
normalized to the moles of reactant passed over
catalyst bed to the moles of active sites.

3.2.3 Fructose concentration and deactivation
rate

Since the deactivation rate was reduced when the
flow rate was increased, a series of experiments
were carried out to determine the influence of
fructose concentration on the deactivation rate.
These experiments were performed to determine
whether sufficiently reduced fructose
concentration in polar aprotic solvents would lead
to stable activity on the time scale of days. Results
comparing 1 M and 50 mM fructose reactions in
DMSO using the same conditions described
previously are shown in Figure 4A. Interestingly,
virtually no loss in catalyst activity was observed
after 70 h on stream when the fructose
concentration was reduced 20-fold from 1 M to 50
mM. This result demonstrated that polar aprotic
solvents with dilute fructose feeds can dramatically
reduce fouling rates and achieve stable reactor
operation for extended periods of time. On the
other hand, when water was used as the solvent, no
significant reduction in the rate of fouling was
observed. Comparing the deactivation rates as a
function of fructose concentrations (in water)
showed a strong linear trend (R*>=0.99, Figure 4B).
However, even when the fructose feed
concentration was reduced tenfold, the observed
deactivation rate of 0.042 h™ was still more then an
order of magnitude greater than the rate from
sulfur active site breakdown under much more
severe hydrothermal conditions.
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Figure 4. Comparison of the HMF yield obtained
using fructose concentrations of 1 M (open blue
circles) and 0.05 M (open red circles) in DMSO at
120 °C with a flow rate of 0.05 ml/min (A). The
relationship between the deactivation rate and the
fructose concentration is shown in (B) for fructose
concentrations of 0.1, 0.5, 1.0 and 1.5 M in H,O
reacted at 160 °C with a flow rate of 0.2 ml/min.

3.3 Post-mortem characterization of spent
catalyst

Post-mortem  characterization of deposited
materials on spent catalysts can yield valuable
insights into the underlying deactivation
mechanisms that originate from the formation of
surface residues.3>34 Solid-state NMR can provide a
comprehensive description of the organic deposits
found on these material surfaces. Unlike either
vibrational or XPS spectroscopy, NMR peak
intensities do not depend on transitional matrix
elements and are inherently quantitative in
nature.353¢ Additionally 3C NMR spectra have
excellent resolution over a broad range when
compared to XPS spectroscopy, which requires
peak-fitting algorithms to deconvolute overlapping
peaks. The principal limitation when using 3C
NMR to characterize deposited residues on a
catalyst post-mortem is the limited signal-to-noise
ratio resulting from a relatively low percentage of
BC nuclei in the catalyst material. The most
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common approach to improving the signal is
through 5C enrichment, as the natural isotopic
abundance of 3C is only 1%. However, the cost for
gram scale quantities of 3C enriched materials
required is often prohibitive.

An alternative to isotope enrichment is hyper-
polarization. In particular, dynamic nuclear
polarization (DNP)37 38 has been proven a highly
effective technique for characterizing surface
species in an approach termed DNP surface-
enhanced NMR spectroscopy (DNP SENS).39 40
DNP relies on a microwave-induced transfer of
magnetization  from  unpaired  electrons
(introduced as bi-radical polarizing agents) to
nuclear spins.# 4 In practice, 3C hyperpolarization
is achieved by first hyperpolarizing the 'H nuclei
and subsequently transferring this magnetization
to BC or other spins using CPMAS or similar
methods. DNP SENS can routinely achieve signal
to noise improvements that surpass two orders of
magnitude, thus, often providing a sensitivity
superior to 100% isotope enrichment for 3C.

In addition to obtaining sufficient signal-to-noise
ratio, the second hurdle concerns the considerable
3C background signal from the Amberlyst 45
polymer. To circumvent this issue entirely, an
analogous set of experiments were run using a
commercially available propyl-SO;H-
functionalized porous silica (Silicycle). Given the
low intrinsic hydrothermal stability of silica
materials, these experiments were run using less
severe conditions to limit the breakdown of the
silica material itself. To verify that deactivation
from deposition was occurring in an analogous
fashion on silicycle as with Amberlyst 45, reactions
comparing conversion of 50 mM fructose in DMSO
and H,O at 125 °C (normalized to the moles of
fructose/moles SO,;H sites) were performed; the
results are shown in Figure 5. Under these
conditions, deactivation was extremely rapid, with
no fructose conversion observed after only 8 moles
of fructose per mole of SO;H had passed over the
catalyst. Worth noting is that the catalyst was
much more stable when DMSO was the solvent,
although, unlike with Amberlyst 45, slow
deactivation did occur (0.0051 h?); this suggested
that surface polarity may play an important role in
the carbon deposition and warrants further study.
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Figure 5: The fructose conversion ratio is plotted
as a function of the ratio of fructose to sulfonic acid
moieties for dehydration reactions using propyl
sulfonic acid functionalized silica “silicycle” in H,O
(blue circles) and DMSO (red circles).

The DNP-enhanced 1D 3C CPMAS and 2D 3C{*H}
PRESTO-HETCOR spectra of the fully deactivated
silica material (approximately 48 h TOS) resulting
from the reaction of 50 mM fructose in H,O are
shown in Figure 6. Also shown is the reference HR-
MAS spectrum of neat U-3C enriched fructose
impregnated on the silicycle surface. The spectral
assignments are summarized in Table 1. Aside from
the peaks attributed to surface-bound O-Si-CH,-
CH,-CH,SO;H groups, the spectra strongly
resembled those of native fructose and, to a lesser
extent, fructose dehydration products including
furans and furan breakdown products (Table 1). We
should note that the CH, groups in propyl-SO,H
are expected to be represented to a greater extent
in the CPMAS spectrum than the quaternary
groups of the furanic species or sugar species.
Nevertheless, the observed spectra clearly revealed
the prominence of propyl-SO;H groups. This
finding was significant as it provided a
confirmation that these moieties remained largely
intact on the catalyst surface and that hydrolysis of
sulfonic acid groups the was not the primary cause
of the observed deactivation.

ACS Paragon Plus Environment

HMF Yeild

Page 8 of 16



Page 9 of 16

oOoNOULDh WN =

658

659

660

661

662

663

664

665

ACS Catalysis
o OH HO OHOH Propyl SO.H
R ' \
72 57.0
O~ 158 \ / 162
122 112
x5

5F XZO )

. % I. ‘. .

200 150 100 50 0
B3C Chemical Shift [ppm]

Figure 6: DNP-enhanced 3C CPMAS NMR spectrum of a propyl-SO,H-silica catalyst with adsorbed carbonaceous
residue resulting from the reaction of 50 mM fructose in water at 125 °C for 72 h (top). The HR-MAS 3C NMR
spectrum of neat U-3C-enriched fructose that has been impregnated on the silicycle surface is shown below the
DNP-enhanced 3C CPMAS NMR spectrum (red trace). The molecular structures of HMF and fructose are shown,
and their expected 3C chemical shifts are indicated. The 3C{"H} PRESTO-HETCOR spectrum is shown on the
bottom. This spectrum only displays correlations between protonated carbon atoms and their attached protons.
The assignment of the NMR signals was confirmed by considering the 3C and 'H isotropic chemical shifts.
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Table 1: Assignment of 3C DNP-SENS NMR

Integration

limits (ppm) Assignment
225-200 Ketone
195-172 Aldehyde/COO
171-157 Ca-Furan
156-146 Ca-Furan
143-123 CB-Furan
121-107 CpB-Furan
105-90 C2-Fructose
88-74 Cs-Fructose
7467 Fructon
67-60 C1/Cs-Fructose
59-45 CH,SO;H
44-33 CH,
25-14 PropylSO,H
14-5.5 PropylSO,H

3.4 In situ thin-film HR-MAS NMR spectroscopy

Experimental results from the flow reactor
experiments revealed that catalyst deactivation
resulted from the deposition of material onto the
catalyst surface. Deactivation was accelerated when
water was used and slowed with DMSO.
Characterization of the residues on the catalyst post-
mortem using DNP-enhanced 3C solid-state NMR
showed that at moderate temperatures (125 °C), aside
from propyl-SO;H groups, a large fraction of the
material resonated at a frequency characteristic of
Cai-O-R groups, suggesting that the materials on the
surface consisted predominantly of polymerized,
partially dehydrated fructose along with a fraction of
furanics and other breakdown products of HMF.

One critical question that remained ambiguous, with
only post-mortem data, was the nature of the initial
deposits on the catalyst surface. One plausible
deposition pathway involves fructose initially
undergoing dehydration to form furans, followed by
the furans being absorbed onto the catalyst surface,
and finally these furans serving as seeds for the
subsequent addition of fructose molecules to form a
carbonaceous layer that blocks the acid sites.
Alternatively, one could imagine that, prior to
undergoing dehydration, fructose adsorbs onto the
surface and undergoes polymerization with some
fraction of the polymer undergoing dehydration to
form a furanic component. A third possible
explanation is that both furanics and fructose exhibit
a high affinity for the catalyst surface and
simultaneously deposit to form the carbonaceous
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layer. To distinguish between these different
scenarios, In situ 3C NMR with thin liquid layers
impregnated onto the catalyst surface was used to
obtain a real-time picture of the solid-liquid
interface.> 3t 43 44

Molecular behavior at solid-liquid interfaces can be
probed using solid-state NMR of solid materials
impregnated with liquid films (1-4 nm liquid
thickness). In situ HR-MAS NMR is ideally suited to
study solid-liquid interfaces, as these systems exhibit
molecular dynamics intermediate to those of
isotropic liquids and rigid solids, allowing for high
resolution spectra under moderate MAS frequency.
This approach has been adapted for measuring the
3C NMR spectra of U-3C-enriched fructose dissolved
in D,O and de-DMSO and impregnated onto a
propyl-SO;H-functionalized  silica. ~Given the
minimal precedent in the literature, we investigated
the interfacial behavior of the liquid impregnated
into the porous solid by comparing spectra acquired
under static and MAS conditions. 'H and 3C NMR
spectra acquired under static and 25 kHz MAS are
compared in Figure 7. There was a dramatic
improvement in spectral resolution under MAS. For
example, 3C-5C J couplings could be readily resolved
in the 3C NMR spectra and many peaks in the 'H
NMR spectra had nearly solution-like line width (ca.
20 Hz FWHM). The substantial improvement in
resolution under application of MAS suggested that
the solvent and fructose molecules within the thin
liquid layer had hindered rotation and diffusion. In
order for MAS to yield improved resolution, the
correlation time of the molecules should typically be
longer than the rotor period (inverse of the MAS
frequency).#>4¢ MAS will also help to narrow the lines
by averaging susceptibility and magnetic field
inhomogeneity over the sample.

Considering the dramatic effects of the solvent on
the reaction rates and selectivity, the manner in
which the solvent influenced the HR-MAS 3C and ‘H
NMR spectra of fructose was investigated by
impregnating idealized 2 nm layers of 1 M fructose in
either ds-DMSO or D,O (0.66uL/mg) onto propyl-
SO,H-functionalized silica. The measurements were
conducted prior to the fructose undergoing any
significant reaction. The 3C (Figure 8A) and 'H
(Figure 8B) NMR spectra obtained with D,0O and ds-
DMSO showed distinct differences. First, a
comparison of 3C NMR spectra showed that fructose
in de-DMSO contained several peaks that were
partially shifted to higher frequency along with
broadening at the C2 (103 ppm) C3 (76 ppm) and C4
(82 ppm) positions. This shift of the C-OH carbons
to a higher chemical shift in ds-DMSO suggested a
greater degree of protonation of hydroxyls resulting
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from increased [H;O*] due to the lower water
concentration. This difference was more obvious
when comparing 'H spectra (Figure 8B), which show
that the major peak comprising the C-OH-H,0-H,;0*
hydrogen bonded network shifted by almost 1 ppm in
ds-DMSO, when compared to D,0. An additional
surprise was that in de-DMSO, some HMF had begun
to form without any external heat being applied
beyond the frictional heating from 25 kHz MAS (ca.
+30°C).

Static
25 kHz MAS

120 100 ) 60
3C Chemical Shift [ppm]

Static
25 kHz MAS

'H Chemical Shift [ppm]

Figure 7: HR-MAS 3C (A) and 'H (B) NMR of
uniformly 3C enriched fructose (98%) in DMSO
impregnated with an idealized 2 nm liquid layer
(0.66pl/mg) onto propyl-SO,H-functionalized silica
gel. Comparison of the static (black line) vs. MAS
with 25 kHz frequency (red line) are shown for 3C (A)
and 'H (B).

In situ measurements were made by heating the
stator to 50 °C, which, along with the ca. 30 °C
temperature increase from frictional heating, raised
the sample temperature to ca. 8o °C (Figure 9). As
expected, the samples in DMSO reacted much more
rapidly than in D,O, and showed significant
formation of HMF after a relatively brief period (e.g.
< 1 h). Recognizing that the primary goal of these
measurements was to probe the sequence in which
materials were being deposited onto the catalyst
surface, NMR was used to directly compare the
relative molecular mobility of different species. This
was accomplished by comparing 3C NMR spectra
measured via direct polarization (herein referred to
simply as MAS) and 'H-"3C cross-polarization
(CPMAS). The CP transfers are primarily mediated
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through 'H-3C heteronuclear dipolar couplings,
which are motionally averaged to zero for molecules
that were undergoing rapid isotropic motions.
Therefore, the CPMAS spectra primarily showed
NMR signals from immobilized molecules or
molecules with restricted rotation. On the other
hand, the MAS NMR spectra were expected to show
NMR signals from both mobile and immobile
molecules, although the former should give rise to
sharper NMR signals and be over-represented in the
MAS NMR spectrum.

Prior to the reaction of fructose, no 3C CPMAS NMR
signal was observed for fructose in either d,-DMSO
or D,0. However, following several hours of reaction,
clear differences were observed in NMR spectra
obtained from the ds,-DMSO and D,O samples. As
expected, HMF was formed much more rapidly in
DMSO, and with nearly 100% selectivity.
Furthermore, the HMF formed in DMSO was highly
mobile, as evidenced by the lack of any detectable
CPMAS 5C NMR signal, even with a long CP contact
time of 8 ms (Figure 9A).The sample with D,O
showed very different behavior. After allowing the
D,O sample to react overnight, a significant CPMAS
5C NMR signal was observed with a CP contact time
of only 3 ms. This strongly suggested that a
significant fraction of the product molecules in D,O
was immobilized on the silica surface. The
comparable intensity of the CPMAS and MAS 5C
NMR signals of the dehydration products and
fructose suggested that the deposition was initiated
by the adsorption of the dehydrated products onto
the catalyst surface, which was then followed by
additional polymerization with fructose molecules to
form a carbonaceous layer.
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Figure 8: Comparison of the solvent effect with HR-
MAS NMR of uniformly 3C-enriched fructose (98%)
impregnated with an idealized 2 nm liquid layer
(0.66pl/mg) onto propyl-SO,H functionalized silica
gel. Shown in (A) and (B) are 3C and '"H NMR spectra,
respectively, taken with D,0 (red) and DMSO
(green) as solvents.

Finally, the effect of the solvent on the molecular
mobility of purified HMF on the surface, prior to any
reaction, was studied using '‘H HR-MAS NOESY
experiment. Due to hindered motion of the
molecules at the catalyst surface the primary source
of the cross-peaks is from zero-quantum 'H spin
diffusion. This process is accelerated when the
mobility is reduced and as such less mobile species
should feature a faster build-up of cross-peaks. The
catalysts were impregnated with 1M HMF (natural
abundance 3C) in D,O or ds-DMSO. 2D 'H NOESY
NMR spectra were acquired with spin diffusion
mixing times T, = 40 ms or 320 ms (Figure 10). We
note that due to the preponderance of HMF on the
surface, the spectra are dominated by resonances Hi-
Hy attributed to HMF (see the inset in Figure 10). In
addition, the acidic 'H in propyl-SO;H groups are
most likely exchanged with deuterium. Importantly,
only the spectra taken in D,O show the
intramolecular 'H-'H correlations within the HMF
molecule (represented by red lines in Figure 10).
Specifically, in the D,O-impregnated sample, H2-H3
and H3-Hg4 correlation signals were observed in the
2D 'H NOESY spectrum with t,,;x = 40 ms. When 1,
was extended to 320 ms, additional correlation
signals (Hi-Hz2, Hi-Hs, Hi-H4, and H2-H4) appeared.
In contrast, none of these correlations were detected
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in the 2D 'H NOESY spectra of the DMSO-
impregnated sample, which suggests that HMF
molecules are less mobile and interact far more
strongly with the catalyst surface in D,O than in dgs-
DMSO. This result is consistent with the other
experimental data showing much stronger affinity
for molecules to adsorb on the surface and rapid
formation of a carbonaceous layer when water was
used as the solvent.
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Figure 9: In situ HR-MAS 3C NMR of fructose
impregnated onto propyl-SO;H-functionalized
silica gel. Comparison of CPMAS (red) and MAS
(black) spectra of samples including a 2 nm thick
layer of DMSO (A) and D,O (B). The fructose
concentration was 2 M. The NMR spectra are
shown after reaction for 12 hours at 8o °C. Dashed
red lines highlight the peak positions from HMF
and show that HMF is principally formed in DMSO.
Green arrows indicate the HMF breakdown

products formic and levulinic acid.
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Figure 10: HR-MAS NOESY 'H NMR of HMF
impregnated onto propyl-SO;H-functionalized
silica gel. (A) D,O, tmix = 40 ms; (B) D,O, Tpiy = 320
ms; (C) DMSO 1., = 40 ms; and (D) DMSO, 7, =
320 ms.

4. Conclusions

To comprehensively investigate solid acid
hydrothermal stability, a number of commercially
available sulfonated materials were surveyed,
including state-of-the-art resins under conditions
without any reactant present. As expected, nearly
all of these materials showed very poor stability,
except for Amberlyst 45 (a halogenated cross-
linked resin), which was significantly more
resistant to hydrothermal breakdown of the
sulfonic acid sites. Deactivation, however, occurred
two orders of magnitude faster when a reactant was
introduced to the reactor. The results clearly
demonstrated that the dominant mode of catalyst
deactivation for these reactions run under aqueous
conditions is from fouling, and that fouling should
therefore be an integral consideration in efforts to
improve the hydrothermal stability of solid acid
catalysts used in the conversion of oxygenated
molecules.

Additionally, it was demonstrated that one viable
route to overcoming catalyst fouling was the use of
use polar aprotic solvents with dilute feed streams.
Moreover, when comparing the stability of
different solid acid catalysts, choice of support
materials was found to play a significant role, with
polymeric materials displaying excellent stability,
while functionalized silicas deactivated relatively
rapidly.

For solid acid catalysts to be industrially useful for
dehydration of polyhydric alcohols in water, the
catalyst will either require methods to regenerate
the catalyst or methods to prevent humin
formation altogether. A route demonstrated here
to accomplish this is through engineering the
support material along with the solvent system to
allow for reactants and products to easily desorb
from the surface.
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