

10-30-2019

Condensed Phase Deactivation of Solid Brønsted Acids in the Dehydration of Fructose to Hydroxymethylfurfural

Robert L. Johnson

Iowa State University and University of Hawaii at Manoa

Frédéric A. Perras

Ames Laboratory, fperras@ameslab.gov

Michael P. Hanrahan

Iowa State University and Ames Laboratory, mph@iastate.edu

Max A. Mellmer

University of Wisconsin

Thomas Garrison

King Fahd University of Petroleum & Minerals

See next page for additional authors

Follow this and additional works at: https://lib.dr.iastate.edu/chem_pubs

Part of the [Chemistry Commons](#)

The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/chem_pubs/1178. For information on how to cite this item, please visit <http://lib.dr.iastate.edu/howtocite.html>.

This Article is brought to you for free and open access by the Chemistry at Iowa State University Digital Repository. It has been accepted for inclusion in Chemistry Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

Condensed Phase Deactivation of Solid Brønsted Acids in the Dehydration of Fructose to Hydroxymethylfurfural

Abstract

Catalyst deactivation resulting from the hydrothermal leaching of sulfonic acid residues and the deposition of carbonaceous residues were studied using condensed phase flow reactor experiments along with state-of-the-art solid-state NMR. Several commercially available sulfonic acid-containing heterogeneous Brønsted acids were compared by measuring the rates of sulfonic acid breakdown at hydrothermal flow conditions of 160 °C. Amberlyst 45 was found to show higher hydrothermal stability when compared to both Nafion and Amberlyst 15, with <10% loss in acidity after 48 h. The dehydration reaction of fructose to hydroxymethylfurfural (HMF) was used as a model system to compare deactivation rates from carbon deposition (fouling) to those from sulfur leaching, and deactivation from fouling was shown to be dramatically faster than that from sulfonic acid leaching alone. Fouling rates were then investigated in greater detail by comparing the influence of several factors including reactant, solvent, residence time, and feed concentration. The only successful approach to minimize fouling was the use of a polar aprotic solvent (DMSO) with dilute (50 mM) reactant streams. In aqueous systems operating the reactor in a regime with low conversion conditions (short residence times) does not significantly improve the longevity of the catalyst. Spent catalysts were characterized using ^{13}C solid-state NMR spectroscopy enhanced by dynamic nuclear polarization (DNP). Additionally, *in situ* ^1H and ^{13}C high-resolution magic angle spinning (HR-MAS) solid-state NMR spectroscopy was used to investigate the solvent influence at the catalyst interface. The HR-MAS NMR studies showed that in polar aprotic solvents, the increased acidity leads to greater selectivity towards HMF; more importantly, that the dehydration products do not readily adhere to the surface in DMSO, in contrast to their behavior in water. The results demonstrate that more active and longer-lived acid catalysts could be obtained by tuning the solvent and surface polarity to allow for efficient desorption of products, thereby reducing the catalyst deactivation that occurs due to fouling.

Keywords

Fructose dehydration, Solid acid catalysis, Stability, Catalyst characterization, DNP SSNMR

Disciplines

Chemistry

Comments

This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in *ACS Catalysis*, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: [10.1021/acscatal.9b03455](https://doi.org/10.1021/acscatal.9b03455). Posted with permission.

Authors

Robert L. Johnson, Frédéric A. Perras, Michael P. Hanrahan, Max A. Mellmer, Thomas Garrison, Takeshi Kobayashi, James A. Dumesic, Marek Pruski, Aaron Rossini, and Brent H. Shanks

Condensed Phase Deactivation of Solid Brønsted Acids in the Dehydration of Fructose to Hydroxymethylfurfural

Robert L. Johnson^{a,e,g}, Frédéric A. Perras^d, Michael P. Hanrahan^{b,d}, Max Mellmer^f, Thomas F. Garrison^c, Takeshi Kobayashi^d, James Dumesic^{a,f}, Marek Pruski^{b,d}, Aaron J. Rossini^{b,d}, Brent H. Shanks^{a,e*}

^aChemical and Biological Engineering Department Iowa State University, Ames, IA 50011 USA

^b Department of Chemistry, Iowa State University, Ames, IA 50011 USA

^c Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

^d US DOE, Ames Laboratory, Ames IA 50011-3020 USA

^e Center for Biorenewable Chemicals (CBiRC), Ames, IA 50011 USA

^f Department of Chemical and Biological Engineering University of Wisconsin, Madison, WI 53706 USA

^g Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI 96822 USA

ABSTRACT: Catalyst deactivation resulting from the hydrothermal leaching of sulfonic acid residues and the deposition of carbonaceous residues were studied using condensed phase flow reactor experiments along with state-of-the-art solid-state NMR. Several commercially available sulfonic acid-containing heterogeneous Brønsted acids were compared by measuring the rates of sulfonic acid breakdown at hydrothermal flow conditions of 160 °C. Amberlyst 45 was found to show higher hydrothermal stability when compared to both Nafion and Amberlyst 15, with <10% loss in acidity after 48 h. The dehydration reaction of fructose to hydroxymethylfurfural (HMF) was used as a model system to compare deactivation rates from carbon deposition (fouling) to those from sulfur leaching, and deactivation from fouling was shown to be dramatically faster than that from sulfonic acid leaching alone. Fouling rates were then investigated in greater detail by comparing the influence of several factors including reactant, solvent, residence time, and feed concentration. The only successful approach to minimize fouling was the use of a polar aprotic solvent (DMSO) with dilute (50 mM) reactant streams. In aqueous systems operating the reactor in a regime with low conversion conditions (short residence times) does not significantly improve the longevity of the catalyst. Spent catalysts were characterized using ¹³C solid-state NMR spectroscopy enhanced by dynamic nuclear polarization (DNP). Additionally, *in situ* ¹H and ¹³C high-resolution magic angle spinning (HR-MAS) solid-state NMR spectroscopy was used to investigate the solvent influence at the catalyst interface. The HR-MAS NMR studies showed that in polar aprotic solvents, the increased acidity leads to greater selectivity towards HMF; more importantly, that the dehydration products do not readily adhere to the surface in DMSO, in contrast to their behavior in water. The results demonstrate that more active and longer-lived acid catalysts could be obtained by tuning the solvent and surface polarity to allow for efficient desorption of products, thereby reducing the catalyst deactivation that occurs due to fouling.

Keywords:

Fructose dehydration, Solid acid catalysis, Stability, Catalyst characterization, DNP SSNMR

1. INTRODUCTION

2 The substitution of bio-based chemicals and fuels
3 for those derived from petroleum feedstocks has
4 attracted renewed interest in the last decade.¹⁻⁶ One
5 of the promising platforms for these efforts is the
6 conversion of carbohydrates into furanic
7 molecules, which can then be used to produce a
8 large number of molecules analogous to those
9 derived from petroleum.⁷⁻⁹ Isomerization of
10 glucose to fructose followed by Brønsted acid-
11 catalyzed dehydration leads to
12 hydroxymethylfurfural (HMF). HMF obtained
13 from biomass can then be used to produce a variety
14 of industrially relevant products.¹⁰ Unlike with
15 petroleum, the series of reactions for converting
16 carbohydrates into HMF requires condensed phase
17 processing conditions. To date, batch reactions in
18 polar aprotic solvents, catalyzed with
19 homogeneous acid, have been demonstrated as the
20 most effective strategy for obtaining high yields of
21 HMF from fructose.¹¹⁻¹³ Although this route is
22 effective, improvement in the environmental
23 footprint and processing cost may be possible
24 through substitution of the homogeneous acid
25 catalyst with a heterogeneous catalyst.

26 The replacement of homogeneous catalysts
27 requires a heterogeneous acid catalyst that remains
28 active in the relevant condensed phase reaction
29 conditions (containing 5-100% H₂O) at elevated
30 temperatures (ranging from 100-200 °C). The issue
31 of acid catalyst stability under hydrothermal
32 conditions has been a central investigative theme
33 for catalyst research in the area of biomass
34 conversion.^{14,15} Brønsted/Lewis acid catalysts, such
35 as silica-alumina, γ-Al₂O₃,¹⁶ and zeolites^{17,18} are
36 known to break down under hydrothermal
37 conditions. Catalyst materials containing sulfonic
38 acid active sites, including polymeric resins and
39 sulfonated carbon materials, are also susceptible to
40 breakdown under hydrothermal conditions,
41 despite the carbon scaffold being hydrothermally
42 stable. Under hydrothermal conditions, sulfonic
43 acid groups are readily hydrolyzed, leading to
44 leaching.^{8,19,20} For example, common resins such as
45 Amberlyst 15, sulfonated carbon materials, as well
46 as porous silica with sulfonic acid groups grafted
47 onto the silica surface, rapidly deactivate at
48 hydrothermal conditions above 120 °C. Considering
49 that the temperatures required for dehydration of
50 fructose to HMF need to reach between 140 to 160
51 °C with the water content in the solvent system
52 exceeding 30%, the vast majority of available
53 sulfonated materials lack sufficiently stable
54 sulfonic acid groups to be viable catalysts for

55 converting fructose to HMF under realistic
56 processing conditions.

57 Significant improvement in sulfonic acid
58 hydrothermal stability has been reported for
59 Amberlyst 45, a heavily cross-linked and
60 halogenated sulfonated polystyrene resin having a
61 stabilized macromolecular structure and
62 strengthened sulfonic acid linkage.²¹ Surprisingly,
63 after treatment in batch conditions for 6 h at 180
64 °C, only a 9% reduction in acidity was observed.²¹
65 An alternative class of materials to carbon and
66 resins is sulfated zirconia.²² Recently, a method to
67 synthesize mesoporous sulfated zirconia was
68 reported, wherein SBA-15 was used as a template
69 for deposition of zirconium oxide monolayers.
70 These materials were confirmed to have excellent
71 catalytic properties with the silica effectively
72 protected from hydrothermal breakdown.²² Both of
73 these reports, however, did not rigorously test the
74 hydrothermal stability of these materials, since the
75 reactions were carried out under batch conditions
76 instead of flow reactor conditions, and the
77 exposure times were limited. Furthermore, the
78 evidence used to validate the hydrothermal
79 stability of templated sulfated zirconia was based
80 only on porosimetry and XRD measurements
81 which does not provide a direct measurement of
82 the number of active sites on the material.²²

83 Previous research on catalyst stability for solid
84 Brønsted acids in condensed phase applications
85 has focused primarily on reducing the rate of active
86 site leaching by improving the strength of the
87 sulfonic acid linkage. However, it has not yet been
88 clearly established that leaching of sulfur is the
89 dominant mechanism of catalyst deactivation
90 when using state-of-the-art solid Brønsted acid
91 catalysts. For example, it is well known that for
92 palladium-catalyzed condensed phase
93 hydrogenation reactions, the catalyst deactivation
94 from fouling is quite rapid compared to rates of
95 sintering or metal leaching.²³ A better
96 understanding of deactivation mechanisms in solid
97 Brønsted acid catalysts is required in order to
98 develop catalysts with improved stability.

99 To the best of our knowledge, no previous
100 comparison of deactivation rates from fouling and
101 leaching of sulfur has been performed for
102 heterogeneous Brønsted acid catalysts under
103 relevant processing conditions. To address this
104 question, we performed a series of experiments to
105 independently measure the rates of hydrothermal
106 sulfur leaching and fouling. Moreover, we
107 investigated the critical factors for reducing the
108 rate of catalyst fouling. Lastly, ¹³C NMR

1
2
3 experiments were performed on both fresh
4 catalysts and deactivated catalyst materials to
5 elucidate the mechanisms responsible for carbon
6 deposition when reactions are run using water as
7 the solvent.
8

9 2. MATERIALS AND METHODS

10 2.1 Reagents

11 All chemicals were purchased from Sigma-Aldrich
12 (St. Louis, MO, USA) and used without additional
13 purification. UHP+ quality gases (99.995%) for BET
14 were purchased from Airgas (Radnor, PA, USA).
15 Water was filtered using a Barnstead E-pure system
16 and allowed to reach 18.1 MΩ resistance for all
17 applications. U-¹³C-enriched fructose (99.8%) and
18 *d*₆-DMSO were purchased from Cambridge Isotope
19 Laboratories (Tewksbury, MA, USA).

20 2.2 Materials synthesis

21 Synthesis of sulfated zirconia was carried out
22 according to a previously reported method²⁴ using
23 open pore Davisil silica. Materials were compressed
24 into pellets and sieved to collect particles ranging
25 from 450 to 600 μm. The pelletized materials were
26 dried in a muffle furnace at 300 °C for 4 h and
27 transferred to a glove box. Then, 2.2 g (total surface
28 area of approximately 616 m²) of silica was mixed
29 with 6 g of zirconium (IV) propoxide (70 wt% in
30 propanol) in 30 mL of anhydrous hexane and
31 allowed to reflux at 70 °C overnight. The material
32 was filtered, rinsed three times with hexane to
33 remove any residual unreacted precursor,
34 rehydrated with 30 mL of deionized water with
35 stirring for 4 h, and finally dried at 80 °C overnight.
36 Sulfation was carried out by soaking materials (1
37 g/30 mL) in 0.25 M H₂SO₄ at room temperature for
38 5 h. Samples were then filtered and dried at 80 °C
39 overnight followed by calcination at 550 °C for 3 h.
40

41 2.3 Hydrothermal treatments of solid acids

42 Hydrothermal treatments were performed using a
43 high-pressure flow reactor system capable of
44 operation at pressures up to 80 bar and 400 °C.
45 Material flow was regulated using a Brooks SLA
46 5850 mass flow controller for gases (Brooks
47 Instruments, Hatfield, PA, USA) and a Series I
48 HPLC pump for liquids (Scientific Systems, State
49 College, PA, USA). The temperature was controlled
50 using an Omega CSi32 series temperature
51 controller with a K-type thermocouple (Omega
52 Engineering, Norwalk, CT, USA). Temperature was
53 maintained within ± 1°C during the treatments.
54 (See SI for schematic and pictures.) A liquid flow
55 rate of 0.02 mL/min was used. Liquids were
56 removed and stored in a -4 °C freezer until analysis.
57

58 161 Remaining solids were removed from the reactor
59 162 bed and dried at 105 °C prior to final analysis.
60

163 2.4 Dehydration reactions

164 Samples were analyzed using a Waters Alliance
165 HPLC system equipped with having a Phenomenex
166 size exclusion column (65 °C) equipped with a
167 Waters PDA/refractive index detector (Waters
168 Corporation, Milford, MA, USA). Samples were
169 eluted isocratically with a 5 mM sulfuric acid
170 mobile phase at a flow rate of 0.7 mL/min.

171 2.5 Acid site quantification

172 The number of strong acid sites was determined via
173 titration using a Titrimo autotitrator (Metrohm AG,
174 Herisau, CH). The titration mixtures were prepared
175 by mixing approximately 200-500 mg of wet solid
176 in 30 mL of a 1 M potassium chloride solution, which
177 was then titrated with a 0.05 M sodium hydroxide
178 solution at a dosing rate of 0.25 mL/min. Samples
179 were degased prior to titration for 5 minutes by
180 bubbling nitrogen with constant stirring. The
181 number of acid sites was calculated based on the
182 number of moles of sodium hydroxide required to
183 reach the equivalence point, i.e., the inflection
184 point in the titration curve, and was normalized on
185 a dry mass basis.

186 2.6 DNP-enhanced ¹³C solid-state NMR

187 DNP-enhanced solid-state NMR experiments were
188 performed using a Bruker AVANCE III 400 MHz
189 MAS-DNP NMR system (Bruker Corp, Billerica,
190 MA, USA) equipped with a 3.2-mm low-
191 temperature magic angle spinning (MAS) probe
192 and a 9.7 T gyrotron. The 20 mg catalyst sample was
193 impregnated with a 10 mM solution of the AMUPol
194 polarizing agent²⁵ (Cortecnet, Voisins-le-
195 Bretonneux, France) in H₂O and packed into a 3.2-
196 mm sapphire rotor, which was then sealed with a
197 Teflon plug. The sample temperature was
198 approximately 110 K and the MAS frequency was set
199 to 10 kHz. A 1D ¹³C NMR spectrum was acquired
200 using cross-polarization (CP) using a 2.75 μs ¹H
201 excitation pulse and a 1.5 ms contact time. A total
202 of 16k scans were accumulated with a 1 s recycle
203 delay. A 2D ¹H-¹³C HETCOR spectrum was
204 obtained with PRESTO-II (phase-shifting effects a
205 smooth transfer of polarization)²⁶ for the ¹H → ¹³C
206 coherence transfer step since it has been shown
207 that PRESTO-II transfers yield only 1-bond
208 correlations with improved sensitivity when
209 compared with through-bond transfers.²⁷ Six pulse
210 pairs of R18₁ heteronuclear recoupling were used
211 for the transfer and a ¹³C rf pulse magnetic field of
212 50 kHz was used for all the ¹³C pulses. Frequency-
213 switched Lee-Goldburg (FSLG)²⁸ ¹H homonuclear

1
2
3 decoupling was applied during t_1 to improve the ^1H resolution. Thirty-two t_1 increments of 48 μs , each
4 consisting of 5120 scans, were acquired, and the
5 States-TPPI method was used for phase-sensitive
6 2D acquisition.
7

8
9 **2.7 Solid-State NMR Experiments on**
10 **Impregnated Catalysts**

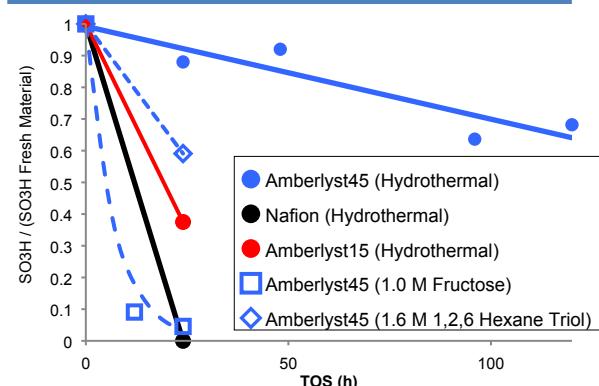
11 Impregnated materials were prepared inside a
12 glovebox for analysis with in situ NMR by weighing
13 out approximately 10 mg of catalyst material into a
14 2-mL screw-cap polypropylene tube. Liquid was
15 then applied to the solid material and allowed to
16 equilibrate for a minimum of 6 h (typically
17 overnight). Since the solid substrates were coated
18 with 0.667 $\mu\text{L}/\text{mg}$ catalyst and the average surface
19 area for the solids was 300 m^2/g , this translated, on
20 average, to an approximately 2-nm layer of catalyst
21 deposited onto the samples. Following an
22 equilibration period, samples were agitated using a
23 spatula and then packed in the 2.5-mm MAS rotor
24 in the glove box. Rotors were weighed before and
25 after NMR experiments to ensure that no liquid was
26 lost during the experiments. ^1H , ^{13}C and ^{29}Si NMR
27 experiments were carried out on a Bruker Avance
28 III HD 400 MHz solid-state NMR spectrometer
29 (Bruker Corp, Billerica, MA, USA) equipped with a
30 triple resonance 2.5-mm HXY probe. The ^1H solid-
31 state NMR spectra were acquired using a spin echo
32 sequence under static and 25 kHz MAS, with 100
33 kHz excitation and refocusing pulses, 8-16 scans, 2
34 s repetition delay and an echo delay of 40 μs . The
35 ^{13}C solid-state NMR spectra were acquired using
36 either Bloch decay or cross-polarization (CP) pulse
37 sequences. The MAS frequency was 25 kHz and
38 SPINAL-64 heteronuclear decoupling applied
39 during acquisition with a 100 kHz ^1H rf field. For
40 the Bloch decay spectra the ^{13}C excitation pulse
41 with an rf field of 73.5 kHz was used with 32 to 512
42 scans and a recycle delay between 5-10 s. For the ^1H -
43 ^{13}C CPMAS NMR experiments the initial ^1H
44 excitation had a 100 kHz rf field and the CP match
45 condition used 77 kHz and 121 kHz rf field spin-lock
46 pulses for ^{13}C and ^1H , respectively, with a 3 ms CP
47 contact time. The ^1H spin lock pulses rf was linearly
48 ramped from 85% to 100% of the rf field. CPMAS
49 spectra were acquired with a 2 s recycle delay and
50 128 scans.

51 2D ^1H - ^1H NOESY spectra were acquired on a Varian
52 600 MHz NMR System spectrometer equipped
53 with a 1.6-mm triple-resonance MAS probe. The
54 samples were packed into zirconia rotors and spun
55 at 20 kHz. The spectra were obtained using a ^1H rf
56 pulse magnetic field of 100 kHz, 800 t_1 points with

57 an interval of 100 μs , 8 scans per t_1 point and the
58 STATES-TPPI method for quadrature detection.

59 **3. RESULTS AND DISCUSSION**

60 **3.1 Deactivation from sulfur leaching vs.**
1 carbon deposition


2 Our initial objective was to examine the relative
3 rates of acid site loss due exclusively to
4 hydrothermal leaching of sulfonic acid groups. To
5 this end, several commercially available sulfonic
6 acid-containing resins (Amberlyst 15, 45, and
7 Nafion) were tested under hydrothermal flow
8 conditions, using more rigorous criteria than
9 repeated batch conditions. The changes in acid
10 sites, determined by titration after the packed beds
11 were subjected to a continuous stream of ultra-
12 purified water heated to 160 °C and pressurized to
13 550 psi, are shown in Figure 1 (solid symbols).
14 Nafion coated onto porous silica was quite labile
15 under these conditions and showed no detectable
16 strong acid groups after only 24 h on stream. This
17 finding was not surprising considering the
18 relatively weak O-ether linkage that binds the
19 perfluorinated side group to the polymer
20 backbone. Amberlyst 15, a typical sulfonated
21 polystyrene resin, displayed far better stability than
22 Nafion, although the acid sites on Amberlyst 15 still
23 decomposed quite rapidly with an observed
24 reduction from 4.8 mmol/g to 1.8 mmol/g in 24 h
25 on stream. In addition to the loss of acid sites, the
26 polymeric backbone was observed to decompose
27 under these conditions, as evidenced by residue on
28 the filter paper. However, Amberlyst 45 (previously
29 known as Amberlyst 70)²¹ only showed a minor loss
30 (<10%) of acid sites after 48 h on stream; after 120 h
31 only 25-33% was lost. Furthermore, in contrast to
32 Amberlyst 15, the polymeric backbone integrity
33 seemed to be maintained as no residues were
34 observed following the filtration. The results under
35 hydrothermal flow conditions confirmed previous
36 reports of this material's high extent of
37 hydrothermal stability. The demonstration of
38 hydrothermal stability for time periods of days on
39 stream was especially remarkable given the severity
40 of these treatments.

41 To expand on the results demonstrating the
42 relative time scales required for hydrothermal
43 breakdown of Amberlyst 45 acid groups, a series of
44 experiments were conducted under identical
45 pressure/temperature/flow conditions with the
46 addition of two different polyol reactants. From
47 these experiments, a relative comparison of the
48 deactivation rates from carbon deposition to that
49 of sulfur leaching could be obtained. The two
50 polyol reactants were fructose and 1,2,6-

321 hexanetriol, specifically selected because they
 322 provide a comparison between furan and pyran
 323 dehydration products and because they are
 324 relevant systems for condensed phase biomass
 325 conversion schemes.

326 The resulting loss of acidity for Amberlyst 45 was
 327 striking when a 1 M fructose solution was
 328 substituted for water, resulting in 90% reduction of
 329 acid sites after only 12 h on stream and 95%
 330 reduction after 24 h on stream. This corresponded
 331 to a 25-fold greater deactivation rate from fouling
 332 compared to hydrothermal leaching of sulfur. A
 333 similar, albeit weaker, trend was observed when 1.6
 334 M 1,2,6-hexanetriol was used under the same flow
 335 and temperature conditions. Here, the fouling rate
 336 from 1,2,6-hexanetriol was less than that from
 337 fructose, corresponding to a deactivation rate that
 338 was only 5.6-fold greater than that due to sulfur
 339 leaching alone.

340 The difference in the fouling rates for fructose and
 341 1,2,6-hexanetriol was not surprising considering
 342 that different reaction pathways lead to the
 343 formation of different classes of dehydration
 344 products, namely pyrans in the case of 1,2,6-
 345 hexanetriol and furans from fructose.²⁹ It is known
 346 that humin formation rapidly occurs when furanic
 347 compounds polymerize during exposure to
 348 hydrothermal conditions. Furthermore, the
 349 dehydration of fructose has a lower activation
 350 energy than that of 1,2,6-hexanetriol, since a more
 351 labile hydroxyl group is attached to the anomeric
 352 carbon. Importantly, these experiments showed
 353 that hydrothermal deactivation via fouling, when
 354 using the state-of-the-art sulfonated resins,
 355 occurred on the time scale of hours, as compared
 356 to days for the hydrothermal leaching of sulfur.
 357 These findings clearly implied that the main issue
 358 for hydrothermal stability is not the leaching of
 359 acid or decomposition of support material but the
 360 rate of fouling.

361 **Figure 1.** Change in the number of strong acid sites
 362

363 (as determined via titration) as a function of time
 364 on stream (TOS) in plug flow hydrothermal
 365 treatments at 160 °C with a flow rate of 0.02
 366 ml/min.

3.2 Deactivation under reaction conditions

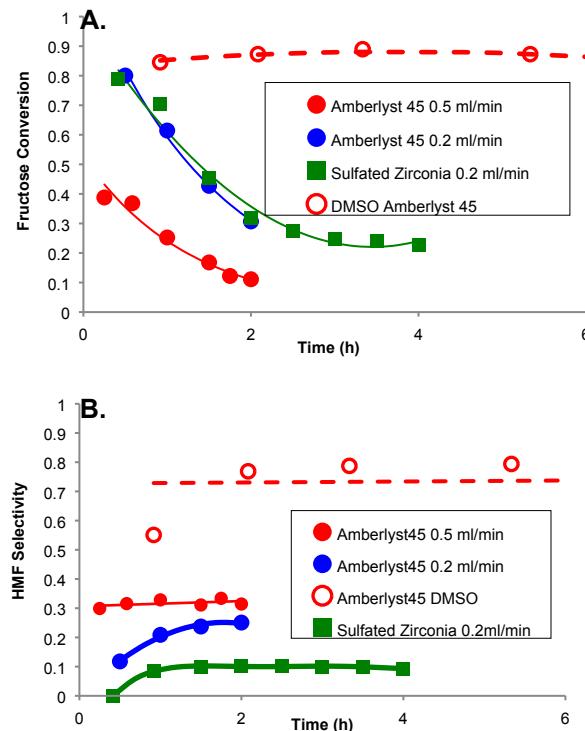
367 To determine other factors influencing
 368 deactivation, additional experiments were run in
 369 which changes in the conversion/selectivity of
 370 fructose towards HMF were measured under a
 371 variety of reaction conditions. These experiments
 372 were designed to elucidate what factors could be
 373 leveraged to reduce the rate of fouling. First, the
 374 reactor was run under conditions of low conversion
 375 to mitigate deactivation. Second, the influence of
 376 the solvent on the rate of fouling was compared by
 377 running a series of experiments using a polar
 378 aprotic solvent (DMSO) instead of water. Finally,
 379 the relationship between the initial feed
 380 concentration and rate of deactivation was
 381 determined.

3.2.1 Reactions in H₂O

382 Results comparing deactivation as a function of
 383 conversion, i.e., residence time (Figure 2A, filled
 384 circles), showed that the deactivation rate was
 385 lower when the reactor was run at lower conversion
 386 condition (0.175 h⁻¹ at 40% initial conversion vs.
 387 0.334 h⁻¹ at 80% initial conversion). The
 388 deactivation rate at 80% conversion was 10 times
 389 greater than the rate of hydrothermal sulfur
 390 leaching, suggesting that the fouling rate
 391 determined in the previous experiment was limited
 392 by the molar flow rate of fructose. Notably, even
 393 when the reactor was run with low initial
 394 conversion (<50%), the rate of fouling was still 60
 395 times greater than the hydrothermal leaching of
 396 sulfur, with the catalyst being deactivated in hours.

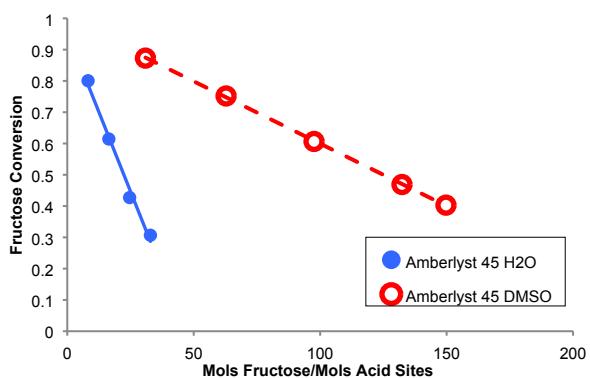
397 When the reactor was run at a high fructose
 398 conversion condition, the HMF selectivity was
 399 initially very low and then increased as the fructose
 400 conversion precipitously dropped. Conditions with
 401 lower fructose conversion lead to improved HMF
 402 selectivity. One possible explanation of this
 403 observation was that on clean, highly acidic
 404 surfaces, the formed HMF strongly adsorbed onto
 405 the surface, resulting in a rapid reduction of
 406 accessible strong acid sites on the catalyst surface.
 407 In turn, the reduction in accessible strong acid sites
 408 led to the rapid reduction in the fructose
 409 conversion. Since the surface became sufficiently
 410 covered with fructose and fructose breakdown
 411 products (e.g., levulinic acid, formic acid, and
 412 humins), it is plausible that the residual acidity
 413 from these organic acids was responsible for the

1
2
3 residual low level production of HMF, despite the
4 catalyst containing only minimal amounts of
5 accessible strong acid sites (Figure 2B).
6
7


8 To test whether a different catalyst would perform
9 better than the polymeric resin, a mesoporous
10 sulfated zirconia was synthesized using the
11 procedure previously described.²² The acidity of
12 this material was determined (via titration) to
13 contain 0.36 mmol/g strong acid sites, which was
14 consistent with reported values. Unfortunately, the
15 sulfated zirconia surface was as susceptible to
16 fouling Amberlyst 45, with nearly the same rate of
17 deactivation (Figure 2A). Additionally, under these
18 conditions, the selectivity towards HMF was much
19 lower than with Amberlyst 45, which may reflect
20 the distribution of acid-base sites typical of sulfated
21 zirconia.
22
23

3.2.2 Reactions in DMSO

24 From the perspective of reaction engineering, the
25 substitution of water with polar aprotic solvents is
26 advantageous for several reasons. Most
27 importantly, as the water content is reduced, the
28 reaction kinetics are accelerated in a non-linear
29 manner along with dramatic improvement in HMF
30 selectivity, with yields in excess of 90% commonly
31 reported.^{6,30} Previous work has shown that fructose
32 dehydration follows a specific acid-catalyzed
33 mechanism that has an inverse kinetic isotope
34 effect when comparing reactions in 5% D₂O vs 5%
35 H₂O. This mechanism depends on the [H₃O⁺] and
36 is therefore highly influenced by the water content
37 of the solvent. Using thin-film HR-MAS NMR, a
38 previous work reported direct observation of
39 increased [H₃O⁺] character with decreasing water
40 content and showed that the acidic protons are
41 localized predominantly within 2 nm of the
42 surface.³¹ The kinetic and selectivity effects
43 between fructose dehydration in water and polar
44 aprotic solvents have been well characterized.
45 Although no direct comparison of the solvent effect
46 on deactivation from fouling has been performed,
47 it is a central factor to consider when deciding
48 whether homogeneous or heterogeneous acid
49 catalysts are most suitable for a particular system.
50
51


52 A direct comparison of deactivation and selectivity
53 (see open circles in Figure 2) demonstrates that the
54 use of DMSO led to far slower deactivation, along
55 with much higher selectivity. Given the dramatic
56 effect on the reaction rate and the more labile
57 nature of DMSO compared to water, the reaction
58 conditions needed to be modified in order to
59 minimize DMSO breakdown while achieving
60 similar initial fructose conversions. For 1 M fructose

469 in DMSO, 85% conversion was achieved at a
470 temperature of 120 °C and flow rate of 0.05 ml/min,
471 which was comparable to the conversion rates in
472 water at 0.20 ml/min and 160 °C. As expected,
473 much higher HMF selectivity (80%) was observed
474 with high fructose conversion (>80%) when the
475 reaction was run in DMSO.
476

477
478
479 **Figure 2.** (A) Conversion and (B) HMF selectivity
480 for 1 M fructose run in PFR with water at 160 °C
481 (solid symbols) and DMSO at 120 °C (open
482 symbols).

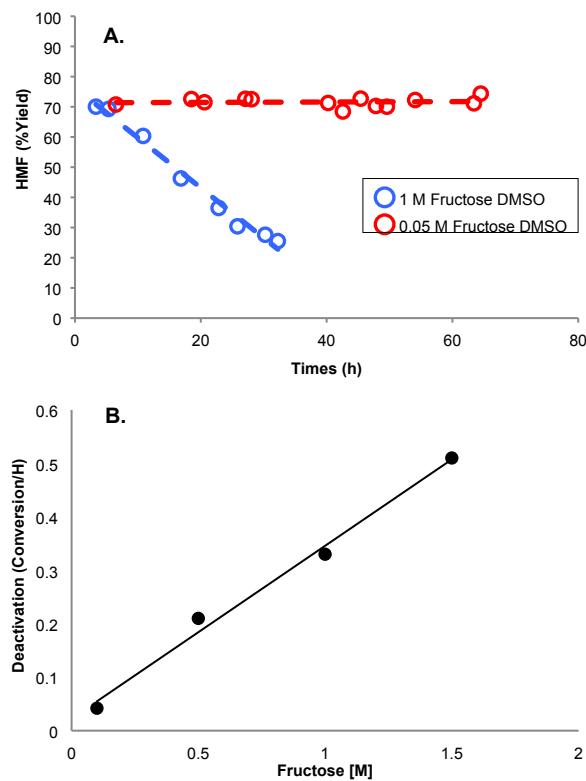
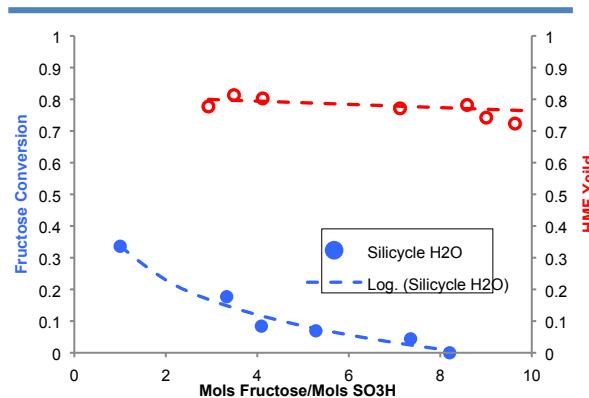

483 To provide a normalized comparison of the
484 deactivation rates of 1 M fructose in DMSO and
485 water, Figure 3 gives the conversion as a function of
486 moles fructose/moles SO₃H, which accounts for the
487 different flow rates. The normalized deactivation
488 rates showed that deactivation was five times
489 slower in DMSO than in water. Essentially, this
490 comparison demonstrates that the deactivation in
491 water occurred in nearly stoichiometric ratios so
492 that fouling was the primary issue in terms of
493 improving catalyst stability. Moreover, substitution
494 of DMSO for water as the solvent was not sufficient
495 to eliminate catalyst fouling with a 1 M fructose
496 feed.

Figure 3. Comparison of catalyst deactivation in H_2O (blue circles) and DMSO (red open circles) normalized to the moles of reactant passed over catalyst bed to the moles of active sites.

3.2.3 Fructose concentration and deactivation rate

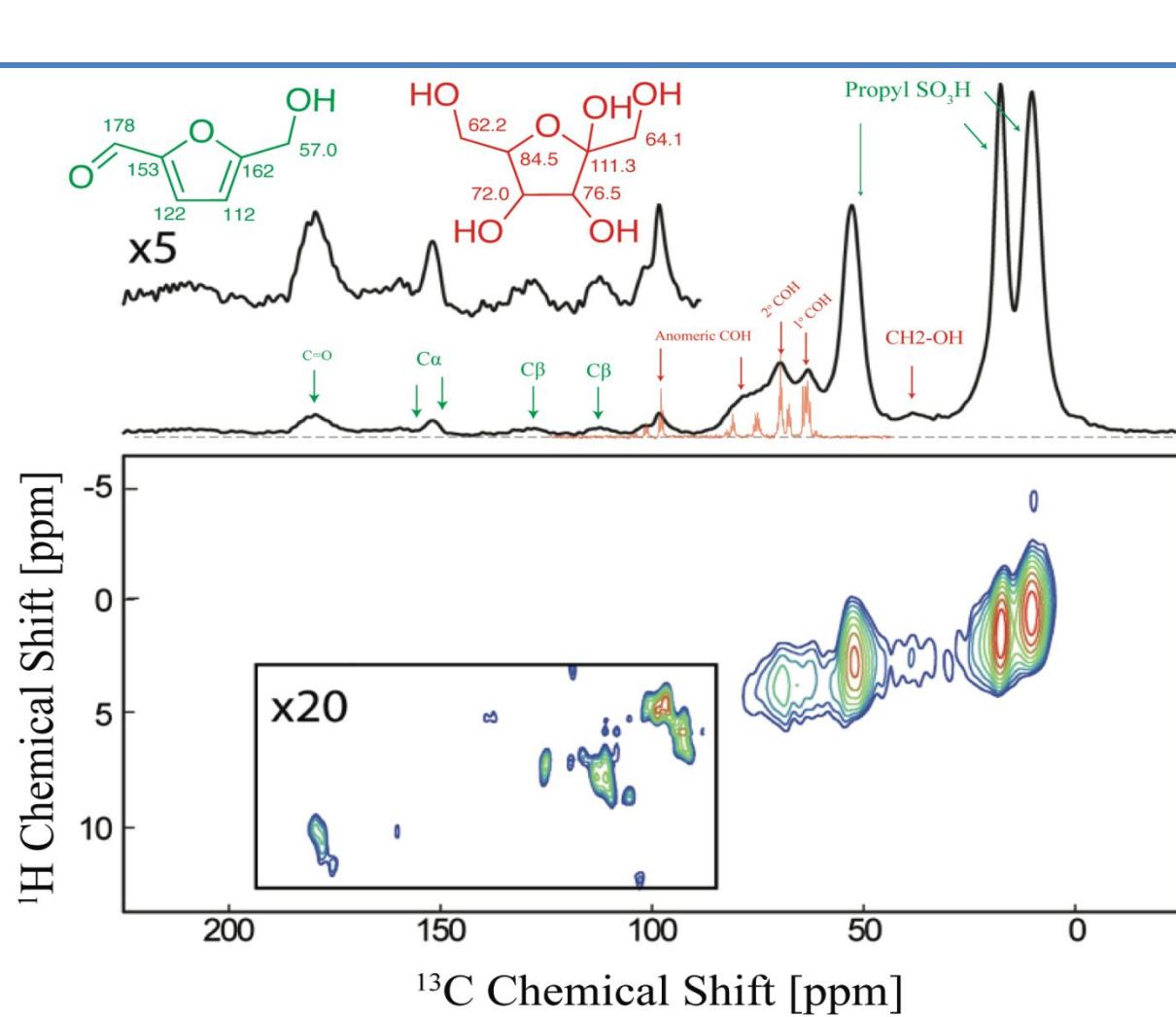
Since the deactivation rate was reduced when the flow rate was increased, a series of experiments were carried out to determine the influence of fructose concentration on the deactivation rate. These experiments were performed to determine whether sufficiently reduced fructose concentration in polar aprotic solvents would lead to stable activity on the time scale of days. Results comparing 1 M and 50 mM fructose reactions in DMSO using the same conditions described previously are shown in Figure 4A. Interestingly, virtually no loss in catalyst activity was observed after 70 h on stream when the fructose concentration was reduced 20-fold from 1 M to 50 mM. This result demonstrated that polar aprotic solvents with dilute fructose feeds can dramatically reduce fouling rates and achieve stable reactor operation for extended periods of time. On the other hand, when water was used as the solvent, no significant reduction in the rate of fouling was observed. Comparing the deactivation rates as a function of fructose concentrations (in water) showed a strong linear trend ($R^2=0.99$, Figure 4B). However, even when the fructose feed concentration was reduced tenfold, the observed deactivation rate of 0.042 h^{-1} was still more than an order of magnitude greater than the rate from sulfur active site breakdown under much more severe hydrothermal conditions.

Figure 4. Comparison of the HMF yield obtained using fructose concentrations of 1 M (open blue circles) and 0.05 M (open red circles) in DMSO at 120°C with a flow rate of 0.05 ml/min (A). The relationship between the deactivation rate and the fructose concentration is shown in (B) for fructose concentrations of 0.1, 0.5, 1.0 and 1.5 M in H_2O reacted at 160°C with a flow rate of 0.2 ml/min .


3.3 Post-mortem characterization of spent catalyst

Post-mortem characterization of deposited materials on spent catalysts can yield valuable insights into the underlying deactivation mechanisms that originate from the formation of surface residues.³²⁻³⁴ Solid-state NMR can provide a comprehensive description of the organic deposits found on these material surfaces. Unlike either vibrational or XPS spectroscopy, NMR peak intensities do not depend on transitional matrix elements and are inherently quantitative in nature.^{35,36} Additionally ^{13}C NMR spectra have excellent resolution over a broad range when compared to XPS spectroscopy, which requires peak-fitting algorithms to deconvolute overlapping peaks. The principal limitation when using ^{13}C NMR to characterize deposited residues on a catalyst post-mortem is the limited signal-to-noise ratio resulting from a relatively low percentage of ^{13}C nuclei in the catalyst material. The most

common approach to improving the signal is through ^{13}C enrichment, as the natural isotopic abundance of ^{13}C is only 1%. However, the cost for gram scale quantities of ^{13}C enriched materials required is often prohibitive.


An alternative to isotope enrichment is hyperpolarization. In particular, dynamic nuclear polarization (DNP)^{37, 38} has been proven a highly effective technique for characterizing surface species in an approach termed DNP surface-enhanced NMR spectroscopy (DNP SENS).^{39, 40} DNP relies on a microwave-induced transfer of magnetization from unpaired electrons (introduced as bi-radical polarizing agents) to nuclear spins.^{41, 42} In practice, ^{13}C hyperpolarization is achieved by first hyperpolarizing the ^1H nuclei and subsequently transferring this magnetization to ^{13}C or other spins using CPMAS or similar methods. DNP SENS can routinely achieve signal to noise improvements that surpass two orders of magnitude, thus, often providing a sensitivity superior to 100% isotope enrichment for ^{13}C .

In addition to obtaining sufficient signal-to-noise ratio, the second hurdle concerns the considerable ^{13}C background signal from the Amberlyst 45 polymer. To circumvent this issue entirely, an analogous set of experiments were run using a commercially available propyl- SO_3H -functionalized porous silica (Silicycle). Given the low intrinsic hydrothermal stability of silica materials, these experiments were run using less severe conditions to limit the breakdown of the silica material itself. To verify that deactivation from deposition was occurring in an analogous fashion on silicycle as with Amberlyst 45, reactions comparing conversion of 50 mM fructose in DMSO and H_2O at 125 °C (normalized to the moles of fructose/moles SO_3H sites) were performed; the results are shown in Figure 5. Under these conditions, deactivation was extremely rapid, with no fructose conversion observed after only 8 moles of fructose per mole of SO_3H had passed over the catalyst. Worth noting is that the catalyst was much more stable when DMSO was the solvent, although, unlike with Amberlyst 45, slow deactivation did occur (0.0051 h^{-1}); this suggested that surface polarity may play an important role in the carbon deposition and warrants further study.

Figure 5: The fructose conversion ratio is plotted as a function of the ratio of fructose to sulfonic acid moieties for dehydration reactions using propyl sulfonic acid functionalized silica “silicycle” in H_2O (blue circles) and DMSO (red circles).

The DNP-enhanced 1D ^{13}C CPMAS and 2D $^{13}\text{C}\{^1\text{H}\}$ PRESTO-HETCOR spectra of the fully deactivated silica material (approximately 48 h TOS) resulting from the reaction of 50 mM fructose in H_2O are shown in Figure 6. Also shown is the reference HR-MAS spectrum of neat ^{13}C enriched fructose impregnated on the silicycle surface. The spectral assignments are summarized in Table 1. Aside from the peaks attributed to surface-bound $\text{O}-\text{Si}-\text{CH}_2-\text{CH}_2-\text{CH}_2\text{SO}_3\text{H}$ groups, the spectra strongly resembled those of native fructose and, to a lesser extent, fructose dehydration products including furans and furan breakdown products (Table 1). We should note that the CH_2 groups in propyl- SO_3H are expected to be represented to a greater extent in the CPMAS spectrum than the quaternary groups of the furanic species or sugar species. Nevertheless, the observed spectra clearly revealed the prominence of propyl- SO_3H groups. This finding was significant as it provided a confirmation that these moieties remained largely intact on the catalyst surface and that hydrolysis of sulfonic acid groups was not the primary cause of the observed deactivation.

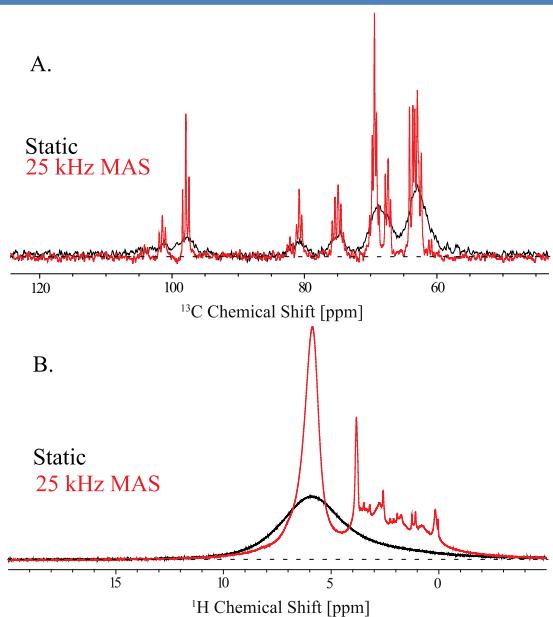
Figure 6: DNP-enhanced ^{13}C CPMAS NMR spectrum of a propyl- SO_3H -silica catalyst with adsorbed carbonaceous residue resulting from the reaction of 50 mM fructose in water at 125 $^{\circ}\text{C}$ for 72 h (top). The HR-MAS ^{13}C NMR spectrum of neat U- ^{13}C -enriched fructose that has been impregnated on the silicycle surface is shown below the DNP-enhanced ^{13}C CPMAS NMR spectrum (red trace). The molecular structures of HMF and fructose are shown, and their expected ^{13}C chemical shifts are indicated. The $^{13}\text{C}\{^1\text{H}\}$ PRESTO-HETCOR spectrum is shown on the bottom. This spectrum only displays correlations between protonated carbon atoms and their attached protons. The assignment of the NMR signals was confirmed by considering the ^{13}C and ^1H isotropic chemical shifts.

666 **Table 1:** Assignment of ^{13}C DNP-SENS NMR

Integration limits (ppm)	Assignment
225-200	Ketone
195-172	Aldehyde/COO
171-157	$\text{C}\alpha\text{-Furan}$
156-146	$\text{C}\alpha\text{-Furan}$
143-123	$\text{C}\beta\text{-Furan}$
121-107	$\text{C}\beta\text{-Furan}$
105-90	$\text{C}2\text{-Fructose}$
88-74	$\text{C}5\text{-Fructose}$
74-67	$\text{C}3/\text{C}4\text{-Fructose}$
67-60	$\text{C}1/\text{C}5\text{-Fructose}$
59-45	$\text{CH}_2\text{SO}_3\text{H}$
44-33	CH_2
25-14	Propyl SO_3H
14-5.5	Propyl SO_3H

667 **3.4 In situ thin-film HR-MAS NMR spectroscopy**

668 Experimental results from the flow reactor
 669 experiments revealed that catalyst deactivation
 670 resulted from the deposition of material onto the
 671 catalyst surface. Deactivation was accelerated when
 672 water was used and slowed with DMSO.
 673 Characterization of the residues on the catalyst post-
 674 mortem using DNP-enhanced ^{13}C solid-state NMR
 675 showed that at moderate temperatures (125 °C), aside
 676 from propyl- SO_3H groups, a large fraction of the
 677 material resonated at a frequency characteristic of
 678 $\text{C}_{\text{alk}}\text{-O-R}$ groups, suggesting that the materials on the
 679 surface consisted predominantly of polymerized,
 680 partially dehydrated fructose along with a fraction of
 681 furanics and other breakdown products of HMF.

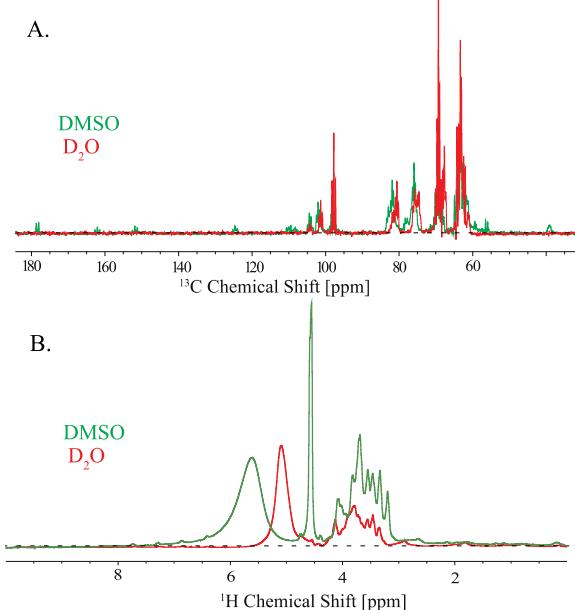

682 One critical question that remained ambiguous, with
 683 only post-mortem data, was the nature of the initial
 684 deposits on the catalyst surface. One plausible
 685 deposition pathway involves fructose initially
 686 undergoing dehydration to form furans, followed by
 687 the furans being absorbed onto the catalyst surface,
 688 and finally these furans serving as seeds for the
 689 subsequent addition of fructose molecules to form a
 690 carbonaceous layer that blocks the acid sites.
 691 Alternatively, one could imagine that, prior to
 692 undergoing dehydration, fructose adsorbs onto the
 693 surface and undergoes polymerization with some
 694 fraction of the polymer undergoing dehydration to
 695 form a furanic component. A third possible
 696 explanation is that both furanics and fructose exhibit
 697 a high affinity for the catalyst surface and
 698 simultaneously deposit to form the carbonaceous

699 layer. To distinguish between these different
 700 scenarios, *In situ* ^{13}C NMR with thin liquid layers
 701 impregnated onto the catalyst surface was used to
 702 obtain a real-time picture of the solid-liquid
 703 interface.^{5, 31, 43, 44}

704 Molecular behavior at solid-liquid interfaces can be
 705 probed using solid-state NMR of solid materials
 706 impregnated with liquid films (1-4 nm liquid
 707 thickness). *In situ* HR-MAS NMR is ideally suited to
 708 study solid-liquid interfaces, as these systems exhibit
 709 molecular dynamics intermediate to those of
 710 isotropic liquids and rigid solids, allowing for high
 711 resolution spectra under moderate MAS frequency.
 712 This approach has been adapted for measuring the
 713 ^{13}C NMR spectra of $\text{U-}^{13}\text{C}$ -enriched fructose dissolved
 714 in D_2O and $d_6\text{-DMSO}$ and impregnated onto a
 715 propyl- SO_3H -functionalized silica. Given the
 716 minimal precedent in the literature, we investigated
 717 the interfacial behavior of the liquid impregnated
 718 into the porous solid by comparing spectra acquired
 719 under static and MAS conditions. ^1H and ^{13}C NMR
 720 spectra acquired under static and 25 kHz MAS are
 721 compared in Figure 7. There was a dramatic
 722 improvement in spectral resolution under MAS. For
 723 example, ^{13}C - ^{13}C *J* couplings could be readily resolved
 724 in the ^{13}C NMR spectra and many peaks in the ^1H
 725 NMR spectra had nearly solution-like line width (ca.
 726 20 Hz FWHM). The substantial improvement in
 727 resolution under application of MAS suggested that
 728 the solvent and fructose molecules within the thin
 729 liquid layer had hindered rotation and diffusion. In
 730 order for MAS to yield improved resolution, the
 731 correlation time of the molecules should typically be
 732 longer than the rotor period (inverse of the MAS
 733 frequency).^{45, 46} MAS will also help to narrow the lines
 734 by averaging susceptibility and magnetic field
 735 inhomogeneity over the sample.

736 Considering the dramatic effects of the solvent on
 737 the reaction rates and selectivity, the manner in
 738 which the solvent influenced the HR-MAS ^{13}C and ^1H
 739 NMR spectra of fructose was investigated by
 740 impregnating idealized 2 nm layers of 1 M fructose in
 741 either $d_6\text{-DMSO}$ or D_2O (0.66 uL/mg) onto propyl-
 742 SO_3H -functionalized silica. The measurements were
 743 conducted prior to the fructose undergoing any
 744 significant reaction. The ^{13}C (Figure 8A) and ^1H
 745 (Figure 8B) NMR spectra obtained with D_2O and $d_6\text{-}$
 746 DMSO showed distinct differences. First, a
 747 comparison of ^{13}C NMR spectra showed that fructose
 748 in $d_6\text{-DMSO}$ contained several peaks that were
 749 partially shifted to higher frequency along with
 750 broadening at the C2 (103 ppm) C3 (76 ppm) and C4
 751 (82 ppm) positions. This shift of the C-OH carbons
 752 to a higher chemical shift in $d_6\text{-DMSO}$ suggested a
 753 greater degree of protonation of hydroxyls resulting

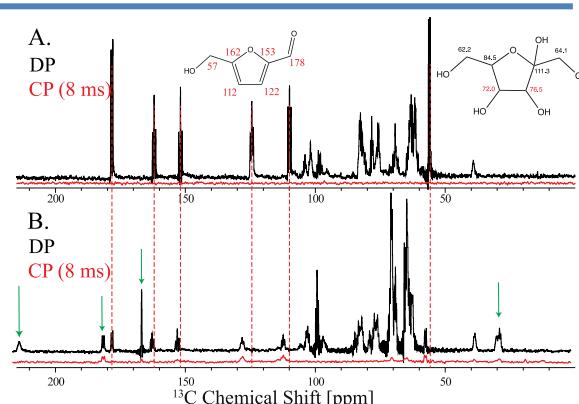
1
2
3 from increased $[\text{H}_3\text{O}^+]$ due to the lower water
4 concentration. This difference was more obvious
5 when comparing ^1H spectra (Figure 8B), which show
6 that the major peak comprising the C-OH- H_2O - H_3O^+
7 hydrogen bonded network shifted by almost 1 ppm in
8 d_6 -DMSO, when compared to D_2O . An additional
9 surprise was that in d_6 -DMSO, some HMF had begun
10 to form without any external heat being applied
11 beyond the frictional heating from 25 kHz MAS (ca.
12 $+30^\circ\text{C}$).
13

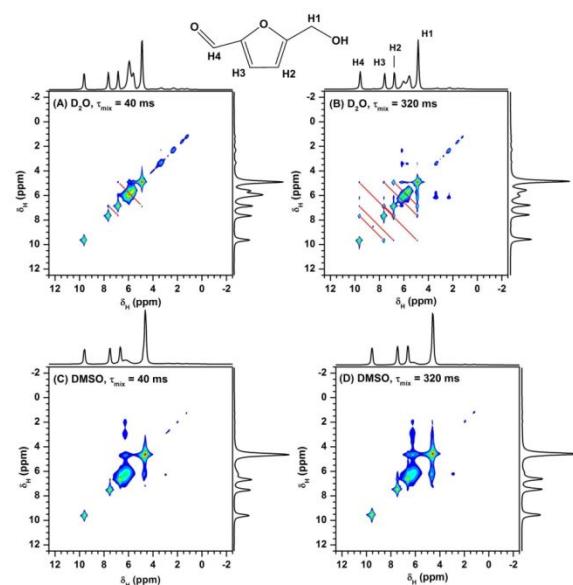


765
766 **Figure 7:** HR-MAS ^{13}C (A) and ^1H (B) NMR of
767 uniformly ^{13}C enriched fructose (98%) in DMSO
768 impregnated with an idealized 2 nm liquid layer
769 ($0.66\mu\text{l}/\text{mg}$) onto propyl- SO_3H -functionalized silica
770 gel. Comparison of the static (black line) vs. MAS
771 with 25 kHz frequency (red line) are shown for ^{13}C (A)
772 and ^1H (B).

773 In situ measurements were made by heating the
774 stator to 50°C , which, along with the ca. 30°C
775 temperature increase from frictional heating, raised
776 the sample temperature to ca. 80°C (Figure 9). As
777 expected, the samples in DMSO reacted much more
778 rapidly than in D_2O , and showed significant
779 formation of HMF after a relatively brief period (e.g.
780 $< 1\text{ h}$). Recognizing that the primary goal of these
781 measurements was to probe the sequence in which
782 materials were being deposited onto the catalyst
783 surface, NMR was used to directly compare the
784 relative molecular mobility of different species. This
785 was accomplished by comparing ^{13}C NMR spectra
786 measured via direct polarization (herein referred to
787 simply as MAS) and ^1H - ^{13}C cross-polarization
788 (CPMAS). The CP transfers are primarily mediated

789 through ^1H - ^{13}C heteronuclear dipolar couplings,
790 which are motionally averaged to zero for molecules
791 that were undergoing rapid isotropic motions.
792 Therefore, the CPMAS spectra primarily showed
793 NMR signals from immobilized molecules or
794 molecules with restricted rotation. On the other
795 hand, the MAS NMR spectra were expected to show
796 NMR signals from both mobile and immobile
797 molecules, although the former should give rise to
798 sharper NMR signals and be over-represented in the
799 MAS NMR spectrum.


800 Prior to the reaction of fructose, no ^{13}C CPMAS NMR
801 signal was observed for fructose in either d_6 -DMSO
802 or D_2O . However, following several hours of reaction,
803 clear differences were observed in NMR spectra
804 obtained from the d_6 -DMSO and D_2O samples. As
805 expected, HMF was formed much more rapidly in
806 DMSO, and with nearly 100% selectivity.
807 Furthermore, the HMF formed in DMSO was highly
808 mobile, as evidenced by the lack of any detectable
809 CPMAS ^{13}C NMR signal, even with a long CP contact
810 time of 8 ms (Figure 9A). The sample with D_2O
811 showed very different behavior. After allowing the
812 D_2O sample to react overnight, a significant CPMAS
813 ^{13}C NMR signal was observed with a CP contact time
814 of only 3 ms. This strongly suggested that a
815 significant fraction of the product molecules in D_2O
816 was immobilized on the silica surface. The
817 comparable intensity of the CPMAS and MAS ^{13}C
818 NMR signals of the dehydration products and
819 fructose suggested that the deposition was initiated
820 by the adsorption of the dehydrated products onto
821 the catalyst surface, which was then followed by
822 additional polymerization with fructose molecules to
823 form a carbonaceous layer.


Figure 8: Comparison of the solvent effect with HR-MAS NMR of uniformly ^{13}C -enriched fructose (98%) impregnated with an idealized 2 nm liquid layer (0.66 $\mu\text{l}/\text{mg}$) onto propyl- SO_3H functionalized silica gel. Shown in (A) and (B) are ^{13}C and ^1H NMR spectra, respectively, taken with D_2O (red) and DMSO (green) as solvents.

Finally, the effect of the solvent on the molecular mobility of purified HMF on the surface, prior to any reaction, was studied using ^1H HR-MAS NOESY experiment. Due to hindered motion of the molecules at the catalyst surface the primary source of the cross-peaks is from zero-quantum ^1H spin diffusion. This process is accelerated when the mobility is reduced and as such less mobile species should feature a faster build-up of cross-peaks. The catalysts were impregnated with 1M HMF (natural abundance ^{13}C) in D_2O or d_6 -DMSO. 2D ^1H NOESY NMR spectra were acquired with spin diffusion mixing times $\tau_{\text{mix}} = 40$ ms or 320 ms (Figure 10). We note that due to the preponderance of HMF on the surface, the spectra are dominated by resonances H1-H4 attributed to HMF (see the inset in Figure 10). In addition, the acidic ^1H in propyl- SO_3H groups are most likely exchanged with deuterium. Importantly, only the spectra taken in D_2O show the intramolecular ^1H - ^1H correlations within the HMF molecule (represented by red lines in Figure 10). Specifically, in the D_2O -impregnated sample, H2-H3 and H3-H4 correlation signals were observed in the 2D ^1H NOESY spectrum with $\tau_{\text{mix}} = 40$ ms. When τ_{mix} was extended to 320 ms, additional correlation signals (H1-H2, H1-H3, H1-H4, and H2-H4) appeared. In contrast, none of these correlations were detected

in the 2D ^1H NOESY spectra of the DMSO-impregnated sample, which suggests that HMF molecules are less mobile and interact far more strongly with the catalyst surface in D_2O than in d_6 -DMSO. This result is consistent with the other experimental data showing much stronger affinity for molecules to adsorb on the surface and rapid formation of a carbonaceous layer when water was used as the solvent.

Figure 9: In situ HR-MAS ^{13}C NMR of fructose impregnated onto propyl- SO_3H -functionalized silica gel. Comparison of CPMAS (red) and MAS (black) spectra of samples including a 2 nm thick layer of DMSO (A) and D_2O (B). The fructose concentration was 2 M. The NMR spectra are shown after reaction for 12 hours at 80 °C. Dashed red lines highlight the peak positions from HMF and show that HMF is principally formed in DMSO. Green arrows indicate the HMF breakdown products formic and levulinic acid.

883 **Figure 10:** HR-MAS NOESY ^1H NMR of HMF
 884 impregnated onto propyl- SO_3H -functionalized
 885 silica gel. (A) D_2O , $\tau_{\text{mix}} = 40$ ms; (B) D_2O , $\tau_{\text{mix}} = 320$
 886 ms; (C) DMSO $\tau_{\text{mix}} = 40$ ms; and (D) DMSO, $\tau_{\text{mix}} =$
 887 320 ms.

4. Conclusions

To comprehensively investigate solid acid hydrothermal stability, a number of commercially available sulfonated materials were surveyed, including state-of-the-art resins under conditions without any reactant present. As expected, nearly all of these materials showed very poor stability, except for Amberlyst 45 (a halogenated cross-linked resin), which was significantly more resistant to hydrothermal breakdown of the sulfonic acid sites. Deactivation, however, occurred two orders of magnitude faster when a reactant was introduced to the reactor. The results clearly demonstrated that the dominant mode of catalyst deactivation for these reactions run under aqueous conditions is from fouling, and that fouling should therefore be an integral consideration in efforts to improve the hydrothermal stability of solid acid catalysts used in the conversion of oxygenated molecules.

Additionally, it was demonstrated that one viable route to overcoming catalyst fouling was the use of use polar aprotic solvents with dilute feed streams. Moreover, when comparing the stability of different solid acid catalysts, choice of support materials was found to play a significant role, with polymeric materials displaying excellent stability, while functionalized silicas deactivated relatively rapidly.

For solid acid catalysts to be industrially useful for dehydration of polyhydric alcohols in water, the catalyst will either require methods to regenerate the catalyst or methods to prevent humin formation altogether. A route demonstrated here to accomplish this is through engineering the support material along with the solvent system to allow for reactants and products to easily desorb from the surface.

■ AUTHOR INFORMATION

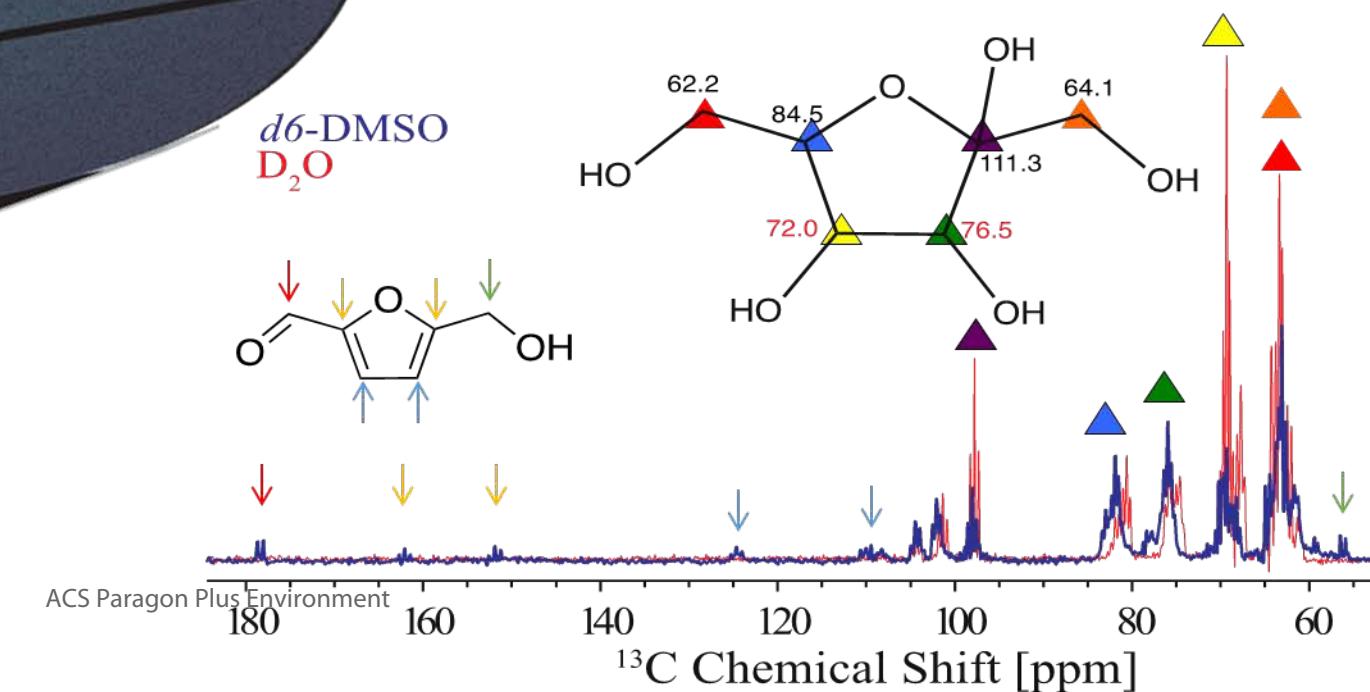
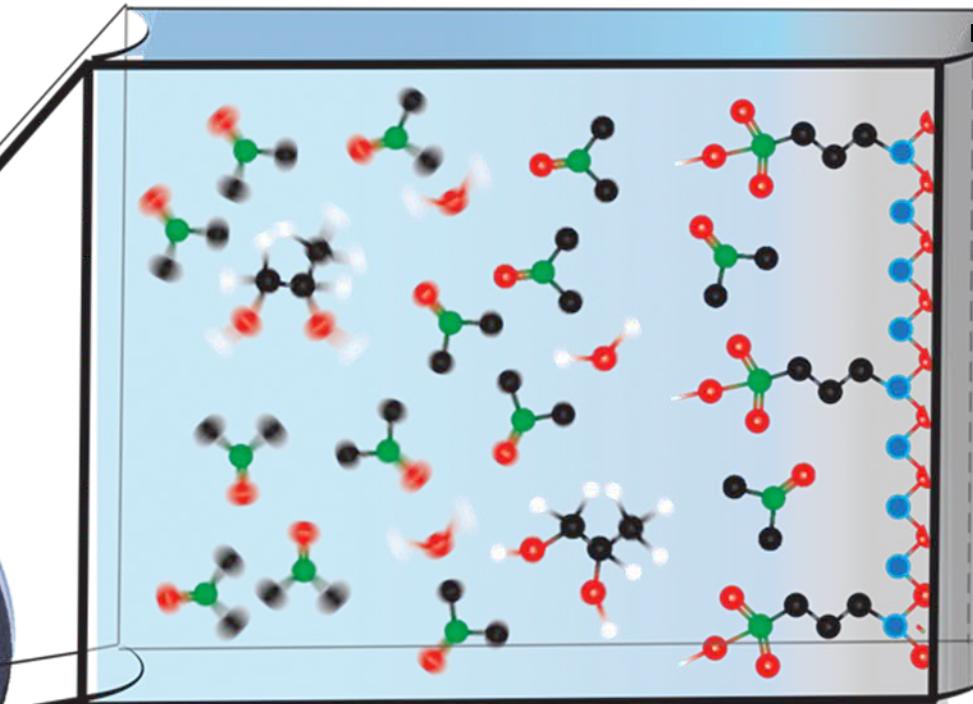
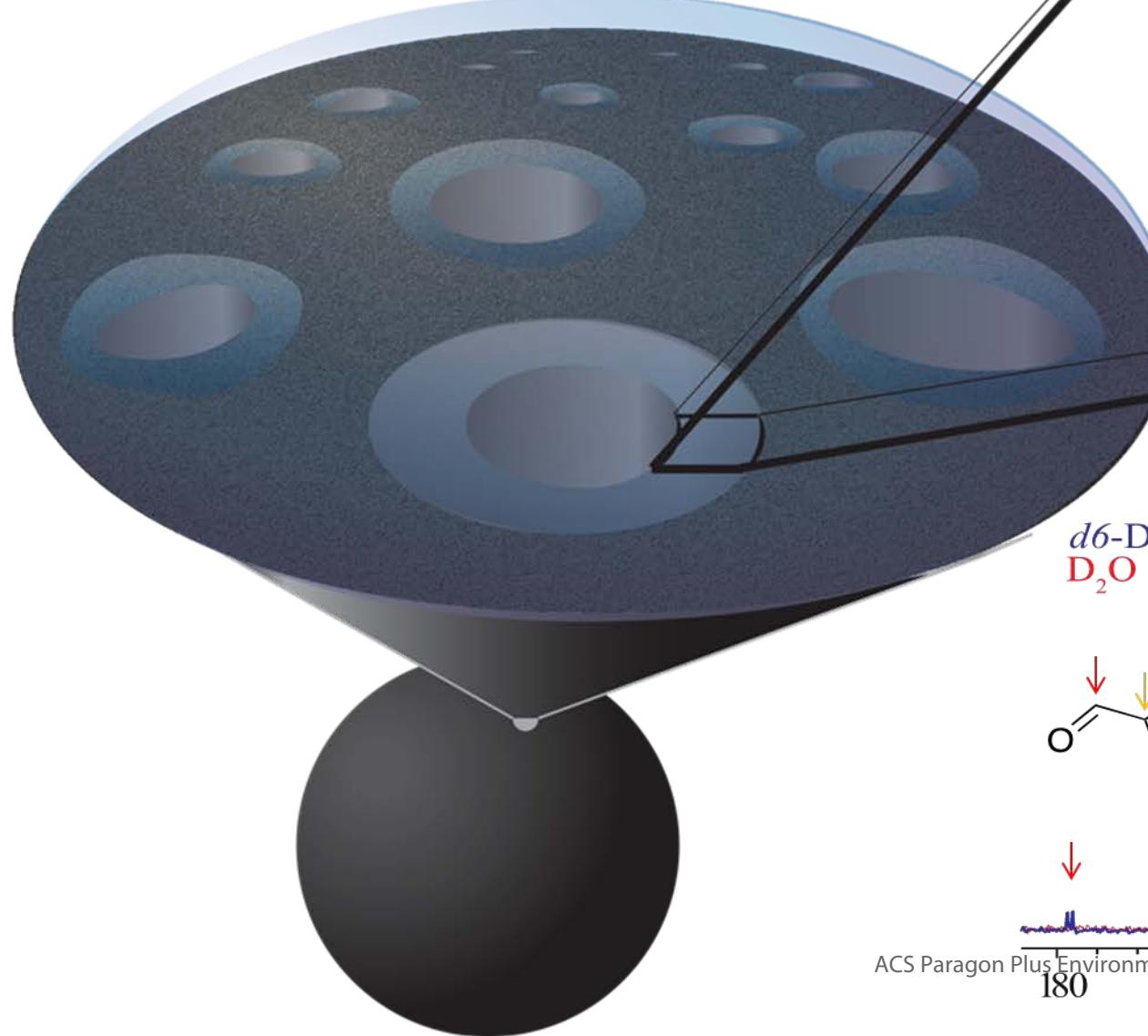
bshanks@iastate.edu

■ ACKNOWLEDGEMENTS

The authors would like to acknowledge NSF Award number EEC-0813570 for generously supporting this work. At Ames Laboratory, this research was supported by the U.S. DOE, Office of Science, Office of BES, Division of Chemical Sciences,

936 Geosciences, and Biosciences. Ames Laboratory is
 937 operated for the DOE by Iowa State University
 938 under Contract No. DE-AC02-07CH11358.

■ REFERENCES




- 941 (1) Gilkey, M.J.; Mironenko, A.V.; Vlachos, D.G.;
 942 Xu, B. Adipic acid production via metal-free
 943 selective hydrogenolysis of biomass-derived
 944 tetrahydrofuran-2, 5-dicarboxylic acid. *ACS Catal.*
 945 **2017**, *7*, 6619-6634.
- 946 (2) Xie, J.; Duan, P.; Kaylor, N.; Yin, K.; Huang, B.;
 947 Schmidt-Rohr, K.; Davis, R.J. Deactivation of
 948 Supported Pt Catalysts during Alcohol Oxidation
 949 Elucidated by Spectroscopic and Kinetic Analyses.
 950 *ACS Catal.* **2017**, *7*, 6745-6756.
- 951 (3) Lopez-Ruiz, J.A.; Cooper, A.R.; Li, G.; Albrecht,
 952 K.O. Enhanced Hydrothermal Stability and
 953 Catalytic Activity of $\text{La}_x\text{Zr}_y\text{O}_z$ Mixed Oxides for the
 954 Ketonization of Acetic Acid in the Aqueous
 955 Condensed Phase. *ACS Catal.* **2017**, *7*, 6400-6412.
- 956 (4) Donoeva, B.; Masoud, N.; de Jongh, P.E.
 957 Carbon Support Surface Effects in the Gold-
 958 Catalyzed Oxidation of 5-Hydroxymethylfurfural.
 959 *ACS Catal.* **2017**, *7*, 4581-4591.
- 960 (5) Qi, L.; Alamillo, R.; Elliott, W.A.; Andersen, A.;
 961 Hoyt, D.W.; Walter, E.D.; Han, K.S.; Washton,
 962 N.M.; Rioux, R.M.; Dumesic, J.A.; Scott, S.L.
 963 Operando Solid-State NMR Observation of Solvent-
 964 Mediated Adsorption-Reaction of Carbohydrates in
 965 Zeolites. *ACS Catal.* **2017**, *7*, 3489-3500.
- 966 (6) Mellmer, M.A.; Sener, C.; Gallo, J.M.R.;
 967 Luterbacher, J.S.; Alonso, D.M.; Dumesic, J.A.
 968 Solvent effects in acid-catalyzed biomass conversion
 969 reactions. *Angew. Chem. Int. Ed.* **2014**, *53*, 11872-
 970 11875.
- 971 (7) Seemala, B.; Cai, C.M.; Wyman, C.E.;
 972 Christopher, P. Support Induced Control of Surface
 973 Composition in Cu-Ni/TiO₂ Catalysts Enables High
 974 Yield Co-Conversion of HMF and Furfural to
 975 Methylated Furans. *ACS Catal.* **2017**, *7*, 4070-4082.
- 976 (8) Tucker, M.H.; Crisci, A.J.; Wigington, B.N.;
 977 Phadke, N.; Alamillo, R.; Zhang, J.; Scott, S.L.;
 978 Dumesic, J.A. Acid-Functionalized SBA-15-Type
 979 Periodic Mesoporous Organosilicas and Their Use
 980 in the Continuous Production of 5-
 981 Hydroxymethylfurfural. *ACS Catal.* **2012**, *2*, 1865-
 982 1876.
- 983 (9) Nguyen, H.; Xiao, N.; Daniels, S.; Marcella, N.;
 984 Timoshenko, J.; Frenkel, A.; Vlachos, D.G. Role of
 985 Lewis and Brønsted Acidity in Metal Chloride
 986 Catalysis in Organic Media: Reductive Etherification
 987 of Furanics. *ACS Catal.* **2017**, *7*, 7363-7370.
- 988 (10) Brown, R.C., *Biorenewable Resources: Engineering New Products from Agriculture*. 2003:
 989 Blackwell Publishing.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

991 (11) Akbar, J.; Massey, S. Kinetics and mechanism
992 of thermal degradation of pentose- and hexose-
993 based carbohydrate polymers. *R. Carbohydrate*
994 *Polym.* **2012**, *90*, 1386-1393.
995 (12) Yaylayan, V.A.; Keyhani, A. Carbohydrate and
996 Amino Acid Degradation Pathways in L-
997 Methionine/d-[¹³C] Glucose Model Systems. *J. Agric.*
998 *Food Chem.* **2001**, *49*, 800-803.
999 (13) Adams, A.; Tehrani, K.A.; Kersiene, M.;
1000 Venskutonis, R.; De, K.N. Characterization of Model
1001 Melanoidins by the Thermal Degradation Profile. *J.*
1002 *Agric. Food Chem.* **2003**, *51*, 4338-4343.
1003 (14) Pham, H.N.; Anderson, A.E.; Johnson, R.L.;
1004 Schwartz, T.J.; O'Neill, B.J.; Duan, P.; Schmidt-Rohr,
1005 K.; Dumesic, J.A.; Datye, A.K. Carbon Overcoating
1006 of Supported Metal Catalysts for Improved
1007 Hydrothermal Stability. *ACS Catal.* **2015**, *5*, 4546-
1008 4555.
1009 (15) Jongerius, A.L.; Copeland, J.R.; Foo, G.S.;
1010 Hofmann, J.P.; Bruijnincx, P.C.A.; Sievers, C.;
1011 Weckhuysen, B.M. Stability of Pt/ γ -Al₂O₃ Catalysts
1012 in Lignin and Lignin Model Compound Solutions
1013 under Liquid Phase Reforming Reaction Conditions.
1014 *ACS Catal.* **2013**, *3*, 464-473.
1015 (16) Ravenelle, R.M.; Copeland, J.R.; Kim, W.-G.;
1016 Crittenden, J.C.; Sievers, C. Structural Changes of γ -
1017 Al₂O₃-Supported Catalysts in Hot Liquid Water.
1018 *ACS Catal.* **2011**, *1*, 552-561.
1019 (17) Nielsen, M.; Brogaard, R.Y.; Falsig, H.; Beato,
1020 P.; Swang, O.; Svelle, S. Kinetics of Zeolite
1021 Dealumination: Insights from H-SSZ-13. *ACS Catal.*
1022 **2015**, *5*, 7131-7139.
1023 (18) Gardner, D.W.; Huo, J.; Hoff, T.C.; Johnson,
1024 R.L.; Shanks, B.H.; Tessonnier, J.-P. Insights into the
1025 Hydrothermal Stability of ZSM-5 under Relevant
1026 Biomass Conversion Reaction Conditions. *ACS*
1027 *Catal.* **2015**, *5*, 4418-4422.
1028 (19) Anderson, J.M.; Johnson, R.L.; Schmidt-Rohr,
1029 K.; Shanks, B.H. Chemical Structure and
1030 Hydrothermal Deactivation of Moderate-
1031 Temperature Carbon Materials with Acidic SO₃H
1032 Sites. *Carbon* **2014**, *74*, 333-345.
1033 (20) Long, W.; Jones, C.W. Hybrid Sulfonic Acid
1034 Catalysts Based on Silica-Supported Poly(Styrene
1035 Sulfonic Acid) Brush Materials and Their
1036 Application in Ester Hydrolysis. *ACS Catal.* **2011**, *1*,
1037 674-681.
1038 (21) Siril, P.F.; Cross, H.E.; Brown, D.R. New
1039 polystyrene sulfonic acid resin catalysts with
1040 enhanced acidic and catalytic properties. *J. Mol.*
1041 *Catal. A: Chem.* **2008**, *279*, 63-68.
1042 (22) Osatiashiani, A.; Lee, A.F.; Granollers, M.;
1043 Brown, D.R.; Olivi, L.; Morales, G.; Melero, J.A.;
1044 Wilson, K. Hydrothermally Stable, Conformal,
1045 Sulfated Zirconia Monolayer Catalysts for Glucose
1046 Conversion to 5-HMF. *ACS Catal.* **2015**, *5*, 4345-4352.
1047 (23) Ide, M.S.; Falcone, D.D.; Davis, R.J. On the
1048 deactivation of supported platinum catalysts for
1049 selective oxidation of alcohols. *J. Catal.* **2014**, *311*,
1050 295-305.
1051 (24) Morales, G.; Osatiashiani, A.; Hernandez, B.;
1052 Iglesias, J.; Melero, J.A.; Paniagua, M.; Brown, D.R.;
1053 Granollers, M.; Lee, A.F.; Wilson, K. Conformal
1054 sulfated zirconia monolayer catalysts for the one-
1055 pot synthesis of ethyl levulinate from glucose.
1056 *Chem. Commun.* **2014**, *50*, 11742-11745.
1057 (25) Sauvée, C.; Rosay, M.; Casano, G.; Aussénac,
1058 F.; Weber, R.T.; Ouari, O.; Tordo, P. Highly
1059 efficient, water-soluble polarizing agents for
1060 dynamic nuclear polarization at high frequency.
1061 *Angew. Chem. Int. Ed.* **2013**, *52*, 10858-10861.
1062 (26) Zhao, X.; Hoffbauer, W.; Schmedt auf der
1063 Günne, J.; Levitt, M.H. Heteronuclear polarization
1064 transfer by symmetry-based recoupling sequences
1065 in solid-state NMR. *Solid State Nucl. Magn. Reson.*
1066 **2004**, *26*, 57-64.
1067 (27) Sardo, M.; Siegel, R.; Santos, S.M.; Rocha, J.;
1068 Gomes, J.R.B.; Mafra, L. Combining multinuclear
1069 high-resolution solid-state MAS NMR and
1070 computational methods for resonance assignment
1071 of glutathione tripeptide. *J. Phys. Chem. A* **2012**, *116*,
1072 6711-6719.
1073 (28) Bielecki, A.; Kolbert, A.C.; Levitt, M.H.
1074 Frequency-switched pulse sequences: Homonuclear
1075 decoupling and dilute spin NMR in solids. *Chem.*
1076 *Phys. Lett.* **1989**, *155*, 341-346.
1077 (29) Nolan, M.R.; Sun, G.; Shanks, B.H. On the
1078 selective acid-catalysed dehydration of 1,2,6-
1079 hexanetriol. *Catal. Sci. Tech.* **2014**, *4*, 2260-2266.
1080 (30) Zhang, J.; Das, A.; Assary, R.S.; Curtiss, L.A.;
1081 Weitz, E. A combined experimental and
1082 computational study of the mechanism of fructose
1083 dehydration to 5-hydroxymethylfurfural in
1084 dimethylsulfoxide using Amberlyst 70, PO₄³⁻/niobic
1085 acid, or sulfuric acid catalysts. *Appl. Catal. B:*
1086 *Environ.* **2016**, *181*, 874-887.
1087 (31) Johnson, R.L.; Hanrahan, M.P.; Mellmer, M.;
1088 Dumesic, J.A.; Rossini, A.J.; Shanks, B.H. Solvent-
1089 Solid Interface of Acid Catalysts Studied by High
1090 Resolution MAS NMR. *J. Phys. Chem. C* **2017**, *121*,
1091 17226-17234.
1092 (32) Schwartz, T.J.; Johnson, R.L.; Cardenas, J.;
1093 Okerlund, A.; Da Silva, N.A.; Schmidt-Rohr, K.;
1094 Dumesic, J.A. Engineering catalyst
1095 microenvironments for metal-catalyzed
1096 hydrogenation of biologically derived platform
1097 chemicals. *Angew. Chem. Int. Ed.* **2014**, *53*, 12718-
1098 12722.

1
2
3 (33) Johnson, R.L.; Perras, F.A.; Kobayashi, T.;
4 Schwartz, T.J.; Dumesic, J.A.; Shanks, B.H.; Pruski,
5 M. Identifying Low-Coverage Surface Species on
6 Noble Metal Nanoparticles by DNP-NMR. *Chem.*
7 *Commun.* **2016**, *52*, 1859-1862.
8 (34) Perras, F.A.; Padmos, J.D.; Johnson, R.L.;
9 Wang, L.-L.; Schwartz, T.J.; Kobayashi, T.; Horton,
10 J.H.; Dumesic, J.A.; Shanks, B.H.; Johnson, D.D.;
11 Pruski, M. Characterizing Substrate-Surface
12 Interactions on Alumina-Supported Metal Catalysts
13 by DNP-Enhanced Double-Resonance NMR
14 Spectroscopy. *J. Amer. Chem. Soc.* **2017**, *139*, 2702-
15 2709.
16 (35) Johnson, R.L.; Schmidt-Rohr, K. Quantitative
17 solid-state ^{13}C NMR with signal enhancement by
18 multiple cross polarization. *J. Magn. Reson.* **2014**,
19 239, 44-49.
20 (36) Duan, P.; Schmidt-Rohr, K. Composite-pulse
21 and partially dipolar dephased multiCP for
22 improved quantitative solid-state ^{13}C NMR. *J. Magn.*
23 *Reson.* **2017**, *285*, 68-78.
24 (37) Maly, T.; Debelouchina, G.T.; Bajaj, V.S.; Hu,
25 K.-N.; Joo, C.-G.; Mak-Jurkauskas, M.L.; Sirigiri, J.R.;
26 van der Wel, P.C.A.; Herzfeld, J.; Temkin, R.J.;
27 Griffin, R.G. Dynamic nuclear polarization at high
28 magnetic fields. *J. Chem. Phys.* **2008**, *128*, 052211 (1-
29 19).
30 (38) Ni, Q.Z.; Daviso, E.; Can, T.V.; Markhasin, E.;
31 Jawla, S.K.; Swager, T.M.; Temkin, R.J.; Herzfeld, J.;
32 Griffin, R.G. High frequency dynamic nuclear
33 polarization. *Acc. Chem. Res.* **2013**, *46*, 1933-1941.
34 (39) Lesage, A.; Lelli, M.; Gajan, D.; Caporini,
35 M.A.; Vitzthum, V.; Miéville, P.; Alauzun, J.;
36 Roussey, A.; Thieuleux, C.; Mehdi, A.; Bodenhausen,
37 G.; Coperet, C.; Emsley, L. Surface Enhanced NMR
38 Spectroscopy by Dynamic Nuclear Polarization. *J.*
39 *Amer. Chem. Soc.* **2010**, *132*, 15459-15461.
40 (40) Rossini, A.J.; Zagdoun, A.; Lelli, M.; Lesage,
41 A.; Copéret, C.; Emsley, L. Dynamic Nuclear
42 Polarization Surface Enhanced NMR Spectroscopy.
43 *Acc. Chem. Res.* **2013**, *46*, 1942-1951.
44 (41) Song, C.; Hu, K.-N.; Joo, C.-G.; Swager, T.M.;
45 Griffin, R.G. TOTAPOL: A Biradical Polarizing
46 Agent for Dynamic Nuclear Polarization
47 Experiments in Aqueous Media. *J. Amer. Chem. Soc.*
48 **2006**, *128*, 11385-11390.
49 (42) Hu, K.-N.; Yu, H.-h.; Swager, T.M.; Griffin,
50 R.G. Dynamic nuclear polarization with biradicals. *J.*
51 *Amer. Chem. Soc.* **2004**, *126*, 10844-10845.
52 (43) Chen, K.; Kelsey, J.; White, J.L.; Zhang, L.;
53 Resasco, D. Water Interactions in Zeolite Catalysts
54 and Their Hydrophobically Modified Analogues.
55 *ACS Catal.* **2015**, *5*, 7480-7487.
56 (44) Chen, K.; Damron, J.; Pearson, C.; Resasco,
57 D.; Zhang, L.; White, J.L. Zeolite Catalysis: Water
58
59
60

1154 Can Dramatically Increase or Suppress Alkane C-H
1155 Bond Activation. *ACS Catal.* **2014**, *4*, 3039-3044.
1156 (45) Sarkar, R.; Mainz, A.; Busi, B.; Barbet-Massin,
1157 E.; Kranz, M.; Hofmann, T.; Reif, B. Immobilization
1158 of soluble protein complexes in MAS solid-state
1159 NMR: Sedimentation versus viscosity. *Solid State*
1160 *Nucl. Magn. Reson.* **2016**, *76-77*, 7-14.
1161 (46) Mainz, A.; Jehle, S.; van Rossum, B.J.;
1162 Oschkinat, H.; Reif, B. Large protein complexes with
1163 extreme rotational correlation times investigated in
1164 solution by magic-angle-spinning NMR
1165 spectroscopy. *J. Amer. Chem. Soc.* **2009**, *131*, 15968-
1166 15969.
1167
1168

