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2 Motivation: extreme deformation and fragmentation

Sea ice dynamics for climate modeling Powder compaction for energetic materials
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• Mesh-based methods: expensive for evolving topology

• Mesh-free methods: not well-suited for interfaces
• DEM: naturally suited for granular systems, what about deformation/fracture?



3 Discrete element method (DEM)

• Molecular-dynamics like method, elements are rigid individual particles

• Explicitly integrate Fi = miai, Ti = Lpi; i = , Fi = Fi(r1  r2,..., rN)
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4  DEM scope

• Well-established for (coarse) granular materials

4 challenges remain with contact model calibration

• Bonded DEM: natural choice for discontinuous materials: cementitious materials
(concrete, geomaterials), particulate composites, etc.

• What about homogeneous materials?

Han et al, 13th LS-DYNA Users Conference



5 Bonded DEM for continuum mechanics

Challenges:

• Bond/contact model takes the place of a constitutive model:
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• Difficult to parametrize: material property bond parameters?

• Mesh resolution, element size/shape distribution can affect bond parametrization
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6 Bonded DEM for modeling sea ice mechanics

• Sea ice covers —5% of global surface: dynamics have a significant impact on
climate

Current continuum sea ice models lose validity at high resolution

• Sea ice as a granular 2D material?
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7 Bonded DEM for modeling sea ice mechanics

• Goal: simulate global scale, 100+ years

• Circular elements instead of polygonal, interpolate quantities to grid

• Elements phenomenological, not individual floes

• Fewer elements, lower stiffness

Coupled to ocean, air currents, thermodynamics

Ice concentration



8 Bonded DEM for modeling sea ice mechanics

Adaptation of contact model developed by Hopkins Geophys Res 1996):
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9 Illustration of Hopkins contact model
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10 Bonded DEM for sea ice mechanics: preliminary results

Uniaxial tension

(well beyond yield):
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11 Powder compaction (Sandia LDRD, PI Lechmanl

Goal: produce realistic mesostructures of powder
compacts
First step: loose powder packing

Voronoi tesslation

MI*

Single particle (voxelated

representation)

Overlapping spheres representation

drnin is the smallest sphere diameter allowed,

Ns is the number of spheres
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DEM simulations to generate
loose packings



12 Conclusions

DEM is a natural choice for direct simulation of
granular/discontinuous/cementitious materials

Phenomenological extension to broader class of materials is being
investigated

• Challenges with calibration and verification of bond/contact model

• Mesh and geometry dependence remains a challenge

• Key advantages: easily captures fragmentation and subsequent dynamics

Hybrid methods (e.g. DEM + FEM/peridynamics)?

Damage evaluation: bulk response, but also statistics of damage spatial
distribution


