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Data-informed Physics-Based Predictions
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A Deterministic Inverse Problem

Given a deterministic observation, Q, find A € A such that Q(\) = Q.
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A Deterministic Inverse Problem

£

Given a deterministic observation, Q, find A € A such that Q(\) =

@ Solutions may not be unique without additional assumptions.

@ Requires solving several deterministic forward problems.

Tim Wildey (tmwilde@sandia.gov) Dimension Reduction for SIPs SIAM CSE



A Stochastic Inverse Problem

Problem

Given a deterministic observation, @ and an assumed noise model, find the
parameters that are most likely to have produced the data.
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A Stochastic Inverse Problem

- - Model -I-//A\\- .

Problem

Given a deterministic observation, @ and an assumed noise model, find the
parameters that are most likely to have produced the data.

@ Solutions may not be unique without additional assumptions.

@ Requires solving several deterministic forward problems.
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A Different Stochastic Inverse Problem

Problem

Given a probability density on observations, find a probability density on A such
that the push-forward matches the given density on the observed data.
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Problem

Given a probability density on observations, find a probability density on A such
that the push-forward matches the given density on the observed data.

@ Solutions may not be unique without additional assumptions.
o We only need to solve a single stochastic forward problem.
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Notation

We assume we are given:

@ A finite-dimensional parameter space, A.
@ A parameter-to-observation/data map, Q : A — D = Q(A)
@ An observed probability measure on (D, Bp), denoted ]P’%’S, that has a

density, ws.

@ An initial probability measure on (A, Bp), denoted Pt that has a density,
Tt
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We assume we are given:

@ A finite-dimensional parameter space, A.
@ A parameter-to-observation/data map, Q : A — D = Q(A)
@ An observed probability measure on (D, Bp), denoted ]P’%’S, that has a

density, ws.

@ An initial probability measure on (A, Bp), denoted ]P’i,{‘it, that has a density,
7l_init.

We need to compute:

@ The push-forward of the initial density through the model.

@ In other words, we need to solve a forward UQ problem using the initial.

o We use Trg(i"it) to denote this push-forward density.
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A Key Assumption

Predictability Assumption

We assume that the observed probability measure, IP’%"S, is absolutely continuous

with respect to the push-forward of the initial, ]P’g(i"it)_

obs obs
™D D
N
ﬂ_g(imt) 7Tg(init)
e N
Good Initial Bad Initial

(Cannot predict all observations)

SIAM CSE 41
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A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018a)

Given an initial probability measure, P on (A, Bp) and an observed probability
measure, P9, on (D, Bp), the probability measure P\¥ on (A, By) defined by

up _ 71_init Obs(Q(A))
B = [ ([, g O e gy na)) dioa) VA< By

solves the stochastic inverse problem.
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Corollary (BJW., SISC 2018a)
The updated measure of \ is 1.
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A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018a)

Given an initial probability measure, IP’}(”t on (A, Bp) and an observed probability
measure, P9, on (D, Bp), the probability measure P\¥ on (N, By) defined by

up _ 7rinit.“ ObS(Q()‘))
e = ([ . ) () diin(a). VA € By

solves the stochastic inverse problem.

Corollary (BJW., SISC 2018a)
The updated measure of \ is 1.

Theorem (BJW., SISC 2018a)

P3P is stable with respect to perturbations in P3*.

For details: “"Combining Push-forward Measures and Bayes' Rule to Construct
Consistent Solutions to Stochastic Inverse Problems”, BJW. SISC 40 (2), 2018.

Tim Wildey (tmwilde@sandia.gov) Dimension Reduction for SIPs SIAM CSE 9/41



A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018a)

Given an initial probability measure, P on (A, Bp) and an observed probability
measure, P, on (D, Bp), the probab//lty measure P\” on (N, Bp) defined by

wp( Ay init( ) T2 (Q(N))
Py (A)—/D(/Ano_l(q) A(A) Q) () ))dux\,q(%)) dup(q), VA € By

solves the stochastic inverse problem.

The updated density is:

up _ |n|t ObS(Q(/\))
7T/\( ) ( ) Q(lmt)(Q()\))'

o Both 7't and 7$%* are given.

Q(init)

o Computing mp requires a forward propagation of the initial density.
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A Parameterized Nonlinear System

Consider a parameterized nonlinear system of equations:

)\1X12 s X22 = 17

xf — )\2x22 =

@ The quantity of interest is the second component: g(\) = x».
o Assume that we observe g(\) ~ N(0.3,0.0252).
@ We consider a uniform initial density.

o We use 10,000 samples from the initial and a standard KDE to approximate
the push-forward.
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A Parameterized Nonlinear System

i i dx PP IR
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A Parameterized Nonlinear System

dx
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Initial
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A Parameterized Nonlinear System
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A Parameterized Nonlinear System

16
Push-forward of prior
14
12
10
8
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a
2

Push-forward of Initial
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Observed density
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A Parameterized Nonlinear System

Samples Generated from the Posterior

08 082 084 086 083 09 092 094 095 098

Samples from the updated density
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A Parameterized Nonlinear System

Samples Generated from the Posterior

16
sh-forward of pi
2 14
Push-forward of posterior
2
1.5
10
' m)
6
05
4
9 2
08 082 084 086 088 09 0.2 . 096 098 0 0.1 02 03 04 05 06 07
Samples from the updated density Observed and push-forward

densities in D
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Nice, but not very practical!

@ We cannot expect to be able to generate a large number of samples from a
high-fidelity computational model!
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Nice, but not very practical!

o We cannot expect to be able to generate a large number of samples from a
high-fidelity computational model!
@ Can we use approximate models, e.g., discretizations or surrogate models?
o Yes, see [Butler, Jakeman, W. SISC 2018b].
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Nice, but not very practical!

o We cannot expect to be able to generate a large number of samples from a
high-fidelity computational model!
@ Can we use approximate models, e.g., discretizations or surrogate models?
o Yes, see [Butler, Jakeman, W. SISC 2018b].
o Can we leverage lower-fidelity models in a multi-fidelity context?
o Yes, see [Bruder, Gee, W. 2019 (in review)]
o Can we leverage connections with deterministic optimization with
regularization to develop scalable approaches?
o Yes, see [Marvin, Bui-Thanh, W. CCR Proceedings 2018].
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Nice, but not very practical!

o We cannot expect to be able to generate a large number of samples from a
high-fidelity computational model!
@ Can we use approximate models, e.g., discretizations or surrogate models?
o Yes, see [Butler, Jakeman, W. SISC 2018b].
o Can we leverage lower-fidelity models in a multi-fidelity context?
o Yes, see [Bruder, Gee, W. 2019 (in review)]

o Can we leverage connections with deterministic optimization with
regularization to develop scalable approaches?

o Yes, see [Marvin, Bui-Thanh, W. CCR Proceedings 2018].
@ Can we use dimension reduction techniques, e.g., active subspaces?
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A General Framework

INPUT SPACE OUTPUT SPACE
(high dimensional) (low dimensional)
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A General Framework

INPUT SPACE OUTPUT SPACE
(high dimensional) (low dimensional)

INTERMEDIATE
SPACE
(low dimensional)
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INPUT SPACE OUTPUT SPACE
(high dimensional) (low dimensional)

INTERMEDIATE
SPACE
(low dimensional)

o If h(x) is lower-fidelity model, then we recover a particular multi-fidelity
formulation [Koutsourelakis 2009; Biehler, Gee, Wall 2015; Bruder, Gee, W. 2019]
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INPUT SPACE OUTPUT SPACE
(high dimensional) (low dimensional)

INTERMEDIATE
SPACE
(low dimensional)

o If h(x) is lower-fidelity model, then we recover a particular multi-fidelity
formulation [Koutsourelakis 2009; Biehler, Gee, Wall 2015; Bruder, Gee, W. 2019]

o If h(x) = WTx, then we have a ridge approximation.
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Ridge Approximations and Active Subspaces

e What is a ridge function?

o A composite function of the form: f(x) = g(h(x))
o y = h(x) depends linearly on x, e.g. y = Wjx where Wa € R™*"™.

@ What does an active subspace method do?
o Use evaluations of the function and/or the gradient, V£(x), to find Wa.

o Define the average outer product of the gradient and its eigendecomposition
C= / VF(x)VF(x)"dPR" = WAW .
A
o Partition the eigendecomposition,
/\A nxm
A= " W:[WA WI]7 W, eR
A
o Define a rotation and partition into active and inactive directions,
x=WW'x = W,Wjix+WW/x=Wuy+ W,z

e y denotes the active variables and z the inactive variables.
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Ridge Approximations and Active Subspaces

o Given Wy, we can easily compute y; = WZ\—X,' for any sample x;.
e Plots of y = h(x) = W] x are helpful:

Jix)

Figure: MHD generator model (left) and the 1-dimensional active subspace studied
in [Glaws, Constantine, Shadid, W. 2017]

@ Need to define a reasonable approximation of g(y) = g(h(x)).
o Let G(y) denote the conditional expectation with respect to the inactive

variables:
G(y) =E.[fly] = /f(WAY+W/Z)7TZ|Y(Z) dz.

o Various approaches can be used to approximate G (e.g., the mean of a GP).

SIAM CSE 16 /41
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INPUT SPACE OUTPUT SPACE
(high dimensional) (low dimensional)

INTERMEDIATE
SPACE
(low dimensional)

o In general, @(WXX) defines a different push-forward probability measure.

o Can be used to solve the stochastic inverse problem if it satisfies a
predictibility assumption.

@ In practice, it is easy to detect if this assumption is satisfied.

SIAM CSE 17 /41
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Active subspaces provide L? error estimate

Theorem (Theorem 3.7, Constantine, Dow, Wang SISC 2014)

The mean-squared error using N Monte Carlo samples to approximate the
eigenvalues, perturbed eigenvectors, W 4, with error €, and a response surface
approximation G = g(y) with error §, is given by

1£(x) = GOWZX)[F2(a) <

1 2
G <1 = N) (e Gor o S ~-)\,,,)1/2) L 0

v
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Bounds the error in the push-forward

A modification of the arguments in [Butler, Jakeman, W. SISC 2018b] gives the
following estimate of the error in the push-forward using an active subspace.

Theorem

The expected error in a kernel density estimate of the push-forward of the initial

density, “Q(""t), using a sufficiently smooth kernel of order s, and M Monte Carlo
evaluations of the active subspace model is bounded by,
E 1m0 — #2)5)] < C( by + 10x) = GOWEX)IR
D 12(D) Nas/@srm) + ! AX)Iz2(n)
%’_/ ) S~
KDE error Active subspace error
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Bounds the error in the updated density

Similarly, we can bound the error in the updated density using an active subspace.

Theorem

The expected error in the updated density, 7"

the push-forward of the initial density®, AQ(""t), with a sufficiently smooth kernel
of order s, and M Monte Carlo evaluations of the active subspace model is
bounded by,

, using a kernel density estimate of

log M
E [Ilw,“\P p||L2(A)] = C(m+||f(x) GW )220y )
KDE error Active subspace error

?Not a kernel density estimate of the updated density!

Tim Wildey (tmwilde@sandia.gov) Dimension Reduction for SIPs



A Parameterized Nonlinear System

Consider a parameterized nonlinear system of equations:

2 2
)\1X1 + X2 = 17
2 2
Xl = )\2X2
058
1004 . - -
P -
i 052 0.75 ‘A'» ., = - “. a* E e
» - - - -
0.46 % % 4 2 - s =
0501 » P -
i 0.40 P L e -y
025 - & e
0.34 » sr GaE L -
4 0004 #% 44 #ox L L e —
028 ” o
—azsd 2 s Vi S e T e
4 ’ Y -
X 0.22 s Va4 St
~0504 /, / v /// r =
0.16 7 / 4 P // J o
. % 0.10 o7 // / / // 4 i// //
k_ - 2001 / 1/ VW A7 il
0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 -1.00 -0.75 050 -0.25 0.00 025 050 0.75 1.00

Figure: Response surface for the Qol (left) and samples of the gradient in normalized
coordinates (right).
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A Parameterized Nonlinear System

16 7 e PF Initial

=== Observed
== = PF Updated
124

-1.00 kS T . y i
-1.00 -0.75 -0.50 =025 0.00 025 050 0.75 1.00 0.0 0.1 0.2 0.3 0.4 0.5 0.6
v

Figure: Samples from the updated density (left) and a comparison of s, ﬂ'g(i"it) and
wg(”p) (right).
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A Parameterized Nonlinear System

¢  Predicted mean |
* Training data

0.2 1

0.1

=15 -1.0 -0.5 0.0 0.5 1.0 15
Active variable

Figure: Samples of the active variable and the true model response as well as the
regression model for N = 100.
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A Parameterized Nonlinear System

. eel e

~1.00 4 —=
~1.00 —0.75 -0.50 ~0.25 0.00 0.25 050 0.75 1.00
A

Figure: Samples from the updated density (left) and a comparison of mobs 7 Q0 gng
wg(”p) (right) using a 1-dimensional active subspace with N = 100 and M = 10, 000.
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A Parameterized Nonlinear System

* * Predicted mean
0.5 4 * *  Training data
0.4+
< 0.3
0.2
0.1
—i.S —1‘.0 -0.5 Ut() 015 110 1.5

Active variable

Figure: Samples of the active variable and the true model response as well as the
regression model for N = 500.
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A Parameterized Nonlinear System

16

| e PF Initial
144 | | === Observed
== = PF Updated
12

104

p(@)
@

It 04

~1.00+ - -
~1.00 —0.75 ~0.50 ~0.25 0.00 025 O
A

50 075 100 0.0 0.1

Figure: Samples from the updated density (left) and a comparison of s, ﬂ'g(i"it) and

wg(”p) (right) using a 1-dimensional active subspace with N = 500 and M = 10, 000.
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Comparison with Reference Solution
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Comparison Using 2-dimensional Active Subspace
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A Predator-Prey System

Consider a Lotka-Volterra system:

o The initial conditions, u;(0), and self-interaction terms, Aj;;, are known.

@ Leaves 9 random parameters, initial distribution assumes independent
uniformly distributed over [0.3,0.7].

@ Use 4th-order explicit Runge-Kutta method to solve to T = 50 with
At =0.01

e Quantity of interest is us(T)
o Observed distribution is given by N(0.3,0.0252)
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A Predator-Prey System

61— T = PF Initial
=== Observed
== = PF Updated
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0.0 02 0.4 06 0.8

Figure: Samples from the updated density (left) and a comparison of w3, wg(i"it) and
wg(””’ (right) using a 1-dimensional active subspace with N = 500 and M = 10,000.
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A Predator-Prey System

Eigenvalues

Figure: Samples from the updated density (left) and a comparison of
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wg(”p) (right) using a 1-dimensional active subspace with N = 500 and M = 10, 000.
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A Predator-Prey System

087 « Ppredicted mean
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Figure: Samples from the updated density (left) and a comparison of =
wg(”p) (right) using a 1-dimensional active subspace with N =500 and M = 10, 000.

tmwilde@sandia.gov) Dimension Reduction for SIPs SIAM CSE 32 /41



A Predator-Prey System

16 = S s PF Initial
o s Observed

1: == PR Updated Acceptance rate | 0.0675

10 Mean of 72"P) | 0.2097
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A Predator-Prey System

Dimension of active subspace Reference
1 2 3 4
Acceptance rate | 0.0675 | 0.0687 | 0.0672 | 0.0675 0.0663
Mean of 7"? | 0.2097 | 0.3000 | 0.3003 | 0.2999 | 0.2999

St. dev. of 72" | 0.0251 | 0.0252 | 0.0253 | 0.0254 | 0.0254
Integral of 72" | 0.9952 | 0.9991 | 0.9958 | 0.9979 | 0.9965
KL(m 7o) | 2.1604 | 2.1646 | 2.1517 | 2.1804 | 2.1838
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A Computational Mechanics Example

Figure: Additive manufacturing and high-throughput testing provides new data
challenges.
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A Computational Mechanics Example

dy
4.543e-
EO.ODOSI

1D

10mm 4mm

=0.00022

LT

0.00011

e Y

-2981le

6mm ;\’/;mm
Figure: On the left, an illustration of the computational model on a coarse mesh (16,600
elements). In the middle, the granular microstructure on a finer mesh (= 17 million
elements). On the right, the vertical displacement using the high-fidelity model and
nominal parameter values.
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A Computational Mechanics Example

@ We assume the Young's modulus, E, and Poisson ratio, v, are random.

@ Each grain has a random orientation defined by 4 independent Gaussian
parameters.

@ Model has ~ 225,000 grains.

6 1 w— Low-fidelity
we Multi-fidelity (low, high)

v

s

w

~

0.8 0.9 1.0 11 1.2 13 1.4
Quantity of interest

Figure: Comparison of the wg(i"it) using the low-fidelity model and the high-fidelity model.
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A Computational Mechanics Example
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Figure: Samples of the active variable and the Qol as well as the regression model for
N = 100.
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A Computational Mechanics Example
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Figure: Samples from the updated density (left) and the comparison of e, ﬂg(i"it) and

72 (right) using a 1-dimensional active subspace with N =100 and M = 10, 000.
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Conclusions

Our goal is to develop data-informed physics-based models.

@ Many approaches exist for incorporating data into a model.
o Deterministic optimization, Bayesian methods, OUU, data assimilation, etc.

@ Our approach provides a solution to a specific stochastic inverse problem.

@ Main computational expense is the forward UQ problem to obtain the
push-forward of the initial density.

o We demonstrated that dimension reduction techniques can be utilized
within this framework.

@ Theoretical results show that the errors in the push-forward and in the
updated density are bounded by the errors in the active subspace
model.

o Didn't quite get to inference for prediction ...
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Thanks! Questions?
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