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Motivation
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Flow in Nuclear Reactor (Turbulent CFD) Tokamak Equilibrium (MHD)

We are working to develop data-informed models ...

Climate Modeling Multi-scale Materials Modeling

Tirn Wildey (tnmilde@sandia.gov) Dirnension Reduction for SIPs SIAM CSE 2 / 41



Data-informed Physics-Based Predictions
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A Deterministic Inverse Problem
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• Solutions may not be unique without additional assumptions.
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A Stochastic Inverse Problem
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Given a deterministic observation, (:2, and an assumed noise model, find the
parameters that are most likely to have produced the data.
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Given a deterministic observation, (:2, and an assumed noise model, find the
parameters that are most likely to have produced the data.

a Solutions may not be unique without additional assumptions.

a Requires solving several deterministic forward problems.

Tirn Wildey (tmwilde@sandia.gov) Dimension Reduction for SIPs SIAM CSE 5 / 41



A Different Stochastic Inverse Problem

Model

Problem
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Given a probability density on observations, find a probability density on A such
that the push-forward matches the given density on the observed data.
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A Different Stochastic Inverse Problem

Model

Problem

J

Given a probability density on observations, find a probability density on A such
that the push-forward matches the given density on the observed data.

o Solutions may not be unique without additional assumptions.

o We only need to solve a single stochastic forward problem.
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Notation

We assume we are given:

• A finite-dimensional parameter space, A.

• A parameter-to-observation/data map, Q : A D = Q(A)

O An observed probability measure on (D,BD), denoted 111S, that has a
density, 797)bs.

• An initial probability measure on (A,BA), denoted Pr, that has a density,
init
A •
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Notation

We assume we are given:

• A finite-dimensional parameter space, A.

ta A parameter-to-observation/data map, Q : A D = Q(A)

O An observed probability measure on (D,BD), denoted 111S, that has a
density, 7.1s.

• An initial probability measure on (A,BA), denoted Pr, that has a density,
init
A •

We need to compute:

• The push-forward of the initial density through the model.

o In other words, we need to solve a forward UQ problem using the initial.

o We use 71
Q(init) 

to denote this push-forward density.
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A Key Assumption

Predictability Assumption

We assume that the observed probability measure, PVs, is absolutely continuous
Qi

with respect to the push-forward of the initial, PI,
(in t)

Good Initial Bad Initial
(Cannot predict all observations)
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A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018a)

Given an initial probability measure, IFikit on (A, BA) and an observed probability
measure, PV,', on (D,BD), the probability measure Pr on (A, BA) defined by

AP 

t(À) 
io

7r'7,bs( Q(A))  ditA,q(A)) 01)(4 VA E BAP(A) = fp ( fAnQ 1(q) A 
 

74,..,?(tn (Q(A))

solves the stochastic inverse problem.
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A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018a)

Given an initial probability measure, Pr on (A, BA) and an observed probability
measure, lEr, on (D,BD), the probability measure PAuP on (A, BA) defined by

P"AP (A) = fy fAnc? i(q) Ainit(A) 
(:i(

br

sil)C2Q(A))
(A)) dILIA'cl

(À)) dpv(q), VA E BA
D ( 

solves the stochastic inverse problem.

Corollary (BJW., SISC 2018a)

The updated measure of A is 1.
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A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018a)

Given an initial probability measure, Pr on (A, BA) and an observed probability
measure, Fr, on (D,BD), the probability measure PAuP on (A, BA) defined by

P"AP (A) = fy fAnc? i(q) Ainit(A) 
(:i(

br

sil)C2Q(A))
(A)) dILIA'cl

(À)) dity(q), VA E BA
D ( 

solves the stochastic inverse problem.

Corollary (BJW., SISC 2018a)

The updated measure of A is 1.

Theorem (BJW., SISC 2018a)

IPAuP is stable with respect to perturbations in P;bs.

For details: "Combining Push-forward Measures and Bayes' Rule to Construct
Consistent Solutions to Stochastic Inverse Problems", BJW.,SISC 40 (2), 2018.
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A Solution to the Stochastic Inverse Problem

Theorem (Butler, Jakeman, Wildey, SISC, 2018a)

Given an initial probability measure, Pr on (A, BA) and an observed probability
measure,Pb,s, on (D,Bp), the probability measure Pr on (A,BA) defined by

4b.s(Q(A))

PunP(A) fr fAnQ 
1(a)

"A 
inito) 

irc./,(mit)(Q(Andtt^,q(A))
„ VA E BA

solves the stochastic inverse problem.

The updated density is:

71.70) = irAito)  s.(sQ(A)) 
7rg(inut)(Q(A))

o Both 7-lit and 71, s are given.

o Q
Computing 71-,

(init) requires a forward propagation of the initial density.
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A Parameterized Nonlinear System

Consider a parameterized nonlinear system of equations:

Xi2 + 4 = 1,

xl— 2 2 x2 1

o The quantity of interest is the second component: q(A) = x2.

o Assume that we observe q(A) — N(0.3, 0.0252).

o We consider a uniform initial density.

o We use 10,000 samples from the initial and a standard KDE to approximate
the push-forward.
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A Parameterized Nonlinear System
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A Parameterized Nonlinear System

0 b
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Initial
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A Parameterized Nonlinear System

0 b
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A Parameterized Nonlinear System

.s
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Samples Generated from Posterior
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Samples from the updated density
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A Parameterized Nonlinear System
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Nice, but not very practical!

v We cannot expect to be able to generate a large number of samples from a
high-fidelity computational model!
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Nice, but not very practical!

o We cannot expect to be able to generate a large number of samples from a
high-fidelity computational model!

o Can we use approximate models, e.g., discretizations or surrogate models?

o Yes, see [Butler, Jakeman, W. SISC 2018b].

o Can we leverage lower-fidelity models in a multi-fidelity context?
o Yes, see [Bruder, Gee, W. 2019 (in review)]

o Can we leverage connections with deterministic optimization with
regularization to develop scalable approaches?

o Yes, see [Marvin, Bui-Thanh, W. CCR Proceedings 2018].

o Can we use dimension reduction techniques, e.g., active subspaces?
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A General Framework

INPUTSPACE
(high dimensional)

OUTPUT SPACE
(low dimensional)
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A General Framework

INPUT SPACE
(high dimensional)

INTERMEDIATE
SPACE

(low dimensional)

OUTPUT SPACE
(low dimensional)

g(h(x))

• If h(x) is lower-fidelity model, then we recover a particular multi-fidelity
formulation [Koutsourelakis 2009; Biehler, Gee, Wall 2015; Bruder, Gee, W. 2019]
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A General Framework

INPUT SPACE
(high dimensional)

h(")

INTERMEDIATE
SPACE

(low dimensional)

OUTPUT SPACE
(low dimensional)

g(h(x))

o If h(x) is lower-fidelity model, then we recover a particular multi-fidelity
formulation [Koutsourelakis 2009; Biehler, Gee, Wall 2015; Bruder, Gee, W. 2019]

o If h(x) = WT x, then we have a ridge approximation.
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Ridge Approximations and Active Subspaces

• What is a ridge function?

• A composite function of the form: f(x) = g(h(x))
• y = h(x) depends linearly on x, e.g. y = WX,x where WA E Rnx m.

o What does an active subspace method do?

• Use evaluations of the function and/or the gradient, Vf (x), to find WA .
• Define the average outer product of the gradient and its eigendecomposition

C = fVf(x)Vf(x)TdIV = WAW T
A

• Partition the eigendecomposition,

A = [AA
Ai ' W = [WA w I] , WA E

m

• Define a rotation and partition into active and inactive directions,

x = WWT x = WAWAx +WANT x =WAy + Wiz

• y denotes the active variables and z the inactive variables.
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Ridge Approximations and Active Subspaces

• Given WA, we can easily compute yi = INT,x; for any sample xi.

• Plots of y = h(x)=W7A-x are helpful:

•

lo

Figure: MHD generator model (left) and the 1-dimensional active subspace studied
in [Glaws, Constantine, Shadid, W. 2017]

• Need to define a reasonable approximation of g(y) = g(h(x)).

o Let G(y) denote the conditional expectation with respect to the inactive
variables:

G(Y) = Ez[f y] = f f(WAy +Wiz)7z1 y(z) dz.

o Various approaches can be used to approximate G (e.g., the mean of a GP).

Tirn Wildey (tmwilde@sandia.gov) Dimension Reduction for SIPs SIAM CSE 16 /41



A General Framework

INPUT SPACE
(high dimensional)

W7A'x

INTERMEDIATE
SPACE

(low dimensional)

OUTPUTSPACE
(low dimensional)

• In general, '(W7,4-x) defines a different push-forward probability measure.

o Can be used to solve the stochastic inverse problem if it satisfies a
predictibility assumption.

o In practice, it is easy to detect if this assumption is satisfied.
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Active subspaces provide L2 error estimate

Theorem (Theorem 3.7, Constantine, Dow, Wang SISC 2014)

The mean-squared error using N Monte Carlo samples to approximate the
eigenvalues, perturbed eigenvectors, WA, with error 6, and a response surface
approximation G g(y) with error 8, is given by

Ilf(x) — G(vPAx)111_2(A)

Cl 
(1 + 

N 
) (E (Ai + . . • An)112 (An+1 + • • • Am)312) 2 + C26.
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Bounds the error in the push-forward

A modification of the arguments in [Butler, Jakeman, W. slsC 2018b] gives the
following estimate of the error in the push-forward using an active subspace.

Theorem
The expected error in a kernel density estimate of the push-forward of the initial

,,(init) 
us 

•
density, 71D , ing a sufficiently smooth kernel of order s, and M Monte Carlo
evaluations of the active subspace model is bounded by,

E [114init)
— 71D

log
12L2(D)1 L 

r. m2s/(25+M

m) +11f (x) G (WA- x)112L2(A))

KDE error Active subspace error
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Bounds the error in the updated density

Similarly, we can bound the error in the updated density using an active subspace.

Theorem

The expected error in the updated density, ifAuP, using a kernel density estimate of

the push-forward of the initial densitya, Frg(ink), with a sufficiently smooth kernel
of order s, and M Monte Carlo evaluations of the active subspace model is
bounded by,

l M
E — "frLAII3 112/.2(A)] A42

og
5/ (25+ m) Mf (x) G I A- x)112L2(A))

KDE error Active subspace error

allot a kernel density estimate of the updated density!
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A Parameterized Nonlinear System

Example

Consider a parameterized nonlinear system of equations:

Alxi2 1,

2 x2 1- 2 2
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0.58.520
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0.34
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0.00

ð

0.22
-0.25
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-0.50

0.10
-0.75

0.04
-1.00

ay

2---

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Figure: Response surface for the Qol (left) and samples of the gradient in normalized
coordinates (right).
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A Parameterized Nonlinear System
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Figure: Samples from the updated density (left) and a comparison of rt's, 7r (init) and

71-1;;:,(") (right).
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A Parameterized Nonlinear System

0.5
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Figure: Samples of the active variable and the true model response as well as the
regression model for N = 100.
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A Parameterized Nonlinear System

-1 00 -0.75 0 50 0.25 0.00 0.25 0 0.75 .o
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Figure: Samples from the updated density (left) and a comparison of rt's, 7r (init) and

7rQ(up) (right) using a 1-dimensional active subspace with N = 100 and M = 10,000.
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A Parameterized Nonlinear System
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Figure: Samples of the active variable and the true model response as well as the
regression model for N = 500.
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A Parameterized Nonlinear System
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Figure: Samples from the updated density (left) and a comparison of rt's, 7r (init) and

7Q(") (right) using a 1-dimensional active subspace with N = 500 and M = 10,000.
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Comparison with Reference Solution
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Comparison Using 2-dimensional Active Subspace
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A Predator-Prey System

Consider a Lotka-Volterra system:

au
i =

Ot " 
ru.(b. —

j=1 )Aijui , i = 1,2, 3

o The initial conditions, u;(0), and self-interaction terms, Au, are known.

o Leaves 9 random parameters, initial distribution assumes independent
uniformly distributed over [0.3, 0.7].

o Use 4th-order explicit Runge-Kutta method to solve to T = 50 with
At = 0.01

o Quantity of interest is u3(T)

o Observed distribution is given by N(0.3, 0.0252)
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A Predator-Prey System
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Figure: Samples from the updated density (left) and a comparison of 7rgs, 71-g(init) and

7r,g(") (right) using a 1-dimensional active subspace with N = 500 and M = 10,000.
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A Predator-Prey System
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Figure: Samples from the updated density (left) and a comparison of 7rt's, 7r,c2(init) and

7rIPup) (right) using a 1-dimensional active subspace with N = 500 and M = 10,000.
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A Predator-Prey System
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Figure: Samples from the updated density (left) and a comparison of 71P , 71-1:,(init) and

7rg(") (right) using a 1-dimensional active subspace with N = 500 and M = 10,000.
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A Predator-Prey System
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A Predator-Prey System

A

Dimension of active subspace Reference

1 2 3 4

Acceptance rate 0.0675 0.0687 0.0672 0.0675 0.0663

Mean of Ir'g(up) 0.2997 0.3000 0.3003 0.2999 0.2999

St. dev. of 71-7Q)(up) 0.0251 0.0252 0.0253 0.0254 0.0254

Integral of 71-AIP 0.9952 0.9991 0.9958 0.9979 0.9965

KL(711tIruAP) 2.1604 2.1646 2.1517 2.1804 2.1838
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A Computational Mechanics Example

Figure: Additive manufacturing and high-throughput testing provides new data
challenges.
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A Computational Mechanics Example
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Figure: On the left, an illustration of the computational model on a coarse mesh (16,600
elements). In the middle, the granular microstructure on a finer mesh (se, 17 million
elements). On the right, the vertical displacement using the high-fidelity model and
nominal parameter values.
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A Computational Mechanics Example

• We assume the Young's modulus, E, and Poisson ratio, v, are random.
• Each grain has a random orientation defined by 4 independent Gaussian

parameters.
o Model has 225,000 grains.
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Figure. Comparison of the 7FDQ(init) using the low-fidelity model and the high-fidelity model.
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A Computational Mechanics Example
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Figure. Samples of the active variable and the Qol as well as the regression model for
N = 100.
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A Computational Mechanics Example
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Figure: Samples from the updated density (left) and the comparison of 'Fr, 7r.g(init) and

irvci("P) ( ht)rig using a 1-dimensional active subspace with N = 100 and M = 10,000.
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Conclusions

o Our goal is to develop data-informed physics-based models.

o Many approaches exist for incorporating data into a model.

Deterministic optimization, Bayesian methods, OUU, data assimilation, etc.

o Our approach provides a solution to a specific stochastic inverse problem.

o Main computational expense is the forward UQ problem to obtain the
push-forward of the initial density.

o We demonstrated that dimension reduction techniques can be utilized
within this framework.

o Theoretical results show that the errors in the push-forward and in the
updated density are bounded by the errors in the active subspace
model.

o Didn't quite get to inference for prediction ...
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Thanks! Questions?
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