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2 | Project38: A Joint DoD/DoE Architecture / Application

° Project Organization
> Technologies
> Open Proxies

> Tools
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> Why?
> Budgets always tight, need to share resources, understand each other’s constraints
> Discussions outside a specific procurement / existing project
> |dentify potentially useful architectures
> Areas of interest / overlap
> Guide future collaboration
> Guide future interactions with vendors

> Tools focus
> Harness different strengths & knowledge

> Share what we know about our applications
> Discover what we don’t know
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o Initial Discussions (Sept 2017) ‘
> Brainstorm Architecture ldeas S,

> Discuss points of overlap (procurement
issues, need for specialization)

> Discuss points of divergence (application
longevity, software constraints)

> Summer 2018 _
> Formalize 3 focus architectures Architecture Future Collaboration

> Define Applications scope ldeas & Engagement

> Current
o Study applications

o Refine Architectural ideas Simulation

Analysis

Software Concerns |
o Goal: Future collaboration |
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| Architectural Concepts

Inter-core Messaging

Word Addressable S/Memories
Pointer Math Unit
Programmable Prefetch Units
Multi-Level Memory

Local Store

Enhanced Memories

Disaggregated Memory

Suitable for Aggressive

Vendor?
High (in SoC libraries)

Low?
Medium
Medium

High
Medium

High

High (on roadmap)
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Suitable for us?
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2 Independent groups met, came up with same set of i P |

apps E — E

> Scatter/Gather S |
> Word-Addressable Local Store % . . v é "

> Atomics

> TLB »@i:

o not a topic for exploration, but a target for future cross-
collaboration
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> “Better” Atomic operations, possibly occurring in the memory system or at multiple
levels of cache

> Distinguishing Features

> Fire & Forget

> Both fetching atomics & ‘one-way’

> Floating point capable (especially atomic add)

> Existing work: IBM, Intel, EMU
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> Load multiple memory locations into a contiguous region. | = ‘
e

° Distinguishing Features
- Flexible I | |

> Pipelined :Eﬂ: ) %

° To a scratchpad ~ TTUTTTTC

> Feature to Explore [ e
> S/g with atomic add 1P E '

............................

° In Memory

> More Programmable (Key/Value Lookup, pointer chasing)
> S/g to a register (e.g. VGATHERDPD)



12 | Local Store: Description

> Distinguishing Features

Projegt 38 e I
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o Software controlled

v v v v A
$ $
> Word Addressable :
° Located at LI or L2
> Communication & Protection options (inclusive, exclusive, partitioned)
o Existing: CELL work, ECP, KNL [
B
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Conceptual Design (programmable accelerator

“,Ll J, lReg1ster Flle
3¢¢¢¢¢¢¢
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Lightweight ‘
In-Order Scalar I

L Core ROM Estimates
Xbar/ addrger TLB 28nm@1GHz
(no TLE) 1TF/100mm*2
Granularity Maximize Energy 70W
Effici
SPM iciency 7nm@1GHz
For Tile- ‘ ‘ ‘ %g\l;'v/mOmm 2

Scale

Gather/scatt L1DS L11S

()

Arbiter \ NOC Router

Recoding engines (One per bank) vYvy
For sub-word / data-structure scale reorg & FSMs

4




Conceptual Design (Chip Scale)

Atomic Message Queues for
asynchronous chip-scale
Programmable 2D Accelerator Array (NOC) scatter/gather & enforcing

Accelerator Tile dependencies.

SIMD DySER

Memary / Regile ONVE OnNd ore W
Y ¥ Vv v TLBs for OS, Drivers, Sys
il Services
Mernary [ ReaFile o
(reveaasattloss

'ty

Fxed lFU“FU‘ Configurable,
0>-

Tiles operate in pardle 4 O WY W ditapath,
“ Core(s

same logical address | Virtual to Physical Address
space with memory Translation
transc:atlor; ,8:] the ‘ ‘m‘m‘li‘i"i‘ Memory Fabric
€ lge (t) € e (disaggregated NIC
acce.claloraiiay with memory & other

Memory Fabric Interfaces

processors as peers)



Fes

gy g1 i 000

1 ™
| .




6 | Application Motivation

> Important applications
> Broad set

> Open
> “digestible” - not 500,000 FORTRAN
> Unclassified / No Export Control issues
> Proxies for larger applications

> Common ground for conversation
o “digestible”
° Flexible — can be rewritten
> Well understood

Projegt 38
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Applications Table Doy

BERKELEY LAB

i i L Hardware Feature

HPGMG (Transport_SE/HOMME Stencil SPM, queues

microbench)

KRIPKE Wavefront Word Granularity SPM, queues

MerBench Hash/Scatter Remote atomics

Tensor? Scatter/Gather ?

XS Bench / RS Bench Gather/Table-lookup Word granularity SPM + queues

Sparse Trisolve (SPMV) Sparse Matrix Queues + word granularity SPM,
and Recoding engine (mat
coding)

FFT FFT Word granularity SPM + queues

? Contact algorithms ? Sort/Search Recoding Engine

PIC PIC Atomics, queues

>+ Graph analytics (TBD)



8 | Diversity of temporal behavior

= SW Categorization: Locality manifests at

different scales

*  You might not exploit locality within an L1, but
could within an L3

= Orthogonal to these axes is whether it
is discovered at compile time or run
time.

Spatial Locality

high

low

Proje
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Software Characterization

Aparse(Nz) Stencils
GEMMs
PI.C FFTs
(particles)
Sparse
(vectors) wap -, =h
PIC (grid)
low medium high

Temporal locality
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0 | Tools

> Diverse set of tools & techniques

> ”Manual” analysis & code
modification

° Leverage application knowledge
> Explore SW impact

° Profiling

> Understand our applications

> What do what think we know, but
really not know

o Simulation

> Design space exploration

> HDL Design & Layout
> Detailed feasibility studies

> Examples...

New
Simulations

Gem5 /
McPAT

“Manual”
Analysis

PrOj e 38 rr r: r I
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Applications
Profiling
Existing Simulations/ Analytic HDL Design
Emulations Emulations Models & Layout
. PALM/ Chisel
FPGA BookSim/SST HPCToolkit OpenSOC

Node / System Performance

Power
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simulation post-process

o SST-based tool

° Process:
|. Trace application (PINTool)

?
I
|
|
I
I

2. Detect malloc() calls
3. Gather post-cache memory accesses

hot mallocs

> Associate with malloc()s

° Build page-level histogram

|
|
> Output A

> “Hot” Malloc()s

P : ST (152?22?@2'?(@33,0501%:55 L2)
. ‘ (16 Cores; 326D L1 S13kb 12) - (16 cores. 35K L1, SI2KB 12) o0 ‘ — reods
> Page Histograms R — = | |= ]
1000 L writes L T 200000 1
> Use . . ;= Few, Well-defined Multiple Irregular
o |dentify regions for local store!? Regions Regions
> Size local store? . |
> Estimate software effort? 1 I i ‘
X —) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 %o 0.2 04 06 0.8 ?J 2.0 25
Addres: led ' ' Addresses Addresses 1e




Malloc()s ~4. B

HPGMG XBench e BERKELEY LAB

> Assume 8MB Cache, 16 thr ) 05

1

> Mallocs 08
> Captured stack traces to |dent|fy o
malloc()s hol

> Can weight by r/w, size, o

accesses/size

% Accesses

(-

= o e e o = LN NN N X P - . . - - PO - -

> Histograms
> Post-cache accesses per page

HPGMG Accesses by Page

> Substantial diversity ‘-
o HPGMG: more uniform 5

> XSBench: varies considerably

Post-$ Accesses

1

e
e
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Thread Accesses

Threads accessing each page
HPGMG: generally few threads/page

XSB: most pages are not accessed .
by many threads

But, the pages which are accessed
by lots of threads account for most ™
accesses

TO00000

Implications for coherency!?

000000

ﬁ 4000000 4
a

4 3000000 -

2000000
1000000

Threads Accessing Each Page: HPGMG 4KB pages

4 & d 1o 12 14
Threads

16

GO0000D -

Threads
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Threads Accessing Each Page: X5Bench 4KB pages
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On-chip Network Topology Eval (FIC Farticle Sort e
Throughput) =,
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> Choosing a topology requires careful balancing of performance and power, using
application-specific communication patterns

> Lowest performing solution can be cheaper
> We can evaluate the architecture at cycle-accurate level

‘Topology cnmpaljisnn Topology comparison

2000 _ ' 1 500 | 1
MeshDOR oree | [~ MeshDOR |
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2nm

700
600
500
400
300
200
100

Access time (nS) \ Size (kB)

8 32 64 128 256 512 1024 2048

—cache 4 way =—cache 8 way -——scratchpad

Static power (mW) \ Size (kB)

8 32 64 128 256 512 1024 2048

—cache 4 way =—cache 8 way -——scratchpad

Area (mm2) \ Size (kB)

8 32 64 128 256 512 1024 2048

—cache 4 way =——cache 8 way -——scratchpad

Dynamic power (mW) \ Size (kB)

8 32 64 128 256 512 1024 2048

—cache 4 way =—cache 8 way =——scratchpad
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Next Steps: Hardware Model Inventory

- Update Hardware Power/Area models
o current models are projected from figures in literature

> Run hardware components through Synthesis (FreePDK@45nm and 14nm)
- TLB Design Study

> Quantify power/area benefit of moving TLB to memory interface

> NOC Design Study

> BookSim to do performance evaluation of NOC configurations
> OpenSOC to generate RTL for synthesis to quantify HW model
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