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Introduction and Motivation 1: Time-Temperature Superposition

* This work is part of an ongoing predictive modeling effort developing * Isothermal frequency sweeps (0.1 Hz to 10 Hz) were
multi-scale thermal-mechanical finite element models to better collected with a dynamic mechanical analyzer (DMA)
understand how module deployment environments induce the damaging at and above the materials’ glass transition regions
stresses that lead to module degradation (EVA: -40°C, POE: -60°C)

* The viscoelastic nature of polymer encapsulant is potentially a key factor * Williams-Landel-Ferry (WLF) equation was used to
affecting component stress states =ncapstiant find shift factors (o), with parameters C, and C,

* This poster summarizes the steps taken to populate a material model for Fespsuiant optimized to storage modulus (E’) data
two encapsulant polymers: poly( ethylene vinyl acetate)(EVA) and a
polyolefin elastomer (POE)
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2: Model of Linear Viscoelastic Behavior 3: Thermal Expansion and Relaxation
Loss and Storage Modulus of POE Loss and Storage Modulus of EVA * Coefficient of thermal eXpansion (CTE) was measured
| | | using a thermal mechanical analyzer (TMA).
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4: Universal Polymer Model 5: Polyethylene Crystallization 6: Model Validation Efforts and Future Work
* Parameters from the data fitting described above will * A key thermal transition not yet captured in the EVA * Conduct stress-relaxation experiments to increase
be used to populate Sandia’s Universal Polymer Universal Polymer model is polyethylene confidence in viscoelastic model in the low frequency
Model [DB Adolf, RD Chambers, J. Rheology 2007], crystallization/melting, observed in differential regime
including: scanning calorimetry (DSC), DMA and TMA
 WLF parameters and reference * This transition affects the thermal expansion as well * Validate the constitutive material model using a
temperature as the viscoelastic behavior of the material and cantilever deflection technique on encapsulant
* Linear viscoelastic model Prony terms occurs within the operating temperature range of laminates:
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* This model has already been demonstrated with ,
curing kinetics in structural foams [K. Long et al., . \~/ e Similar experimental methodologies will be used to
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