
PRESENTED BY

Ryan Prescott

SAND2019-AAAAAA Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Ft Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2019-1812PE

Outline

Approach

Overview

0 Software

- Platform

Challenges

Architecture Approach

4 SAFe Context

The GMS project is using the Scaled Agile Framework (SAFe)

Provides an approach to scale agile development practices for multi-team projects such as GMS

Adopted at the start of development (PI 1)

Agile Architecture principles and practices are part of SAFe

Goal: active evolution of system architecture & design while business features are developed

Intentional Architecture & Emergent Design

Architecture Runway

5 Architecture in SAFe

The system evolves over the course of development through a balance between
Intentional Architecture — Planned initiatives to guide the overall System design across teams & features

Avoid redundant and conflicting designs

Emergent Design — Development teams drive the design of solutions as part of feature development

Based on the Agile Manifesto principle: The best architectures, requirements, and designs emerge froln sef-organkingteams[11

6 Architecture in SAFe

Architecture Runway: components, infrastructure, etc. needed to develop near-term features
Developed by teams

Guided by architects

Implemented now ...

Enabler

Feature
Feature

Feature

... to support
future Features

•
•

• •
•

0A11111111111111111111C1"r°1111.1.61.11111.111111.1111...*.°1°1491•

•

Enablers build up the runway

Features use the runway to deliver faster

Architectural Runway must be continuously maintained

Use Capacity Allocation (a percentage of train's overall
capacity in a PI) for Enablers that extend the runway

Architec ura Runway

7 Architecture Specification

The GMS architecture is developed incrementally each PI to support feature implementation

The architecture is documented using a small set of views

Representations of the system focusing on specific concerns

Adapted from the 4+1 View Modeitil

Logical View

Focused on the high-level functionality provided by the System

Overview diagrams (freeform), UML Class Diagrams and textual descriptions

Deployment View

Focused on the design of the physical/virtual platform and deployment of software components

Scenario View

Use Case Realization model developed during the Elaboration Phase

Used as a reference, but not actively updated

Likely to be replaced with a small set of light-weight scenarios

Architecture Overview -
Software

9 Logical View Layers

The GMS software architecture can be organized into a set of
layers

User Interface — The User Displays, organized into User
Interfaces, together with supporting components

Application - The orchestration of services into processing
workflows that implement the core mission logic

Service — Software functions supporting automatic processing
workflows and User Interface interactions

Data Access — Interface software providing access to persistent
data while encapsulating the underlying storage implementation

Framework - Shared project software providing common
support functions and implementing standard patterns

Higher layers depend on lower layers

1
User lnterface Layer User Interface —

Display
 > API Gateway

i\--2 I I

i

Application Layer ,_. Processing
_ (sequences)

Orchestration
< -

-r ''(
I- —
i V ,
1---
Processing Service ,Mk v

Service Layer (Control) ingPro: icervsses Proces.sings
ce

\ — Plugin
(Plugin) (Other)

_2
'

'

.
.. ;

- - 1

'/r
r

V)

Data Access Layer

Data Access

, Service

-N
COI Data Model

1

- - Data Store
_,
<-'

Framework Layer Control PSC Comms
1/4.

OSD Config • • •

10 1 Framework Layer — Object Storage & Distribution

Supports access to persistent data in the System, while encapsulating the underlying storage technologies

Includes

Data Model — Object model for persistent GMS data

Data Services — Access methods exposed via the GMS Comms framework (JSON/MessagePack over HTTP)

Data Repositories — Access methods exposed as a Java API

Storage layer — Underlying Storage technologies and data model mappings

Storage Layer Technologies

Postgres — Station reference, data acquisition and processing results

Apache Cassandra — Channel Segment data (raw & filtered waveforms,
beams, FK timeseries)

User lnterface Layer

Application Layer

Service Layer

Data Access Layer

Framework Layer

Framework
SW

COTS

1
Client Application

N

Comms Client

c -\
Client Application

Data Respositor
A

s
1--
Data Seivice

Y__,

\, szl Nat 1
Data Model

Comms Server Class .
A

Data Respository

CRUD
Operations

:

CRUD
Operations

,
COTS Data Stores

11 1 Framework Layer — Comms

Supports network communication among components within and across layers of the System

Includes

Network protocols and data encodings supported by COTS

° Java client & server encapsulating protocols and encodings

Supported communication patterns

o Request/Response

o Publish/Subscribe

Technologies

Request/Response: JSON & MessagePack over HTTP

Publish/Subscribe: TBD

Enables integration of components implemented in multiple
languages

User lnterface Layer

Application Layer

Service Layer

Data Access Layer

Framework Layer

r
Client Application

Comms Client

\- A

HTTP request/response
(JSON or MessagerPack)

Comms
Framework J

COTS

I
Comms Subscription .

[Client

publish/subscribe
(JSON or

MessagerPack)

-1

COTS Broker

r r 7
Comms Server

J

...Provider Application

Comms Publisher

-1

 }

12 I Framework Layer - Configuration

Supports definition, loading, and runtime access to configuration settings
Offline definition in YAML files, supported by config tools and versioned as part of the GMS release process

o Loaded into persistent data stores as part of the runtime System

Modifiable within the runtime System via the User Interface

Two types of configuration
1. System Configuration - Settings used for general application setup (e.g. DB connection parameters, logging levels)

2. Processing Configuration - parameters used to configure processing operations such as filtering, beaming, FK,
detection, association. Parameters can be defined and accessed for combinations of selection criteria (e.g. station,
channel, phase, source region, time of year, etc.)

User lnterface Layer

Application Layer

Service Layer

Data Access Layer

Framework Layer

COTS

GMS SW

Service Application

Config Client

API Gateway

Config Client

Retrieve &
Cache

Retrieve &
Cache

Publish
Updates

Publish
Updates

Config Backend

Config Loader

Config Export

Config Support
Tools

13 Framework Layer - Control

Provides standard patterns and Java software supporting development of extensible components
deployed either as libraries within an application (e.g. processing workflow), or as standalone
applications accessed via service interfaces

Control Components
D Entry point for automatic processing business logic

. Filtering, beaming, FK, detection, association, location, magnitude, etc.

. Accessed from automatic processing sequences and UI

o Independent of other Control components

o Develop and replace in insolation

Plugins
O Implement algorithms

O Extension point for new algorithm implementations

o Deployed as selectable algorithm within Control components

Data

Descriptors

User Interface Layer

Application Layer

Service Layer

Data Access Layer

Framework Layer

Control Application

Application
Framework

Other
Frameworks

4-0.
Control Component

<)

r -,
Data Access

Client
......_ f

p -,
Data

Service
.. .,

Config
Client

i M
Plugin Registry

r
Config

Framework,.. i

14 1 Framework Layer — Processing Sequence Controller

Supports orchestration of services into processing flows (e.g. station processing, network processing)

Key extension point

o Processing flows support both automatic processing and User Interface interactions

- Supports multiple flow types, deployment models and data passing models

. Data-driven and interval-driven flows

. In-line and external service models

. Direct data passing (in-line or via network service) and Descriptor passing (similar to claimcheck pattern)

Implemented using Apache NiFi

o Open-source orchestration framework for automated data processing flows

o Designed for scaling, fault tolerance, extensibility, security

User lnterface Layer

Application Layer

Service Layer

Data Access Layer

Framework Layer

Data
E1121121)

Processing Wokflow

r

Or

Timer

External
Processing

Step

A

121E1E1)
r
In-Line Processing

Step

 J

Descriptors Java Servicel
[

A
Library

A _}

Retrieve Data
for Descriptors

Store
Data

Processing Service

Retrieve Data
for Descriptors

r)

Data

r
In-Line Processing

Step

I Java Servicem

.___ Llbrary

sss)
 * •••

Data

Store
Data

Data Service

COTS

GMS SW j

15 I Data Access Layer

Provides access to persistent data in the System via a Common Object Interface (COI) consisting of:

. Shared data model (Java classes, JSON or MessagPack)

. Data services for access via the GMS Comms framework (HTTP)

. Enables cross-language integration

o Java clients direct access (native protocols)

Encapsulates the underlying storage technologies, including physical schemas, query languages,

Supports access from the User Interface, Application, and Service layers

Implemented via the Object Storage & Distribution (OSD) framework

User lnterface Layer

Application Layer

Service Layer

Data Access Layer

Framework Layer

Framework
SW

COTS

Client Application
N

Comms Client

etc.

c -\
Client Application

Data Respositor
A

ss
1--
Data Seivice

Y__,

\, szl Nat 1
Data Model

Comms Server Class .
A

Data Respository

CRUD
Operations

:

CRUD
Operations

,
COTS Data Stores

16 Service Layer

Processing functions available via well-defined interfaces

o Key extension points

o Orchestrated into processing workflows in the Application layer via the PSC framework

O Invoked from the User interface layer to support user interactions

O Implemented via the GMS Control framework

Network Service Interfaces

- Support direct data passing and descriptor pattern (JSON or MessagePack over HTTP)

Examples

- Waveform QC, Filtering, Beaming, Signal Detection,
Signal Detection Association, Event Location, etc.

User lnterface Layer

Application Layer

Service Layer

Data Access Layer

Framework Layer

Control Application

Data

Descriptors

I—Application
Framework

Other
Frameworks

4—*

4—*

Control Component

Data Access Config
Client Client

Data
Service

iPlugin Registry

Config
Framework,

17 Application Layer

Orchestration of services into processing flows (e.g. station and network processing)
, Primarily Control components from the Service Layer

Supports automatic processing and User Interface interactions

Components may be embedded within the processing flow runtime or deployed as external applications
invoked via network interfaces
, External application model enables cross-language integration

Supports multiple flow types, deployment models and data-passing models
Data-driven and interval-driven flows

' In-line and external service models

- Direct data passing (in-line or via network service) and descriptor passing (similar to claimcheck pattern)

Implemented via the Processing Sequence Controller framework (PSC)

User lnterface Layer

Application Layer

Service Layer

Data Access Layer

Framework Layer

Data
SSEI)

Processing Wokflow

Or

Timer

External
Processing

Step

EEs)

Descriptors

1
In-Line Processing

Step
 >

r Java Service '

ik
Store

1

for Descriptors
r if

Data for Descriptors
I

Retrieve DataRetrieve Data

14 >1

Library
A A

Processing Service

r

/---
In-Line Processing

12121E1) Step
 Yo

Data
Java Service
L_ Llbrary ,

sos>
 > ...

Data

Store
Data

Data Service

COTS

GMS SW

18 I Ul Layer — Overview

GMS User Interface composed of Displays, supported by an
API Gateway backend

Current focus: Analyst User Interface

Displays support User interactions with the System

. E.g. Waveform Display, Signal Detection List, Event List, Map
Display, etc.

The API Gateway mediates interactions with lower layers
(Application, Service, Data Access) and provides UI support
functions

o Standard pattern popularized as part of Microservices
architectures

User lnterface Layer

Application Layer

Service Layer

Data Access Layer

Framework Layer

rUser Interface
display
state

Display

Ul Cache 4 API Gateway Client

app
data

Queries &
Mutations

API Gateway

User Session
Manager

<

Subscriptions

Web Server

A

API Gateway Server

API Processor

,

COTS

GMS SW

Processing
Services

Data Services

19 I Ul Layer - Displays

Displays implement a shared design pattern

3 Layout controlled via a Layout Manager

3 Access to shared UI state and application data via a
UI Cache

3 Access to processing functions (Application &
Service layers) and persistent data (Data Access
Layer) via the API Gateway

Technologies

3 Language: Typescript

o Web UI Framework: React

o Layout Manager: Golden Layout

3 UI Cache: Redux

3 API Gateway Client: Apollo GraphQL client

User lnterface Layer

Application Layer

Service Layer

Data Access Layer

Framework Layer

-1.lser Interface

Layout Manager

r u I Cache

U I State

Application Data

map state into
component

<
update

(dispatch
actions

Display

J
State Resolver

query cache

<
update
cache

GraphQL
operations

API Gateway Client

COTS
•. .i

GMS SW

GraphQL queries
& mutations

 ,

f 1

GraphQL
subscriptions

API Gateway

1

1
1
1
I

20 Ul Layer — API Gateway

Intermediary between the User Interface and lower
layers (Application, Service, Data Access),
providing:

o API consolidation, routing & composition

o Protocol translation

o Data model views

o User authentication & session management

o Mocked backend

Technologies

• Language: Typescript

- Application framework: Node.js

API: GraphQL (Apollo)

GraphQL is an open-source data access language

User lnterface Layer

Application Layer

Service Layer

Data Access Layer

Framework Layer

User Interface

GraphQL queries
GraphQL

& mutations
subscriptions

API Gateway

Session Manager

n Session Cache

Web Server

A

API Gateway Server

GraphQL
Schema

Processor Pattern

Ul data model

A

Processor

COTS

GMS SW
Processing
Services

Data Services

1
1
1

Architecture Overview -
Platform

22 I GMS Software Deployment

Docker containers provide the standard
deployment unit for GMS software components

Docker is a framework for packaging and deploying
application components

Docker Compose/Swarm is a framework for
defining, deploying, scaling and monitoring
distributed container-based applications

o Docker EE is a commercial distribution of Docker
frameworks with licensed support

Each GMS deployment includes two primary
elements:

- A Processing Cluster (VM or server-based) built
using Docker Swarm

o A set of UI workstations

GMS Deployment Platform

Workstation 1

GMS SW Release X. Y

: Ul Layer (partial)

Workstation 2

GMS SW Release X. Y

: Ul Layer (partial) :

•
•
•

Workstation N
,
GMS SW Release X. Y

Ul Layer (partial)

. -
, -
/ Processing Cluster
(Docker EE Swarm)

GMS SW Release X. Y

Ul Layer (partial)

Application Layer

Service Layer

Data Access Layer

Framework Layer

Swarm nodel
(server or VM)

...
Local named
volumes

Swarm node2
(server or VM)

.......-

Local named

—____volumes

• • •

Swarm nodeN
(server or VM)

c

Local named
volumes__

GMS Release X. Y Deployment

23 GMS Software Deployment

The Processing Cluster hosts the following
layers of the application:

UI (partial) — Includes the API Gateway and web
server

0 Application — The controller NiFi cluster with
deployed processing workflows

Service — The set of replicated services
implementing GMS processing functions

Data Access — The data stores (Postgres and
Cassandra), together with data services & clients
supporting access from the layers above

Workstations host part of the UI layer,
including the browser & Desktop clients,
together with an optional copy of the API
Gateway

T Workstation 1

Browser (Chrome)

User Interface

Electron

User Interface

(Optional)

Docker Container

API Gateway Ul
Layer

Workstation 2

Browser (Chrome)

User Interface

Electron

User Interface

(Optional)

Docker Container

API Gateway Ul
Layer

Workstation N

Browser (Chrome)

User lnterfac;]

Electron

User Interface,

(Optional)

Docker Container

API Gateway Ul
Layer

Docker EE Swarm Cluster

c 1
C
c 1 Docker Container

UlDocker Container ,

API Gateway
Web Server (NGINX)
, ,

Layer

\.
,

'.)

Controller(NiR Cluster) (Minions)
c 1(Master) , 1

Docker Container
c
Docker Container

Application
Layer

NiFi Node
‘. ,

NiFi Node
,

.)

e

c
c

\
c-

e
Docker Container

e
Docker Container Service

Processing Service A \-- Processing Service B
lll

. • •
Layer

} _,

c 1_ c
.\-1c 1 c

c
Docker Container

c .N
Docker Container

Data Service A
, \._

Data Service B
• . .

.,./

•
.

Channel Segment Store (Cassandra Cluster)

Data
Access
Layer

c l
c

\
Docker Container

Docker Container Postgres
'./\._ Cassandra Node

\. .i

Swarm nodel
(server or VM)

Swarm node2
(server or VM)

• • •

Swarm nodeN
(server or VM)

Local named
volumes

Local named
volumes

Local named
volumes

24 Platform Evolution

GMS platform development started with the Red Hat OpenShift container platform

Problems uncovered during early development caused the project switch to the Docker EE platform in PI 6

O OpenShift is an enterprise-scale product that is difficult to deploy and support for a single project
O High license cost

O Substantial support effort required (System team, consultants)

O Misalignment of core features

o Source-to-image designed for single container per service per repository

Docker EE experience so far

o Significantly reduced platform complexity

o Simplified deployment model

Transition

PI 6: Single-node testbed deployment (Docker Compose)

PI 7+: Clustered testbed deployment (Docker Compose, Docker Swarm)

Architecture Challenges

26 Architecture Challenges

Architecture Runway

The project has struggled to establish and maintain an architecture runway

Lack of shared software frameworks & standardization has hindered development

Intentional Architecture vs. Emergent Design

O Over-reliance on emergent design early in development

O Insufficient architecture guidance has hindered development

Architecture Runway lag resulting in
excessive technical debt and rework

Now

High

.

A N
S myste

i Architect e'

2 g.z
m • ciB 0u
I As
IA%
Low Teams

Intentionaf
Arch itectu re

fo>

"bc3Cl• -Ne
i!O

ee Emergent
Design

27 I Project Response

Established a dedicated Architecture team in PI 5 focused on providing more rigorous architecture
guidance further in advance

Higher-formality documentation and team hand-offs

Established a dedicated Frameworks team in PI 7 to accelerate development of the architecture
runway
. Shared frameworks improve reduce complexity and effort to develop application components

Framework Layer Control

c -s

PSC
, ."

Comms
)

OSD
,

Config
,..

•••

29 I References

[1] Kruchten, Philippe (1995, November). Architectural Blueprints — The "4+1" View Model of
Software Architecture. IEEE Software 12 (6), pp. 42-50.

31 Application Layer — Station Processing

Basic Station Processing flow under development

Starting design: interval driven with external services
r

•

Station Processing Process Group

Processor

Statlon Processing
Initiator

Timer

IISEIE1)
interval.

Processing
Group

Filter
Processor

(HTTP diem')

Fitter Service
(Control)

lE112110)
Processor:

Route Arrays
to Beam

Beam
Processor

(HTTP cfient)

CS Data Service

Beam Service
(Controf)

Signal Detection Process Group

Detect
Processor

(HTTP client)

OBEI)

SDH
Descriptor

FM
Processor

(HTTP cfient)

Detection Service
(Control)

Investigating data-driven alternative with in-line processing services

Data Acquisition Process Group

Processor

RawStationDataFrameParser

Detection Data
Service

Channel
Segment
Descriptors

Processor

Fitter Service

'moo)

Station Processing Process Group

Processor:

Route Arrays
to Beam

[121101E1)

Processor

Beam Service
121E1B)

Processor

Detection Service

Signal Detection Process Group

rE1121121) I-Processor

&gnat
Detection

Hypotheses

FM Service
Oram)

CS Data Service
Detection Data

Service

32 I Application Layer — Network Processing

Initial Signal Detection Association flow development starting PI 7

Investigation of data-driven vs interval-driven associator

• • • *

1'

Processor

Station Processing Process Group

 *
Signal

(
Processor:

Route based
on timeliness

Detection
Hypotheses ./

Network Processing Process Group

Current Data Association
Process Group

Associate
Processor

(HTTP client)

Detection Data
Service

)

4

*

Late Data Association
Process Group

1- •-
Associate
Processor

(H7TP client)

SD Association Service
(Control)

A

If

EH, SDH

)111111. • • •

 * • • •

SD Association Service
(Control)

*
Event Data
Service

