
Coupled Machine Learning and
Reservoir Simulations to Forecast
Marine Sediment Properties

PRESENTED BY

Michael Nole

U.S. NAVAL
ESEARC

LABORATORY

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of

Energy's National Nuclear Security
Administration under contract DE-NA0003525.

SAND2019-1775PE



2 Team

Sandia National Laboratories
o PI: Jenn Frederick (geosciences, code development)
O Michael Nole (geosciences, code development)

o Ken Sale (methanogenesis)

• Hongkyu Yoon (geomechanics)

O Brian Young (geophysics)

Naval Research Laboratory

o Warren Wood (machine learning, code development)

O Ben Phrampus (machine learning, code development)

UT Austin
O Hugh Daigle (petrophysics, modeling)

~LoTRAN

I
GPSM



3 I Project Overview
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4 Why Machine Learning?
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5 GPSM

Global Predictive Seafloor Model

o Developed at NRL by Warren Wood and Ben Phrampus

k-Nearest Neighbors Machine Learning

o Uses proximity in parameter space (predictor space) as a proxy for similarity

o Non-parametric (does not make assumptions about underlying probability distribution of observed data)

o Only predicts values from within the range of observed data (linear interpolation)

o Interpretive bias comes in selection of k



6 GPSM

Observed Value
• e.g. permeability

Ex.
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1 Predicted value (predictand)
• e.g. permeability
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Forecast

Uncertainty

Guide

Based on sparse known

data, and hundreds of

dense calculated predictors,

GML produces continuous
maps of desired sea oor

quantities, such as porosity,

sediment type, total organic

carbon content, etc.

GML produces estimates of
sea oor quantities and

1 their uncertainty, which is

based on prediction error.
A well sampled parameter

space will reduce

parameter uncertainty.

Uncertainty results can be

used to guide future data

acquisition campaigns.

Increasing observations

where prediction error
(uncertainty) is high will

bene t predictive skill

globally.



7 What geophysical properties would we want to predict?

Sound travels through the waterand through the sediments.
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• Gas has a huge effect on the speed of sound in a composite medium
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8 I Elastic Mechanics Models
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• Vp is a strong function of Sg
• Sg is f(4), Pg, kg, 1-1 P,

organic carbon content, and
on and on and on...)

Wilkins and Richardson, 1998



9 I Elastic Mechanics Models
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10 Machine Learning in Geosciences
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11 I Coupled Machine Learning — Physics Model Approach

Seafloor Total Organic Carbon

-120 -90 -60 -30 30 60 90 120 150 180 00 0.5 0.0

MIIMI 

0.00 Percentpryweight. 3.00

b )

1400 —

1200

1000 -

800

600

400

200

I
• Use machine learning to

generate probabilistic maps
constrained by physical
principles

Gas-free Sound Speed 1423 in/sec

• Use maps of predictors
(including probabilistic
maps) as inputs to
petrophysical models

 ► Pc f'd' Pc e f (Sw)

kr = f (S„,„ Sy)

cen (z) = k aAa

• Use petrophysical models to
deterministically simulate
for unknowns (i.e. Sg, Sh)

• Use maps of unknowns to
update geophysical models
(i.e. Vp)
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1 2 Open-source Software Development
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13 1 -FLOTRAN
Petascale reactive multiphase flow and transport code

Open source license (GNU LGPL 2.0)

Object-oriented Fortran 2003/2008

Pointers to procedures

o Classes (extendable derived types with

member procedures)

Founded upon well-known (supported) open source libraries

• MPI, PETSc, HDF5, METIS/ParMETIS/CMAKE

Demonstrated performance

o Maximum # processes: 262,144 (Jaguar supercomputer)

o Maximum problem size: 3.34 billion degrees of freedom

o Scales well to over 10K cores

Wa
ll

-C
lo

ck
 T
i
m
e
 p
er
 T
i
m
e
 S
te

p 
[s

ec
] 

256

128

64

32

16

8

4

PFLOTRAN 270 M dof
Idea

1024 2048 4096 8192

Number of Cores

16384 32768



14 Gas Hydrate Simulation Capability in PFLOTRAN
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1 5 Gas Hydrate Simulation Capability in PFLOTRAN

Model Domains

Hydrate reservoir

.1) = 0.4

• k = 10 mD; lx10-14 m2

• Thickness: 200 m

0 Bounding muds

• (ks = 0.3

O k = 0.010 mD; lx10-17 m2

O Thickness: 250 m on top and bottom

° Simulation:

O Generate methane in situ to form hydrate for 100 kyrs

O Dissolve + dissociate hydrate for 50 years

O 1D: Pumping (mass sink)

O 3D: Heating (heat source)

1D

o Grid: 600 @ 1 m

o Well

O 10 m long

O Pumping 8.7x10-4 g/s water, 1.3x10 4 g/s methane

O Runtime: 6 sec

0 3D

• Grid: 10 x 10 x 302

O X: 10 @ 10m

• Y: 10 @ 10m

O Z: 2 @ 150 m on top and bottom; 300 @ 1 m in reservoir

O Heat Source

O 150 m long

O 12 kW; 0.8 W/m3

O Runtime:

O 4 cores

• —1 hr (mainly taken up in 3-phase state with buoyant flow)



16 Gas Hydrate Simulation Capability in PFLOTRAN

Seafloor: -1.5 kmbsl
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G = 19°C/km
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methanogenesis

300 m

Well

t=to t=100 kyrs

F
Mud i
Mud

I





18 I Gas Hydrate Simulation Capability in PFLOTRAN
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19 I Gas Hydrate Simulation Capability in PFLOTRAN

o Cross section of 3D model domain
cut to show insertion of the heat
source in the center of the reservoir
(outlined)

o Sh -- l - S1 - Sg

o Gas hydrate is generated from an in
situ source for 100 kyrs

o Heat source is turned on at 100 kyrs
for 50 yrs



20 Gas Hydrate Simulation Capability in PFLOTRAN
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21 Gas Hydrate Simulation Capability in PFLOTRAN
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22 Gas Hydrate Simulation Capability in PFLOTRAN
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23 I Modeling Gas Hydrate Systems with PFLOTRAN

Opportunities

o An open source gas hydrate systems simulator

o Can take advantage of HPC resources (basin-scale, probabilistic runs)

Areas for Improvement

o Arctic focus will require ice implementation as well

o Salinity effects should be fully coupled in (right now this can be achieved through sequential coupling)

o Heterogeneity parameterization

Better description of capillary phenomena

Integration with petrophysical models

Coupling with geomechanics




