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Project Overview

GML-
predicted
continuous
fields of
seafloor
parameters

Thermodynamic
modeling which uses GML-
predicted seafloor

par ameters:
porosity, thermal conductivity,
sediment type, heat capacity, organic
carbon content, etc.

Geo-acoustic
properties can be
determined knowing
the likelihood of

encountering gas for
SONAR performance

/

Geo-mechanical
properties can be
determined, including
effects of encountering

gas for mine warfare




4 I Why Machine Learning!?
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s I GPSM

Global Predictive Seafloor Model
> Developed at NRL by Warren Wood and Ben Phrampus

k-Nearest Neighbors Machine Learning
> Uses proximity in parameter space (predictor space) as a proxy for similarity
> Non-parametric (does not make assumptions about underlying probability distribution of observed data)
> Only predicts values from within the range of observed data (linear interpolation)

o Interpretive bias comes in selection of k



6

GPSM

Observed Value
e.g. permeability .

Predicted value (predictand)

Geospatial Machine Learning Algorithm

Find Correlations
vector of
predictorvalues

vector of
observed values

Global

,o,é Predictive
Sea oor Model
oo Us. NAVAL_L|
e ESEARC
LABORATORY

e.g. permeability

Forecast

Based on sparse known
data, and hundreds of

+4 dense calculated predictors,

ncertainty

S FELK

GML produces continuous

{ maps of desired sea oor
guantities, such as porosity,

sediment type, total organic
carbon content, etc.

GML produces estimates of
sea oor quantities and
their uncertainty, which is
based on prediction error.
A well sampled parameter
space will reduce
parameter uncertainty.

» Uncertainty results can be

used to guide future data
acquisition campaigns.
Increasing observations
where prediction error
(uncertainty) is high will
bene t predictive skill
globally.




7 I What geophysical properties would we want to predict?

» Gas has a huge effect on the speed of sound in a composite medium




g8 | Elastic Mechanics Models
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9 I Elastic Mechanics Models
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10 I Machine Learning in Geosciences

Seafloor Total Organic Carbon
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Coupled Machine Learning — Physics Model Approach

Seafloor Total Organic Carbon
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Use machine learning to
generate probabilistic maps
constrained by physical
principles

« Use maps of predictors
(including probabilistic
maps) as inputs to
petrophysical models
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Use petrophysical models to

deterministically simulate
for unknowns (i.e. S, Sy)
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Input
Parameters

Parameter
database

Open-source Software Development

Uncertainty
Sampling and

DAKOTA

Sensitivity Analysis

Explon and peedict with coalidience,

Computational Support

f‘

P pgthoﬂ ‘ Paraliel Visualization Application
dfnWorks ”l ‘
L e

Pre-/Post- \ r Visualization \
Processing I”P" rq Vie!ﬂ/

Multi-Physics Simulation and Integration

Source Term and|
EBS Evolution Model

PFLOTRAN

Isotope partitioning
Decay, ingrowth
Thermal effects
chemical reacti

Flow and Transport. I'ﬁﬂmilei].\

Advection, diffusion, dispersion
Discrete fracture networks
Sorption, solubility, colloids

(Ei’xc_mﬁnm) beib.ii\

B Exposure
pathways
B Uptake/
transfer
B Dose

calculations
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Petascale reactive multiphase flow and transport code

256

Open source license (GNU LGPL 2.0)
128 -

Object-oriented Fortran 2003/2008

> Pointers to procedures

64|

> Classes (extendable derived types with 32}

member procedures) 16}

8¢

Wall-Clock Time per Time Step [sec]

Founded upon well-known (supported) open source libraries

PFLOTRAN 270 M dof —@—
Ideal

o MPI, PETSc, HDF5, METIS/ParMETIS/CMAKE To2a

Demonstrated performance
° Maximum # processes: 262,144 (Jaguar supercomputer)
° Maximum problem size: 3.34 billion degrees of freedom

o Scales well to over 10K cores

2048 4096 8192 16384 32768
Number of Cores



14 | Gas Hydrate Simulation Capability in PFLOTRAN
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15 | Gas Hydrate Simulation Capability in PFLOTRAN

Model Domains ° 1D
° Hydrate reservoir ° Grid: 600 @ 1 m
o =04 o Well
> k=10 mD; 1x10-1* m? ° 10 m long
o Thickness: 200 m ° Pumping 8.7x10* g/s water, 1.3x10* g/s methane

i o Runtime:
> Bounding muds u e: 6 sec

© ¢ =03 ° 3D
° k=10.010 mD; 1x10"'7 m? o Grid: 10 x 10 x 302
° Thickness: 250 m on top and bottom ° X:10 @ 10m

> Y:10 @ 10m

o Simulation:

o Z:2 @ 150 db :300 @ 1 m 1 i
° Generate methane in situ to form hydrate for 100 kyrs @ 1. 91 10p and. boLiomm; @ 1 m in reservoir

° Heat S
> Dissolve + dissociate hydrate for 50 years cat source

° 150 m long
o 12 kW; 0.8 W/m?

o Runtime:

> 1D: Pumping (mass sink)
> 3D: Heating (heat source)

° 4 cores

° ~1 hr (mainly taken up in 3-phase state with buoyant flow)



16 | Gas Hydrate Simulation Capability in PFLOTRAN

Seafloor: ~1.5 kmbsl

TSf = 50C
G = 19°C/km

600 m

Reservoir

methanogenesis

300 m

Well

»t=100 kyrs




17 I Gas Hydrate Simulation Capability in PFLOTRAN
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18 | Gas Hydrate Simulation Capability in PFLOTRAN
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19 | Gas Hydrate Simulation Capability in PFLOTRAN

o Cross section of 3D model domain
cut to show insertion of the heat
source in the center of the reservoir

(outlined)

©8,=1-5,-5,

> (Gas hydrate is generated from an in
situ source for 100 kyrs

> Heat source 1s turned on at 100 kyrs
tor 50 yrs
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Gas Hydrate Simulation Capability in PFLOTRAN
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Gas Hydrate Simulation Capability in PFLOTRAN
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Gas Hydrate Simulation Capability in PFLOTRAN
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Modeling Gas Hydrate Systems with PFLOTRAN

Opportunities

> An open source gas hydrate systems simulator

° Can take advantage of HPC resources (basin-scale, probabilistic runs)

Areas for Improvement

> Arctic focus will require ice implementation as well

o

Salinity effects should be fully coupled in (right now this can be achieved through sequential coupling)

o

Heterogeneity parameterization

o

Better description of capillary phenomena

o

Integration with petrophysical models

o

Coupling with geomechanics
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