SAND2019- 1752PE

Ge/SiGe quantum electronic devices

RXX (k()) 1 T201219, idotU 10 o
0.7 10 e [p=3.6x10"] »] —Best Fits

’ 1690 Low Density Double Dot loo

1680, 1" los

-30-20 - 0 E
0401 g% o “
: A 93 4= - A ; : 6 ‘h
Tt x 931 =il AR Weampes = s |
CDQ Q -30-20-10 0 10 20 30 T 04 |

362 TS—
361;, ‘lh.' 1." 1‘,'1‘:”;6{6”0."‘
5 0 -30-20-10 0 10 20 30
15 5 B (mT)

3.

p (10'%m?)
Tzu-Ming Lu

Department of Quantum Phenomena,
Sandia National Laboratories, New Mexico

U.S, DEPARTMENT OF A ] ' o
—— — — — ENERGY IVA XY

et Mo Sacary Achminatanors

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a
wholly owned subsidiary of Honeywell
International Inc. for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-
NA0003525.



Sandia
National _
Laboratories

Acknowledgements

= Sandia National Laboratories: M. P. Lilly, D. Laroche, L. A. Tracy, C. T.

Harris, N. T. Jacobson, J. Moussa, A. D. Baczewski, D. R. Luhman, W.
Hardy, and L. N. Maurer.

= National Taiwan University: C. W. Liu, J.-Y. Li, C.-H. Lee, S.-H. Huang,
Y. Chuang, Y.-H. Su, C.-T. Chou

= NHMFL

This work at Sandia National Laboratories has been supported by the Division of Materials Sciences and Engineering, Office of Basic
Energy Sciences, U.S. Department of Energy (DOE) and the Laboratory Directed Research and Development Program. This work was
performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences, user facility. Sandia
National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia,
LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security

Administration under contract DE-NA-0003525. The views expressed in this presentation do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

F-'.“‘s\ UE DEFARTMENT OF o N = ( u
\@/ENERGY fWA’ LDRD

[ S ey ey s )




Sandia

Outline Natonel

= Ge/SiGe heterostructures
= Device operation
= Properties of 2D holes in Ge/SiGe

= Quantum Hall ferromagnetic transition
= Spin qubits in Ge/SiGe
= Summary




Sandia
National
Laboratories

2D electrons/holes

confined




2D electrons in Si Sand

Laboratories

Si MOSFET Undoped Si/SiGe HFET




Band alignment of SiGe heterostructures Sandi
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Undoped Ge/SiGe heterostructure field-effect transistors

Al O, (90 nm)

Ge QW (25 nm)

HT-Ge Buffer (100 nm)
LT-Ge Buffer (200 nm)

= Si Buffer (200 nm)
p-Si(100) substrate
HH
LH
Laroche, Appl. Phys. Lett. 108, 233504 (2016)

Su, Phys. Rev. Mater. 1, 044601 (2017)
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Device operation — mobility Sanin
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« Mobilty on the order of 2x10° cm?/Vs achievable T=03K
* Mobility increases with density
=> screening
« Shallower channels have lower mobilities
=> oxide/GeSi interface is disordered

Mobility (cm®/Vs)

Hole Density (cm™)

Su, Phys. Rev. Mater. 1, 044601 (2017)




Device operation — 2D hole density Soncin
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1 =
« The 2D hole density saturates. 103 10 T=0.3K
‘ 9. x10"

« Shallow channels : « 58 nm

» High saturation densities, depth dependent. 8|

» Small slopes (capacitances)
« Deep channels 6 116 nm

» Low saturation densities, depth independent.

» Large slopes (capacitances) 1.6 1.2 0.8 '04
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Su, Phys. Rev. Mater. 1, 044601 (2017)




Device operation — 2D hole density
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The tunnel rate is limited by The tunneling rate is high (compared to ZDHG Depth (nm)

triangular barrier (set by Si%) and is
depth independent.

The tunnel rate can be so low that
the density only slowly decreases
and never reaches equilibrium at low
temperatures!

experiment time scales).

The density probed by the Hall effect
approaches the equilibrium case.

Su, Phys. Rev. Mater. 1, 044601 (2017)
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Device operation — 2D hole density Soncin
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In a perpendicular magnetic field... Sandia
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Cyclotron motion, Ec = heB
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Spin splitting, gap Ez = guB,4
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Energy spectrum in a magnetic field Sandi
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Physical properties — effective mass (even filling factors)

¢ ~0.08 m,.
« ~ density independent.

* This mass is small compared to the
mass of electrons in Si (0.19), the mass
of holes in GaAs (0.2-0.4), and is
comparable to the mass of electrons in
GaAs (0.07).

« Smaller mass
=> more extended wave functions
=> easier gate controls for
nanostructures
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Physical properties — effective mass (even filling factors)

strain £ Laboratories
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Physical properties — g factor (odd filling factors) Sandi

~10-30
~ density dependent.
| 30+ .
The g factor is large compared to the g +
factor of electrons in Si (~2) and the g
factor of electrons in GaAs (~0.44). +
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§ Data from our work.
Lu, Appl. Phys. Lett. 111, 102108 (2017)
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Adapted from McCann Physics 2, 98



Wea

K anti-localization (spin-orbit coupling)

Spin and momentum are locked together.
Back scattering is suppressed.
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Physical properties — spin-orbit coupling Sonda

« Low densities
» Weak localization only —26x10" ] — Best Fits
* Intermediate densities : ; Low Densi
» Weak anti-localization on top of weak
localization only
* High densities
» Weak anti-localization only

302010 0 10 20 30 405 0 35 10
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Chou, Nanoscale 10, 20559 (2018)




Physical properties — spin-orbit coupling Sonda

« Spin-orbit length decreases with 1000 -*-Tp
150

i w

density and can be as short as 0.1 um
(< mean free path), while the phase
coherence length can be a few
microns long (>mean free path)
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Physical properties — weak antilocalization beyond diffusive regime @
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« Conventional theories for weak (anti)localization are only valid in the diffusive regime at low magnetic fields.
» QOur data lie outside this regime.

* Numerical methods and code for HPC available with paper.

Chou, Nanoscale 10, 20559 (2018)




The quantum Hall effect Sand
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In a perpendicular magnetic field, the spectrum of a 2D gas is a series of Landau levels:

Ec is cyclotron gap: heB/(2rm¥*)

¥ < tEZ

Ez is Zeeman gap: g*uB

Ec ] EC-EZ>EZ
4 ,' t E m* and g* are material parameters.
ry . Z

Ec 1 Ec-Ez>Ez
v -’

- 1"
Ec 1 Ec'Ez>Ez

.15

Landau level degeneracy (# electrons / area):
eB/h

Lu, Scientific Reports 7, 2468 (2017)
I



Quantum Hall ferromagnetic transition
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In most cases, Ec >> Ez
—> Strong even states, weak odd states

If Ec ~ 2Ez
= Strength of even states ~ strength of odd
states

If Ec < 2Ez
—> Strong odd states, weak even states

Ez/Ec increases with decreasing density.

Lu, Scientific Reports 7, 2468 (2017)




Quantum Hall ferromagnetic transition Sanin
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Quantum Hall ferromagnetic transition Sanin
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The physical picture of the system at the transition:
micro-domains of different spin configurations. Away from the transition, one spin configuration is
preferred. Domains move and merge to minimize surface energy.

Evidence of micro-domains is found in the time dependence.
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Local gating to create counter-propagating edge states with opposite spins

“Impurity-generated non-Abelions”
Simion Phys. Rev. B 97, 245107 (2018)




Spin qubits in Ge/SiGe Sond,

Implications for Quantum Dots

* Low Disorder
- Help Dot-Dot Coupling
* Small Effective Mass
- Help Dot-Dot coupling
- Easier Lithography
* Anistropic g-factor
- Large g-factor allows operation at smaller
magnetic fields

- Dot-to-Dot variation is possible : . Quantum
. Strong Spin-Orbit—CoupIing 1. Isolation 2. Accumulation 3. Plunger Dot

= Natural mechanism for qUbit Contr|
- Introduces additional noise channel

Surface electrodes used to laterally confine hole

The effect of confinement on these
properties remains largely unexplored

Hardy, unpublished.



Spin qubits in Ge/SiGe Sandi
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= Single Hole confined to lateral
quantum dot
= Spin Qubit States: m;=+3/2

= Qubit readout and initialization
through energy selective
tunneling to reservoir

= Qubit Control through
microwaves applied to gate

1. Isolation 2. Accumulation 3. Plunger

= QOccupancy detected through
nearby charge sensor

Hardy, unpublished.




Spin qubits in Ge/SiGe Sandi
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Goals:

* Independent Control of occupation and tunnel barriers
* Tighter Confinement

* Low Capacitance for EDSR

S
T um

1. Isolation

2. Accumulation 3. Plunger

Quantum
Al,O, + HfO, Dot

Ga implanted Ohmic contacts

Hardy, unpublished.




Spin qubits in Ge/SiGe Sandi
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Hardy, Nanotechnology (accepted)




Spin qubits in Ge/SiGe

Three Metal Layer Device
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1. Isolation 2. Accumulation 3. Plunger

Coulomb Blockade observed in
the three-metal-layer devices

Hardy, unpublished.
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Summary

= |nduced 2D holes in Ge/SiGe heterostructure field effect
transistors demonstrated.

= Device behavior can deviate from thermal equilibrium.

= Physical properties (mass, g factor, spin-orbit coupling
strength) characterized.
= Gate controlled quantum Hall ferromagnetic transition

observed at low densities. Platform for topological
superconductivity?

= Development of spin qubits in Ge/SiGe




