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2D electrons in Si
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Band alignment of SiGe heterostructures
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This work

Properties of Silicon Germanium and SiGe: Carbon. Edited by: Kasper, Erich; Lyutovich, Klara (2000)



Undoped Ge/SiGe heterostructure field-effect transistors
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Device operation mobility

• Mobilty on the order of 2x105 cm2/Vs achievable
• Mobility increases with density

=> screening
• Shallower channels have lower mobilities

=> oxide/GeSi interface is disordered
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Device operation — 2D hole density

• The 2D hole density saturates.
0...

• Shallow channels r'.1
> High saturation densities, depth dependent.
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T = 0.3 K

E 8
> Small slopes (capacitances) Ci)

• Deep channels
> Low saturation densities, depth independent.
> Large slopes (capacitances)
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Device operation 2D hole density
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Device operation 2D hole density

—tunneling rohability
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In a perpendicular magnetic field...

B
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Cyclotron motion, Ec = heBperp/m*

Spin splitting, gap Ez = au„. Btotal



Energy spectrum in a magnetic field
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Physical properties — effective mass (even filling factors)

• — 0.08 mo.
• — density independent.

• This mass is small compared to the
mass of electrons in Si (0.19), the mass
of holes in GaAs (0.2-0.4), and is
comparable to the mass of electrons in
GaAs (0.07).

• Smaller mass
=> more extended wave functions
=> easier gate controls for
nanostructures

a
150

100

50

0

-50

-100

-150

p = 3.66x1011 cm-2

3.79 K
3.11 K
2.44 K
2.15 K
1.86 K
1.65 K
1.43 K
1.30 K
1.19 K
1.19 K

12 16 20 24 28 32 36

Filling Factor

b
0 16

0 12

EQ

E

0.08

0.04

0
2 3 4

hole density (1011 cm-2)

NaTioinaal
Laboratories

5

Hardy, Nanotechnology (accepted)



Physical properties effective mass (even filling factors)
strain E
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Physical properties — g factor (odd filling factors)

• — 10 — 30
• — density dependent.

• The g factor is large compared to the g
factor of electrons in Si (-2) and the g
factor of electrons in GaAs (-0.44).
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Weak localization (no spin-orbit coupling)
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Weak anti-localization (spin-orbit coupling)

Spin and momentum are locked together.
Back scattering is suppressed.
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Physical properties — spin-orbit coupling

• Low densities
> Weak localization only

• Intermediate densities
> Weak anti-localization on top of weak

localization only
• High densities

> Weak anti-localization only
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Physical properties — spin-orbit coupling

• Spin-orbit length decreases with
density and can be as short as 0.1 um
(< mean free path), while the phase
coherence length can be a few
microns long (>mean free path)

• This means the hole spin can rotate
at a high yet controlled rate, maintain
its phase coherence, and suffer no
scattering.
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Physical properties — weak antilocalization beyond diffusive regime Sandia
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• Conventional theories for weak (anti)localization are only valid in the diffusive regime at low magnetic fields.

• Our data lie outside this regime.

• Numerical methods and code for HPC available with paper.

Chou, Nanoscale 10, 20559 (2018)



The quantum Hall effect

In a perpendicular magnetic field, the spectrum of a 2D gas is a series of Landau levels:
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Ec is cyclotron gap: heB/(2nm*)

Ez is Zeeman gap: g*p.B

m* and g* are material parameters.

Landau level degeneracy (# electrons / area):
eB/h
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Quantum Hall ferromagnetic transition

a
(, Ez

1 Ec I Ec -Ez >Ez

• T Ez

.
# 
• i 

t Ez

I Ec 

. 
1 Ec-Ez=Ez

,
# 
• i 

1 Ez

1 Ec

•
•

•
•

1 Ez

Ec-Ez<Ez

1 Ez

p = 1.91x1011 cm-

14 9
112101

8
7

6

7

5

J

p = 1.03x1011 cm"

11

3

Bp (T)
1.7

Sandia
National
Laboratories

In most cases, Ec >> Ez

Strong even states, weak odd states

If Ec 2Ez

Strength of even states N strength of odd

states

If Ec < 2Ez

Strong odd states, weak even states

Ez/Ec increases with decreasing density.

Lu, Scientific Reports 7, 2468 (2017)



Quantum Hall ferromagnetic transition
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A spin transition (unpolarized <-> polarized)

at v=2 occurs at p-2.4x101° cm-2.

This transition marks the point where Ec—Ez

heB/(2iim*) = g*p.B

m*g* = 2

Lu, Scientific Reports 7, 2468 (2017)



Quantum Hall ferromagnetic transition Sandia
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The physical picture of the system at the transition:
micro-domains of different spin configurations. Away from the transition, one spin configuration is
preferred. Domains move and merge to minimize surface energy.

Evidence of micro-domains is found in the time dependence.

by S. Zurek, E. Magnetica, CC-BY-3.0
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Quantum Hall ferromagnetic transition

Local gating to create counter-propagating edge states with opposite spins

"Impurity-generated non-Abelions"

Simion Phys. Rev. B 97, 245107 (2018)
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Spin qubits in Ge/SiGe

Implications for Quantum Dots
• Low Disorder

- Help Dot-Dot Coupling

• Small Effective Mass

- Help Dot-Dot coupling

- Easier Lithography

• Anistropic g-factor

Large g-factor allows operation at smaller

magnetic fields

- Dot-to-Dot variation is possible

• Strong Spin-Orbit-Coupling

- Natural mechanism for qubit control

- Introduces additional noise channel

The effect of confinement on these

properties remains largely unexplored

Surface electrodes used to laterally confine hole
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Spin qubits in Ge/SiGe

• Single Hole confined to lateral

quantum dot

• Spin Qubit States: mj=+3/2

• Qubit readout and initialization

through energy selective

tunneling to reservoir

• Qubit Control through

microwaves applied to gate

• Occupancy detected through

nearby charge sensor

reservoi:'

rge sor

1. Isolation 2. Accumulation 3. Plunger
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Spin qubits in Ge/SiGe

v. Isolation 2. Accumulation 3. Plunge'

Ga implanted Ohmic contacts
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Goals:

• Independent Control of occupation and tunnel barriers
• Tighter Confinement

• Low Capacitance for EDSR

A120? + Hf02

Quantum

Dot

Hardy, unpublished.



Spin qubits in Ge/SiGe

Single Layer Devices
can be tuned to low-
hole regime in
transport

Device 1

x=85% Ge

100 nm

A1203

(D) Coulomb Diamonds

0

'"

" 046 05 052 DU OM M 06

URP (V)

1(10."A)

•

65 05 052 054 056 054 06

Device 2

x=70% Ge
24 nm A1203

+1 nm Hf02

ass aN 0 016 02 022 024 026

URP (V)

05

URP (V)

92012

URP (V)

(a)
2000

1000

c
o
co

a -1000

-2000

(b)

200
c

0 100

a 0
), -400

-20o0 0 2o00
x position (nm)

111

-200 0 200
x position (nm)

NaTioinaal
Laboratories

2000 i

1750 20
1500 t`i

1250 TD

1000,
750 o5

-0
500 0

2
250 2

u0

500 
E
—

a

400 C3
2
t)

300 ̀,TD)

Z'
200 2

400 -8
100 tb

ct3
c..)o

Hardy, Nanotechnology (accepted)



Spin qubits in Ge/SiGe

Three Metal Layer Device
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1. Isolation 2. Accumulation 3. Plunger

Coulomb Blockade observed in
the three-metal-layer devices

Hardy, unpublished.
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Summary

■ Induced 2D holes in Ge/SiGe heterostructure field effect
transistors demonstrated.

■ Device behavior can deviate from thermal equilibrium.

■ Physical properties (mass, g factor, spin-orbit coupling
strength) characterized.

■ Gate controlled quantum Hall ferromagnetic transition
observed at low densities. Platform for topological
superconductivity?

■ Development of spin qubits in Ge/SiGe


