Objective

Harmonic balance methods are applied to solve parabolic
partial differential equations in the frequency domain
when periodic boundary conditions are applied.

Frequency remapping schemes enhance the efficiency of
the harmonic balance method. However, existing
remapping methods overlook degenerate frequencies,
resulting in incorrect numerical reformulations.

We designed an isofrequency remapping scheme to solve
the problem introduced by degenerate frequencies,
maintaining harmonic balance accuracy and efficiency.

Harmonic Balance Method

We briefly describe the harmonic balance method as it has
recently been incorporated in Charon [1] for semiconductor
physics modeling. Its implementation simultaneously
supports multiple spatial discterization formulations.

For the electron drift-diffusion equation

on
5 T Fn(np ) =0, (1)
a solution ansatz for n(x, t) is introduced:
No(x) + Y [N%(x) cos(2mat - @t) + N3 (x) sin(27d - @t)].  (2)
acT
The fundamental frequencies (w1, - - - ,wy) =: @ € R’ are
boundary condition frequencies (wlog, w; < w;1) and

& ¢ Z' produce fundamental frequency combinations & - .

A truncation scheme 7 like the box or diamond scheme
limits the harmonics appearing in the ansatz expression [2].
Note: we only require® € 7 or —a € T.
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The harmonic balance equations are the spatial residuals’
Fourier coefficients. Balancing the cos(27ta - t) coefficients
of (1) for spatial element V and basis function A(x) yields:
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where w’' are quadrature weights determined by the
Discrete Fourier Transform and R is a spatial residual.
Note: L is a number of time sample points at least 2 - |0 |o
to ensure accuracy by the Nyquist Sampling Theorem.
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Frequency Remapping Method and Degenerate Frequencies

The Discrete Fourier Transform in (3) is prohibitively
expensive for problems concerning many and/or great
fundamental frequencies, i.e., when ¢ or ||« are large.

In the literature, frequency remapping methods like
Artificial Frequency Mapping (AFM) [3] and Almost
Periodic Fourier Transform (APFT) address this by
performing a remapping « — 77 in (2) and (3) to result in
fewer summands for the Discrete Fourier Transform.

However, even in a two-tone simulation, for example, with
(w1, wr) = (1.0 MHz, 1.1 MHz),

the first fundamental frequency can be a degenerate
frequency because two linear combinations coincide:

(10,0) - (w1, wy) = (—1,10) - (wy, wy)

If w1, wy are remapped to 11, 72, we must maintain

(10,0) - (71,772) = (=1,10) - (171, 772)-
AFM and APFT do not account for degenerate frequencies.

Hence, if coefficients 52,,5 €T yielda - w = B ., then an

—

accurate remapping must yield « - 7 = § - 7j. Furthermore,
ifa-w # B-w,then we must also havea - 77 = B - 1. [4]
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[sofrequency Remapping Scheme

As the number of frequencies increases, more frequencies
can degenerate (elements of 7 - & collide). For example,

@ = (2Hz,3Hz,4Hz)

has many combinations which produce 8Hz from
non-linear terms; in particular, 7(t)> produces

3
Y NS cos(27td - Ot) + Nasin(27a - Ot
aeT
which we expand visually (introducing t := 271t):

N§ cos(0%) N§ cos(0%) N§ cos(0%)
N§ cos(2F) N§ cos(2F) N§ cos(2F)
N§ cos(3t) ><N3C cos(3f) N§ cos(3t)
N§ cos(4t) N§ cos(4t) N cos(4t)

It is easy to see that there are collisions:
cos(2t) cos(3t) cos(3t) = NoN3N3cos((1,2,0) - @) + - - -
cos(4t) cos(2t) cos(2t) = NyN>Np cos((2,0,1) - @) + - - -
cos(4t) cos(4t) cos(0f) = NyN4Npcos((0,0,2) - @) + - - -
where the three truncation coefficients
i:=(1,2,0), p:=(2,01), F:=(0,0,2)

all yieldd - &0 =f-@& =7 -& = 8Hz.

We capture degenerate frequencies by casting the frequency remapping scheme itself as the solution to an integer linear
programming problem over an integer convex cone and exploit the minimizing property of a Hilbert basis. In the

following discussion, we fix a truncation scheme 7. We are guided by the simple fact that @ - & = - @ < (& — B) - @ = 0.

Hence, two necessary and sufficient properties of a frequency remapping candidate # for a remapping scheme w — 7 are:

(a—é)-@:o@(a—@-ﬁ:o
(@—p) w#0<= (@—p)-7#0

preserve degenerate frequencies (4)
do not introduce new degenerate frequencies ©)

for all @, § € T. Strengthening condition (5) by choosing an appropriate sign, we choose to enforce
@—B)-@>0«= (d—p)-7>0. (6)

Observe that candidates 77, i satisfying (4) and (6) form a positive convex cone in Z'. For, affine combinations are respected:

@—p)-ijz0 ’
(@—pB)-#=0,

= (@ —p)- (A

(1-ME) =0 VAol (7)

We seek 7j such that |7f|c < |@0|e to minimize the number of time collocation points for the Discrete Fourier Transform in (3).

Algorithm

1.From T, form S = {s,5:=& — B|d,f € T and (@ — ) - @& > 0}
2. Define the annihilators A := {s € S|s- @ = 0} and non-annihilators N/ := S\ A.
3. Define the convex integer cone C C Zfbyn-{ > 0,Yn € Nanda-{ =0,Va € A.

4. Determine a Hilbert basis H for C, well-defined because C # @ since @ € C.
All elements of C are expressible as linear combinations of elements of H.

5. Minimize the {—1,0, +1} combinations of elements of H.

Choose a minimizer 77 among these 3"/ — 1 non-trivial frequencies as the
remapping candidate. We call the mapping @w — 7y an isofrequency remapping.
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Example: multi-tone application

Appying our algorithm, a 5 order box truncation with
¢ = (0.12 MHz, 1.11 MHz, 1.2 MHz)

can preserve degenerate frequencies without introducing
new degeneracies by using the remapping «w — 77 where

i = (4 Hz, 37 Hz, 40 Hz)
Here, & = (2,1,4) and 8 = (5,5,0) correspond to 6.15 MHz.

Example: high-frequency, multi-tone problem

Applying our remapping, Charon’s harmonic balance
method correctly captures the modulation response of a
PN diode under a two-tone, high-frequency stimulus:
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Summary

Traditional frequency remapping methods do not address
degenerate frequencies arising in harmonic balance
methods, and so can produce inaccurate problem
formulations. We have designed an isofrequency
remapping method in order to overcome degenerate
frequencies so that the harmonic balance method may still
be leveraged to accurately solve high-frequency or great
frequency problems.
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