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Why study the structure & dynamics of
DNA?

• Insight into biological function

DNA polymerase

DNA replication

Original DNA
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• DNA-based smart materials / DNA origami
Dietz, Science 2009
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estigating structure •f DNA

X-ray diffraction image: B-DNA

Franklin, Gosling, Nature 171, (1953)

Traditional approaches: 
X-ray diffraction, Cryo-EM, NMR

Pros:
• Atomic-scale resolution

Cons: 

• Cannot study dynamics (XRD, Cryo-EM)

• Bulk averaging (XRD, NMR)

• Highly perturbative



Combi optical tweezers & fluorescence
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Refs:

• Heller et al., Chem. Rev. 114, (2014).

• Fazal et al., Nat. Photonics 5, (2011).

• Bustamante et al., Nature 421, (2003).

Pros:

• investigate dynamical
properties

• Highly specific
labeling

• Single-molecule
sensitivity

Cons: 

• Spatial resolution
limited by diffraction
("250 nm)



Outline fo today:

• Use fluorescence polarization microscopy w/
optical tweezers & DNA force spectroscopy

• Gain insight into S-DNA, an elusive DNA structure
that forms under tension

Refs:

Cluzel et al., Science 271, (1996).

Smith et al., Science 271, (1996).



Fluorescence polarization imaging of
stretched DNA
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Polarized excitation Resolve polarized emission

Dipole, ri

Dyes intercalate between

DNA base pairs

DNA intercalators &
overstretching:

Biebricher et al. Nat. Commun. 6, (2015)

Schakenraad et al., Nat. Commun. 8, (2017)

• Polarized light is preferentially absorbed and emitted along
dipole axis ii

• Use polarization to infer orientations of intercalated dyes



The Overstretching Transition (OST)
& Polarization Response

X-DNA: Lc = 16.5 p.m
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Interpretation: Within the OST, base pairs align intercalators

perpendicular to the DNA-axis
*Refs:

van Mameren et al. PNAS 106, 18231 (2009)

King et al. PNAS 110, 3859 (2013)

Intercalated dipole

DNA-axis



The Overstretching Transition (OST)
& Polarization Response

X-DNA: Lc = 16.5 p.m
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WHAT OING ON??

Two hypotheses*:

Wobbly dipoles

Or

Tilted dipoles

(Or some combination of the above)

• From previous measurements, not enough info to distinguish
wobble from tilt

*van Mameren et al. J. Chem. Phys. 14, 123306 (2018)



A New Strategy...

Trapped

particle

DNA

• Repeat the
experiment, but this
time stretch the
DNA beyond the
OST at an angle co...

= 45° ; > 1.7
YOY0-1 Labeled DNA
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Hypot esis• Tilted dipoles

First, an intuitive explanation:
• Assume cylindrical symmetry

• All dipoles tilt by a mean angle 9

Cylindrical
symmetry

• For particular DNA orientations, different subsets of
dipoles are excited



uanti ying •ipo e nd wobble

Compute fluorescence emission polarization ratios for different
DNA orientations co:

x — x Iy 

XP (CU) x Ix

(x-polarized excitation)

Fit polarization data to a theoretical model
Estimate the parameters:

• Mean axial tilt 0
• Wobble-cone a

Refs:

Lew & Backlund et al. Nano Lett. 13, 3967 (2013)

van Mameren et al. J. Chem. Phys. 14, 123306 (2018)

Irving Biophys. J. 70, 1830 (1996)

I Iyx yy
y P (CO) =

I + Iyx yy

(y-polarized excitation)

Wobble, a
;""

Tilt, 0



Beyond

Wobble, a
Tilt, 0

i

inte alator tilt

Within The OST (L/Lc = 1.3)
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*Compare with:
Cruz et al. Proc. Natl. Acad. Sci. USA 113, E280 (2016); van Mameren et al. J. Chem. Phys. 14, 123306 (2018)



Single-int to •maging

Bulk measurements leave a key question unanswered:

• Could dipoles 'twirl' about
the DNA-axis?

• Stretched DNA in a high ionic strength buffer (1M NaCI)
Beyond the OST. (Favors S-DNA formation.)

• Observed single binding/unbinding intercalators



Single-intercalator "polarization switching"
beyond the OS

Single
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Pol.

• Excitation polarization switches emission
polarization of a single dye molecule



Single-intercalator "polarization switching"
beyond e OST
• For DNA oriented at co = 45°, Excitation biases emission

1

0.5

-0.5

1

Wobble, a
;••••• Tilt, 0

YOY0-1

• w = 0°

• co = 45°

° ° (b:14.,
. 0

-.no._
0 8 • :

,s27, 0 
04 ow°

4,:',.0.00

0,5,-

0 000
6 0.

00
0

(go 0 0 0 
6..•

.(40 

• 
0

8::. _
• 0

0 0

0
. .1 -0.5 0

xP

0.5

YOY0-1:

• 0 = 53.9° ± 0.5°
• a = 29.8° + 1.1°

1

1

0.5

y P 0

-0.5

1

SYTOX Orange

0

°

o CO = 0°

) (0 = 4 5 °

o
8 0C10
o8

1 

-

% oo
0 o

o

o

° 8
0'6 °0
® 00

0 -
00

1 -0.5 0

xP

0.5

_SYTOX Orange:

• 0 = 53.3° + 0.7°
• a = 21.4° + 1.9°

1



I ntercalators Twir

• Dipoles twirl at a rate faster than the camera exposure time (1 sec),
but slower than the fluorescence lifetime (-3 nsec)

Twirling

Exc. Pol.

Wobble
cone

DNA-axis

• Dipole twirling due to Brownian twisting of the DNA - rotational
correlation time estimated as -100 nsec*

* Barkley and Zimm J. Chem. Phys. 70, (1979).

Also see: Yang et al., Nano Lett. 18, (2018). (Rotational diffusion of DNA mixtures)



Sheddin light o -DNA

• Our data directly shows tilted (dye)
dipole orientations in conditions
favoring S-DNA

• Theoretical modeling has long

predicted that DNA base pairs incline

under tension.

•tgititC/1/7:7

B-DNA S-DNA

Applied

tension

Kosikov et al., J. Mol. Biol. 289 (1999)
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lntercalator tilting occurs abruptly at the
end of the OST
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Less depolarization at higher dye concentration
(Hyperstretched* YOPRO-labeled DNA)
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*Schakenraad et al., Nat. Commun. 8, (2017)



Less depolarization at higher dye concentration
(YOYO-1-Labeled DNA, different concentrations)
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Distinguishing wobble and tilt

• O constant, a varied
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Different experimental
configurations considered:

A
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Measurement: Fluorescence intensity
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Difference between rotating DNA vs. rotating
excitation polarization

A (Excitation polarization rotated)
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Effect of energy transfer on
estimated tilt and wobble

Rekttive DNA extension: Within the OST (regime 2) 

t9

/3- 100 85.4° ± 3.9° 28.3° ± 4.7°

13- 200 85.3° ± 3.6° 25.6° ± 5.2°
= 30° 85.2° ± 3.2° 20.3° ± 6.8°

Relative DNA extension: Beyond the OST (regime 3) 

fi = o0 53.7° ±1.4° 38.7° ±1.9°
Jo' = 20° 54.0° ±1.4° 37.4° ± 2.0°
fi = 30° 54.5° ±1.4° 35.0° ± 2.2°



Excitation polarization modulation
• Excited single dye molecules using 6 different excitation polarizations rotated 30

degrees apart.

• Fit intensity data to a sinuosoid, extracted modulation depth y
(rotational mobility), and phase (preferred orientation in x/y plane)
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The magic angle: Om = tan-1(-M eez,' 54.7°

Cylindrical
symmetry

DNA-axis

Dipole

• At magic angle, 2nd moments
of dipoles projected along x-,
y-, z-axis are equal

• A method that relies only on
excitation/emission
polarization senses only
dipole 2nd moments

• By using excitation and
emission polarization, can
measure 2nd and 4th moments


