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Alkaline Membrane Fuel Cells
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» Reaction kinetics at both electrodes are more facile at high pH

» Higher operating voltages are possible (due to lower overpotentials)

* Alternative fuels (alcohols) are easier to oxidize at high pH

* Non-noble metal catalysts can be used (significant cost reduction)

* Not a new concept - AFCs were used in the Apollo spacecraft and early space
shuttle Orbiter vehicles. @
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Membrane Issues

There is no commercial standard AEM (such as Nafion® for PEM).

1. Backbone stability
«  Membrane must maintain mechanical integrity for up to 5000h at high pH.
«  Must be stable to MEA fabrication (hot and dry)
2. Stable cationic groups
*  Quaternary ammonium groups can be attacked by OH'.
3. Conductivity
«  OH inherently 2-3x less mobile than H*
« Identity of anions (OH/CO4%/HCO;)
«  Conductivity at low RH
4. Water swelling
«  Physical stress on cell hardware due to expansion/compression.
«  Delamination of electrodes from membrane.

From DOE Alkaline Membrane Fuel Cell Workshops, May 8-9 2011
April 1, 2016
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‘ AEM Polymer Backbones
- -) g

Radiation-grafting of functionalized poly(styrene) onto quorinated polymers?:

‘ Dypretitin__ @ o
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CH.CI

CHZCI N
FEP = -[CF,CF5][CF(CF3)CF5)m- |

Bromination of poly(2,6-dimethyl-1,4-phenylene oxide)?:

Nl / .
oy = Q==

CH,Br

Poly(ethylene)-based AEM from ROMP3:

CH33
O OC Grubbs' 2nd gen. CH33
catalyst
Danks, T. N.; Slade, R. T. C.; Varcoe, J. R. J. Mater. Chem., 2003, 13, 712. W

Wu, Y.; Wu, C.; Xu, T,; Lin, X; Fu, Y. J. Membr. Sci., 2009, 338, 51. _
3Kostalik, H. A.; Clark, T. J.; Robertson, N. J.; Mutolo, P. F.; Longo, J. M.; Abruna, H. D; @ Sandia
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V% ' Cations on Anion Exchange
= Membranes (AEMs)

A Typical Commercially-available TN

Q00

* Crosslinked polystyrene with
benzyl trimethylammonium groups (BTMA) /\ﬁ/
» Typically blended with PVC or a polyolefin \

» Cast on fabric support O O O
\@ \®
N

» Used for electrodialysis

N
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Three degradation pathways for quaternary ammonium groups:
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AEMs made at Sandia:
Poly(phenylene)-Based Membranes

ATMPP

Hibbs, M. R.; Fujimoto, C. H.; Cornelius, C. J. Macromol. 2009, 42, 8316. @ ﬁa?_dial
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Hydroxide conductivities were measured

in liquid water at room temperature.

SAXS indicated little or no microphase

separation.

- 60

- 50

- 40

- 30

- 20

- 10

Conductivity (mS/cm)

IEC (meg/g)

1.8 N
16 A A A A
1.4 -
1.2 -
O O O

10 O
0.8
0.6
0.4 - ASandia ATMPP  OTokuyama AHA
0.2 -

0 T T T T T

0 5 10 15 20 25 30
Time (days)

Test conditions: 4M NaOH (aqueous),
60 °C, no stirring.

AHA is “base stable” electrodialysis
membrane — crosslinked polystyrene.
Both membranes have BTMA cations.
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Fuel Cell Testing at LANL

—
H,/O, Fuel Cell polarization curves
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« ATMPP used as both membrane and ionomer/binder.
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« ATMPP 1,2, and 3 have increasing M,, (61, 77, 196 x103 g/mol) but similar IECs (1.7 meq/qg).
» Low Mw gives poor mechanical properties and poor membrane/electrode interface.
* Fuel cell testing was done at 60 °C, 0.3 V, with Pt/C catalyst on both electrodes (3 mg/cm?).
* Decline in current density is also presumably due to BTMA degradation.

» Testing performed by Yu Seung Kim at LANL.
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Fujimoto, C.; Kim, D.-S.; Hibbs, M. R.; Wrobleski, D.; Kim, Y. S.
J. Membr. Sci. 2012, 423-424, 438.
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Electrolysis Testing at Proton OnSite

Durability test at 27 °C with PGM catalysts and no added electrolyte

Established test bed for —_— = . —
Commercial Polysulfone  Polysulfone Sandia ATMPP

+ 600

mUItlple materials membrane membrane membrane membrane
collaborators 3 |
Failure criterion = 3.0 V.
Achieved 2000 hrs of
stable operation using
ATMPP membrane +
ATMPP ionomer.

Need to improve voltage
stability.

I 400
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Current Density (mA/cm?)
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- - ) Resonance-Stabilized Cations
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KOH Stability Test

Resonance-Stabilized Cations

Test conditions: Membranes immersed in 4M KOH at 90 °C.
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* Conductivities were measured with membranes
in Cl- form in 25 °C water.

« Hydroxide conductivity is generally 2-3x higher
than chloride conductivity.

* Benzyl imidazolium and benzyl guanidinium
cations are much less stable
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Decomposition of Benzyl PMG Cations
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Improving the Stability of
Quaternary Ammonium Groups

g
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One early study found that increasing the length of the alkyl tether on a
BTMA cation increased alkaline stability’

Tested for 30 days in 100 °C water (OH- form):

IEC (after/before)

\

4

Benzyltrimethylammonium 79 %

\ “on Tetramethylene spacer 92 %

Recent studies have confirmed the improved stability of model
ammonium compounds with pendant alkyl groups?

+

PR
N N
~
(T K A
Half-life in 6M NaOH at 160°C: 4.18 h 31.9h

Tomoi, M.; Yamaguchi, K.; Ando, R.; Kantake, Y.; Aosaki, Y.; Kubota, H. J. Appl. Polym. Sci. 1997, 64, 1161.

2Marino, M.G.; Kreuer, K.D. ChemSusChem 2015, 8, 513. @ ﬁgggﬁal
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Poly(phenylene) AEM with
Sidechains

/©/\COOH

l 40-50% yield 2 steps

o \@
(HiC)sN  N(CHg)s
1st generation Sandia AEM (ATMPP)

2 steps
OT O

commercially available

- DAPP is easier to make than MDAPP, with higher *"decneration Sandia AEW (TMACEPP)
molecular weights. -
» Synthesis of DAPP has been scaled up to ~1kg. @ National
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Poly(phenylene) AEM with
Sidechains

S
1) cast film from CHCI3

2) soak in trimethylamine (aq)
3) soak in NaOH (aq)

N
N\ TMACG6PP

Hibbs, M. R. J. Polym. Sci. Part B, Polym. Phys. 2013, 51, 1736.
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*- ' Poly(phenylene) with

- Alkyl Side Chains without Ketone

Q Br
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1) cast film from CHCI3
2) soak in trimethylamine (aq)
3) soak in NaOH (aq)
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Test conditions: Membranes immersed in 4M KOH at 90 °C.

TMACG6PP Alkaline Stability
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TMACG6PP shows the greatest stability in high pH test.

+ The ketone adjacent to the phenyl ring destabilizes
the side chains.

| | | | * Quaternized DABCO on hexyl sidechains with no

0 100 200 300 400 500 ketone are less stable than BTMA. @ Sandia
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' More Alkaline Stability Data
>

AEM stability test: Immerse AEMs in 0.5 M or 4 M NaOH at 80°C. Conductivity measured

at 30°C/95% RH during the stability test.
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Highlight: No conductivity & structural changes for TMAC6PP after 4 M NaOH treatment at
80°C for 2,200 h. > Most stable alkaline AEM reported
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- )‘ TMACG6PP Stress/Strain Testing

&5 8-22-A
« AEMs with sidechains show better 0
mechanical properties. S0 7
B
» With samples of similar molecular ]
weights, TMACG6PP has over twice P EEEEEEREX:
the elongation at break as ATMPP. Strain (%) TMAKCGPP . N
. 8-15-D °
« Elasticity (lack of brittleness), w7
especially when dry, is an important § o] /
property for membrane-electrode a 20-/’ o form
assembly fabrication. 101 o o IR
T Y ENEELE.
» This testing was performed at 50% Strain (%) TMAC6PP "
relative humidity and 50 °C. . 8-23-A
w0 e
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%20- // .
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Instability Due to Ketone
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abbreviated polymer
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enol cyclization products:
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phenyl—-cyclopentyl
ketone

enol Hofmann Elimination:

@]
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Me” "Me

phenyl-pentylene
ketone

enol dealkylation:

O I\llle
— N.
Me
Me

phenyl-dimethylamine
ketone

traditional pathways (e.g., substitution, Hofmann, dealkylation)

* Formation of enolate might begin pathway to cation degradation.
* Mechanisms that involve a 5- or 6-membered ring as an intermediate would be

particularly likely.

* Alonger sidechain would eliminate 5- and 6-membered ring intermediates.

Schemes drawn by Sean Nunez (PSU)

@)

Sandia
National
Laboratories



7
- ‘:" Stability of 10-Carbon Sidechain

Test conditions: Membranes immersed in 4M KOH at 90 °C.

120
2100
2
o
8 80
3 —+—ATMPP w/ BTMA
§ 60 - TMAKC6PP
I ——TMAC6PP
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10-Carbon chain without ketone
shows stability similar to TMACGPP.
» 10-Carbon chain with ketone

shows stability similar to

&= —t=—ATMPP w/ BTMA
g, TMAKGEPP TMAKCG6PP.
S e TRACEED » Enolate probably does play key role
o —=TMAKC10PP in degradation but not by intra-
—=—TMAC10PP molecular attack at the terminal
5 ammonium group.
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BrKCe6PPC6

TMAC6PPC6

* Flexible alkylene segments in backbone were intended to increase permeability of polymer.
« Typical M, for DAPPCG6 is 10K-15K, either due to low reactivity or purity of 1,9-decadiyne.
« TMACG6PPCG films are brittle but polymer is still useful as electrode ionomer.

Sandia
Alam, T.M.; Hibbs, M.R. Macromol. 2014, 47, 1073. @ National
Laboratories



using ATMPP and TMACG6PP

' H,/O, Fuel cell Performance of MEAs

Membrane: ATMPP (50 um thickness)
lonomer: ATMPP IEC=1.7 mg/cm?
Anode: Pt black 3.4 mgp/cm?
Cathode: Pt black 6.5 mgp,/cm?

Cell temperature: 80°C, Backpressure: 30 psig
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Cell temperature: 80°C, Backpressure: 15 psig
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Membrane: TMAC6PP (48 um thickness)

1.2

lonomer: TMAC6PP IEC=2.0 mg/cm?
Anode: Pt black 0.2 mgp,/cm?
Cathode: Pt black 0.2 mgp/cm?
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Conductivity = 50 mS/cm

T
0.0 0.1 0.2 03 04 05 0.6 0.7 0.8 09 1.0

Current density (A/cm?)

r 01

0.3

0.2

Power density (W/cmz)

0.0

« Peak power density of the MEA using ATMPP: 340 mW/cm? at high Pt loading and higher back pressure.

» Peak power density of the MEA using TMAC6PP: 260 m\W/cm? at low Pt loading and lower back pressure.

* Lower resistance of the TMACG6PP MEA is probably due to the fact that TMACG6PP membrane has slightly
higher IEC and AEM thickness effect.

+ Los Alamos
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~ ' Improved Performance with
= Poly(phenylene alkylene) lonomer

\e
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ATMEP | B TMAC6PP "o  TMAC6PPC6 NP H,/0, AMFC Performance

Improvement of MEAs
ATMPP + Pt/C

; : P ATMPP + Pt-Ru/C
MEA lonomer Comparison Anode Catalyst/ionomer HOR activity MAACERESE +iPE Rl
) A b) 125 ¢) 10 TMAC6PPC6 + Pt-Ru/C**
TMAC6PPC6 = 0.9 4\ - 0.9
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§ ) g G e 0.7 — 0.7 E
8 < Z 0.6 06 3
95 £ > =
= 8 = - 8 05 - - 05 G
g’ 0.8 %. 0.50 E g
= S = 0.4 - - 04 T
g S o254 |/ S 0.3 - Lds F
3 07 Membrane: TMACEPP s Pt/C + ATMPP ' 4 Ry
O - = 7o
Anode: Pt-Ru/C 0.5 mgp/cm? 8 o Pt-Ru/C + ATMPP 024 /-7~ Membrane: TMAC6PP |- 0.2
Cathode: Pt/C 0.6 mgp/cm? ! Pt-Ru/C + TMACGPPC6 == ol Anode: Pt/C 0.6 mgp/cm?|
: or Pt/Ru/C 0.5 mg/cm? .
0.6 T T T T -0.25 T T T T 0.0 T T T T 0.0
0.00 0.05 0.10 0.15 0.20 0.0 0.2 04 0.6 0.8 0.0 0.5 1.0 1.5 2.0
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*H, flow rate = 500 sccm, O, flow rate = 300 sccm
**H, flow rate = 2000 sccm, O, flow rate = 1000 sccm

« Poly(phenylene alkylene) ionomer has the lowest phenyl content (less adsorption on catalyst).
* Increasing flow rate greatly improves H, mass transport at the anode.

Maurya, S.; Fujimoto, C.H.; Hibbs, M.R.; Villarrubia, C.N.; Kim, Y.S. @ Sandia

» Los Alamos Chem. Mater. 2018, 30, 2188. kel



Conclusions

The combination of Sandia’s poly(phenylene) backbone with
alkyltrimethyl ammonium cations gives the most stable
hydrocarbon AEM available.

Resonance-stabilized cations (imidazolium and pentamethyl
guanidinium) are less stable to alkaline degradation than BTMA
cations.

Phenyl adsorption on the anode catalyst is a performance
limiting factor.

We are still working on the integration of non-PGM or low PGM
catalysts into alkaline fuel cells.
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Alkaline Electrolysis Cell

Solid polymer electrolyte
L~
= H2 Hydrogen electrode (cathode) » Oxygen electrode (anode)
J ( / Oxygen
02 Hydrogen Process
Water, heat
Protonic
Water
Liquid Electrolyte
(KOH) ) ) Process
L Water
[
sEpamlor DC Power
Liquid electrolyte Cell Membrane-based cell (PEM or AEM)

« Commercialized systems are either liquid KOH or PEM-based.
* Liquid electrolyte systems contain corrosive solutions (handling and materials
costs) and porous separators (gas crossover and high resistance across gap)
* PEM systems require platinum group metal catalyst such as iridium oxide,
whereas alkaline systems electrolysis can be conducted with Ni or Ag.
* An anion-exchange membrane based system would provide the advantages
of both alkaline liquid electrolyte and PEM systems. @ Sandia
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Electrolysis Data:
Cell Compression
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Cell conditions: 30 °C, 1M KOH, foam Ni electrodes, active area = 62 cm?
current swept from 0 — 40 Amps, @ Sandia
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Initial polarization curves at 50 °C with PGM
catalysts and no added electrolyte

Electrolysis Testing at Proton OnSite
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—— TMACG6PP + ADAPP ionomer

Cell Potential (V)
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—— Commercial membrane + ionomer
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Polarization curve ~200 mV above commercially available membrane
baseline for both ionomer tests
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200 mA/cm? steady state performance at 50 °C with
PGM catalysts and no added electrolyte

Electrolysis Testing at Proton OnSite
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Steady state performance indicated better stability versus

:;-..; PROTON commercial material. -
e . ON SITE Long-term testing TBD. @ National
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Mechanical Stability
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* Test conditions: 50 °C, 50% RH.

* Poly(arylene ether sulfone) shows significant degradation.

* Poly(phenylene) is weaker in OH- form, but there is no sign
of backbone degradation.
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