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Alkaline Membrane Fuel Cells
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• Reaction kinetics at both electrodes are more facile at high pH
• Higher operating voltages are possible (due to lower overpotentials)
• Alternative fuels (alcohols) are easier to oxidize at high pH
• Non-noble metal catalysts can be used (significant cost reduction)
• Not a new concept - AFCs were used in the Apollo spacecraft and early space
shuttle Orbiter vehicles. Sandia
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Membrane Issues

There is no commercial standard AEM (such as Nafion® for PEM).

1. Backbone stability
• Membrane must maintain mechanical integrity for up to 5000h at high pH.
• Must be stable to MEA fabrication (hot and dry)

2. Stable cationic groups
• Quaternary ammonium groups can be attacked by OH-.

3. Conductivity
• OH- inherently 2-3x less mobile than H±
• Identity of anions (OH-/C032-/HCO3-)
• Conductivity at low RH

4. Water swelling
• Physical stress on cell hardware due to expansion/compression.
• Delamination of electrodes from membrane.

From DOE Alkaline Membrane Fuel Cell Workshops, May 8-9 2011
April 1, 2016
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AEM Polymer Backbones

Radiation-grafting of functionalized poly(styrene) onto fluorinated polymers1:

1) y-radiation

2)

CH2CI

N(CH3)3/1-120

FEP = -[CF2CF2]n[CF(CF3)CF2]m

Brom i nation of poly(2,6-dimethyl-1,4-phenylene oxide)2:

Br2

n n

CH2Br

Poly(ethylene)-based AEM from ROMP3:

N(CH3)3

Grubbs' 2nd gen.
catalyst

N(CH3)34-120

o
X

ivkk,r-13,3

1Danks, T. N.; Slade, R. T. C.; Varcoe, J. R. J. Mater. Chem., 2003, 13, 712.
2Wu, Y.; Wu, C.; Xu, T.; Lin, X.; Fu, Y. J. Membr. Sci., 2009, 338, 51.
3Kostalik, H. A.; Clark, T. J.; Robertson, N. J.; Mutolo, P. F.; Longo, J. M.; Abruna, H. D.;
Coates, G. W. Macromol., 2010, 43, 7147.
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Cations on Anion Exchange
Membranes (AEMs)

A Typical Commercially-available
AEM:

• Crosslinked polystyrene with
benzyl trimethylammonium groups (BTMA)

• Typically blended with PVC or a polyolefin
• Cast on fabric support
• Used for electrodialysis

1

,\NC) I
...-- \ ...-- \

Three degradation pathways for quaternary ammonium groups:

0 LON—
OHL). 1

HO

+ 1N

2

+ CH3OH
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N® 

\

e HHOHL}
H

+ H2C=CH2
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AEMs made at Sandia:
Poly(phenylene)-Based Membranes
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Hibbs, M. R.; Fujimoto, C. H.; Cornelius, C. J. Macromol. 2009, 42, 8316.

=4,:= 60-80k

CH2Br

ifii Sandia
National
Laboratories



120

8a) 0

ca
a

40
ca

T
°Pft 

ATMPP Properties & Stability
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• Hydroxide conductivities were measured
in liquid water at room temperature.

• SAXS indicated little or no microphase
separation.

N(C F13)3 X°

N(a-13)3 x

ATMPP
poly(phenylene)
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• Test conditions: 4M NaOH (aqueous),
60 °C, no stirring.

• AHA is "base stable" electrodialysis
membrane — crosslinked polystyrene.

• Both membranes have BTMA cations.
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Fuel Cell Testing at LANL

H2/02 Fuel Cell polarization curves
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• ATMPP used as both membrane and ionomer/binder.
• ATMPP 1,2, and 3 have increasing M,, (61, 77, 196 x103 g/mol) but similar IECs (1.7 meq/g).
• Low Mw gives poor mechanical properties and poor membrane/electrode interface.
• Fuel cell testing was done at 60 °C, 0.3 V, with Pt/C catalyst on both electrodes (3 mg/cm2).
• Decline in current density is also presumably due to BTMA degradation.
• Testing performed by Yu Seung Kim at LANL.

Los Alamos Fujimoto, C.; Kim, D.-S.; Hibbs, M. R.; Wrobleski, D.; Kim, Y. S.
Sandia

L
Naatiorir I

a onesNATIONAL LABORATORY J. Membr. Sci. 2012, 423-424, 438. bo



Electrolysis Testing at Proton OnSite

Durability test at 27 °C with PGM catalysts and no added electrolyte

Established test bed for
multiple materials
collaborators
Failure criterion = 3.0 V.
Achieved 2000 hrs of
stable operation using
ATMPP membrane +
ATMPP ionomer.
Need to improve voltage
stability.
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Resonance-Stabilized Cations

N

pentamethylguanidine
DMAc, 80 °C

\N—

\ 0
N—

d

c

PMGTMPP

N —
N

N-methylimidazole
DMAc, 80 °C

N

e

ImTMPP (DMSO-d6)

c + d

PMGTMPP (DMSO-d6)

b

BrTMPP (CDC13) rif y b

 Ao.: ' 1,-;',...._.—tlik. 1  
4_—

, ;,,,,

,........., ....... .. , ........ ., .. ....... .........,... ..... ., .........,.........,. ...
9 2 7 5 4 3 P P Er. ii Sandiai tri p National

Laboratories

ImTMPP

a



100

>, 80

ti 60

g 40
c.)

Ts 20

4: 0
0

0
0

0.8
Lu 0.6

0.4
0.2
0
0

KOH Stability Test
Resonance-Stabilized Cations

Test conditions: Membranes immersed in 4M KOH at 90 °C.
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• Conductivities were measured with membranes
in Cl- form in 25 °C water.

• Hydroxide conductivity is generally 2-3x higher
than chloride conductivity.

• Benzyl imidazolium and benzyl guanidinium
cations are much less stable
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Decomposition of Benzyl PMG Cations
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• The relative areas of b and c peaks
decrease drastically after NaOH.
But b:c area ratio does not change.

• The probable mechanism is
nucleophilic attack by hydroxide
ion at the benzylic carbon:
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Improving the Stability of
-Fake Quaternary Ammonium Groups

One early study found that increasing the length of the alkyl tether on a
BTMA cation increased alkaline stability1

Tested for 30 days in 100 °C water (OH- form):

IEC (after/before)

79 %Benzyltrimethylammonium

Tetramethylene spacer 92 %

Recent studies have confirmed the improved stability of model
ammonium compounds with pendant alkyl groups2

Half-life in 6M NaOH at 160°C: 4.18 h

+
+ 1

K N).✓
i

31.9 h

1Tomoi, M.; Yamaguchi, K.; Ando, R.; Kantake, Y.; Aosaki, Y.; Kubota, H. J. Appl. Polym. Sci. 1997, 64, 1161.
2Marino, M.G.; Kreuer, K.D. ChemSusChem 2015, 8, 513. Sandia
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Poly(phenylene) AEM with
Sidechains

COOH

40-50% yield 2 steps

I

commercially available

2 steps

MDAPP

4.) 46. 41). sig
Õ

46. 48.
DAPP

2 steps

3 steps

• DAPP is easier to make than MDAPP, with higher
molecular weights.

• Synthesis of DAPP has been scaled up to -1kg.

o o
N(CH3)3 (H3C)3N

40. 0 4) •
®

41. 4.

/ \

o
(H3C)3N N(CH3)3

1st generation Sandia AEM (ATMPP)

/ \

2nd generation Sandia AEM (TMAC6PP)
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Poly(phenylene) AEM with
Sidechains

Br

Et3SiH, TFA, CHCI3

reflux
.

BrC6PP

-CO

r

DAPP

1) cast film from CHCI3
2) soak in trimethylamine (aq)
3) soak in NaOH (aq)

Hibbs, M. R. J. Polym. Sci. Part B, Polym. Phys. 2013, 51, 1736.
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Poly(phenylene) with

Alkyl Side Chains without Ketone

BrKC6PP

Et3Si1-1, TFA, CHCI3
reflux

f e
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1) cast film from CHCI3
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TMAC6PP Alkaline Stability

Test conditions: Membranes immersed in 4M KOH at 90 °C.
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• TMAC6PP shows the greatest stability in high pH test.
• The ketone adjacent to the phenyl ring destabilizes

the side chains.
• Quaternized DABCO on hexyl sidechains with no

0 100 200 300 400 500 ketone are less stable than BTMA.
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More Alkaline Stability Data
so•Ap

TMAC6PP

ATMPP (control)

AEM stability test: Immerse AEMs in 0.5 M or 4 M NaOH at 80°C. Conductivity measured
at 30°C/95% RH during the stability test.
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Highlight: No conductivity & structural changes for TMAC6PP after 4 M NaOH treatment at
80°C for 2,200 h. 4 Most stable alkaline AEM reported
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TMAC6PP Stress/Strain Testing

50

• AEMs with sidechains show better
m

40

mechanical properties.
0_
2 30

20

• With samples of similar molecular 10

weights, TMAC6PP has over twice
the elongation at break as ATMPP.

• Elasticity (lack of brittleness),
especially when dry, is an important 2

property for membrane-electrode Emu'(7)
assembly fabrication.

• This testing was performed at 50%
relative humidity and 50 °C.

4 Los Alamos
NATIONAL LABORATORY
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Instability Due to Ketone

abbreviated polymer
structure

Me
Me Base

N. •
0 Me

Base

pKa 24—will
deprotonate

in aqueous base
to

some extent

e) Meone
® me

®
\,c)

(N:Me
Me'0 Me

enol cyclization products:

0
Me

+

Me'
N.
Me

phenyl—cyclopentyl
ketone

enol Hofmann Elimination:
0

Me
+
Me'

N.
Me

phenyl—pentylene
ketone

enol dealkylation:
0

phenyl—dimethylamine
ketone

Me

N.
Me

traditional pathways (e.g., substitution, Hofmann, dealkylation)

• Formation of enolate might begin pathway to cation degradation.
• Mechanisms that involve a 5- or 6-membered ring as an intermediate would be

particularly likely.
• A longer sidechain would eliminate 5- and 6-membered ring intermediates.

Schemes drawn by Sean Nunez (PSU)
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Stability of 10-Carbon Sidechain

Test conditions: Membranes immersed in 4M KOH at 90 °C.
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• 10-Carbon chain without ketone
shows stability similar to TMAC6PP.

• 10-Carbon chain with ketone
shows stability similar to
TMAKC6PP.

• Enolate probably does play key role
in degradation but not by intra-
molecular attack at the terminal
ammonium group.
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Poly(phenylene alkylene) Synthesis

1 ,9-decadiyne

Anode

-CO

Cathode

ionomer

;
r 
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rr

support

: •

r-f

Membrane 20 pm

11 11

ilk Ilk
DAPPC6

0

CI

AICI3, CH2Cl2, 0 °C

BrKC6PPC6

TMAC6PPC6

• Flexible alkylene segments in backbone were intended to increase permeability of polymer.
• Typical M, for DAPPC6 is 10K-15K, either due to low reactivity or purity of 1,9-decadiyne.
• TMAC6PPC6 films are brittle but polymer is still useful as electrode ionomer.

Alam, T.M.; Hibbs, M.R. Macromol. 2014, 47, 1073.
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Vr H2/02 Fuel cell Performance of MEAs
using ATMPP and TMAC6PP
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Membrane: TMAC6PP (48 um thickness)

lonomer: TMAC6PP IEC=2.0 mg/cm2

Anode: Pt black 0.2 mgpt/cm2

Cathode: Pt black 0.2 mgpt/cm2

Cell temperature: 80°C, Backpressure: 15 psig
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• Peak power density of the MEA using ATMPP: 340 mW/cm2 at high Pt loading and higher back pressure.
• Peak power density of the MEA using TMAC6PP: 260 mW/cm2 at low Pt loading and lower back pressure.
• Lower resistance of the TMAC6PP MEA is probably due to the fact that TMAC6PP membrane has slightly

higher IEC and AEM thickness effect.

• Los Alamos
NATIONAL LABORATORY
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Improved Performance with
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• Poly(phenylene alkylene) ionomer has the lowest phenyl content (less adsorption on catalyst).
• Increasing flow rate greatly improves H2 mass transport at the anode.

Maurya, ,).; Fujimoto, C.H.; Hibbs, M.R.; Villarrubia, C.N.; Kim, Y.S.
Chem. Mater. 2018, 30, 2188.
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Conclusions

• The combination of Sandia's poly(phenylene) backbone with
alkyltrimethyl ammonium cations gives the most stable
hydrocarbon AEM available.

• Resonance-stabilized cations (imidazolium and pentamethyl
guanidinium) are less stable to alkaline degradation than BTMA
cations.

• Phenyl adsorption on the anode catalyst is a performance
limiting factor.

• We are still working on the integration of non-PGM or low PGM
catalysts into alkaline fuel cells.
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Alkaline Electrolysis Cell
Configurations

H2

Liquid Electrolyte
(KOH)

Liquid electrolyte Cell

Hydrogen electrode (cathode)

Protonic
Water

Solid po!ymer electrolyte

Oxygen electrode (anode)

Oxygen

(-)   (.9

Lill 4
DC Power

Process
Water, heat

Process
Water

Membrane-based cell (PEM or AEM)

• Commercialized systems are either liquid KOH or PEM-based.
• Liquid electrolyte systems contain corrosive solutions (handling and materials
costs) and porous separators (gas crossover and high resistance across gap)

• PEM systems require platinum group metal catalyst such as iridium oxide,
whereas alkaline systems electrolysis can be conducted with Ni or Ag.

• An anion-exchange membrane based system would provide the advantages
of both alkaline liquid electrolyte and PEM systems. Sandia

National
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Electrolysis Data:
Cell Compression
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Cell conditions: 30 °C, 1M KOH, foam Ni electrodes, active area = 62 cm2
current swept from 0 — 40 Amps, Sandia

National
Laboratories



''.* PROTEINii• ••Ni.•..,' LIN SITE

T
-frftliir 

Electrolysis Testing at Proton OnSite

Initial polarization curves at 50 °C with PGM
catalysts and no added electrolyte
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Polarization curve -200 mV above commercially available membrane
baseline for both ionomer tests
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Electrolysis Testing at Proton OnSite

200 mA/cm2 steady state performance at 50 °C with
PGM catalysts and no added electrolyte
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Steady state performance indicated better stability versus
commercial material.
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• Test conditions: 50 °C, 50% RH.
• Poly(arylene ether sulfone) shows significant degradation.
• Poly(phenylene) is weaker in OH- form, but there is no sign
of backbone degradation.

NaOH, then 0.5 M
HBr, 1h, 25 oC (Br-
ions)
NaOH, then HBr, then
NaOH (OH- ions)
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