
Geophysical Monitoring System
Processing Service Architecture:
Control Applications and Plugins

PRESENTED BY

Ben Hamlet

SAND2019-AAAAAA

-"Miii,4e.h • "IP WV:

_Lay

Sandia National Laboratories is a multirnission
Laboratory managed and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
international inc., for the U.S. Department of

Energy's National Nuclear Security
Adrninistration under contract DE-NA0003525.

SAND2019-1704PE

2 Outline

Control Based Architecture

Control Application Architecture Responsibilities

Plugin Architecture Responsibilities

Control Application Sequences

0 Startup

. Processing Request

Architecture Runway

3 Control Based Architecture

Primary concept: Implement Monitoring Business Logic

Control Applications

• Entry point for automatic processing business logic

O Filtering, beaming, FK, detection, association, location, magnitude, etc.

O Accessed from automatic processing sequences and UI

• Independent of other control applications

• Support novel processing sequences

• Develop and replace in insolation

o Relocatable to multiple environments (testbeds, data center ops, field laptops, etc.)

• Intentionally dependent on the conventions and technologies of the broader GMS

ecosystem

O Expose service routes, interact with data persistence mechanism, application monitoring, ...

Plugins

• Implement algorithms

• Extension point for new algorithm implementations

O Loosely dependent on the broader GMS ecosystem

4 Control Application Architecture Responsibilities

Provide access to common business logic via external interfaces

O Automatic processing interfaces
O Streaming: Consume data objects available to process
. Descriptor: Consume descriptions of the data objects available to process; load data from OSD

O Interactive: tailored to UI needs

Data Access and Persistence via OSD

O Load data based on descriptors

O Load additional data required to serve processing request

O Store processing results and create descriptors

Plugin Registry Management

O Discover and register plugins at startup

O Select and invoke correct plugins for each processing request

Configuration

O Load and cache at startup; receive updates at runtime

O Resolve processing parameters during each processing request

Implement general application responsibilities with project standard technologies and frameworks
O Logging, configuration, process monitoring, external service communication, etc. (see Architecture Overview)

O Consume and produce COI data objects

5 Plugin Architecture Responsibilities

Address GMS Project Principles

o Extensibility

O Integrate new algorithms

O Isolate algorithm implementations from GMS libraries, frameworks, etc.

O Path to implement algorithms in languages other than Java

o Scalability

O Control Applications deployed in different GMS environments (laptop through datacenter)

O Same applications operate in each environment, possibly at reduced functionality

O Access algorithm implementations appropriate to those environments

O e.g. 3D earth models and waveform correlation may not be feasible on a laptop

O Different algorithm deployments (service vs. in-memory) based on client application's requirements

o Maintainability

O Access related algorithms through common interfaces from the same Control application logic

Design Goals

. Dynamically discoverable at runtime

. Isolate algorithm logic from GMS control applications, processing flows, and OSD

interactions.

o Simple interfaces reimplemented by a variety of algorithms from the same family.

6 1

Control Application Runtime Sequences
Startup

7 Sequence: Control Application Startup (1 /6)

1 HTTP Ì
Streaming

API

: HTTP 1
[Interactive]

API
Descriptor

API

(Control
Application

v

•________itBusiness Logic

Plugin Registry j

Config
Client

4-----

177

Config Data
Store

Plugin

8 Sequence: Control Application Startup (2/6) I

HTTP
Strearning 1

API

(Control
Application

f

L
HTTP) N
Interactive

API
A

,/

1
HTTP 1
Descriptor

1

API

Plugin Registry j

(

li
siness Logic

1. Load Configuration
• Load system configuration
• Load processing configuration

parameterizing Control Application's
business logic:

• Which plugins to call
• Configuration for those plugins
• Other business logic

1. Load configuration

,
ii. Config

Client

Config Data
Store

9 Sequence: Control Application Startup (3/6)

i
HTTP) I
Streaming

API

(Control
Application

i
: HTTP

Interactive
API

1 IHTTP
Descriptor

API

Plugin Registry j

(
Business Logic

J

Config
m

Client

2. Discover plugins

2. Discover plugins
• Uses classpath scanning
• Currently with Java ServiceLoader
• Have also used Spring and Java Modules

• Build tool (Gradle) links Plugins to Control
• No code-level dependencies

Config Data
Store

10 Sequence: Control Application Startup (4/6)

i
1 HTTP)
[Streaming Interactive

i
: HTTP

API
J

API

i
Descriptor

API

3. ReRister plugins
• Initialize and configure discovered plugins
• Put discovered plugins in a registry
• Registry indexes plugins by name and

version

(Control
Application

A

3. Register plugins

Plugin Registry J

v
(Business Logic

M

8
J

-

--,
Config
Client

4-------.

;

Config Data
Store

Plugin

11 Sequence: Control Application Startup (5/6)

HTTP
Streaming

API

(Control
Application

HTTP
Interactive

API

1
HTTP I
Descriptor

API j

Plugin Registry j

(
Business Logic

J

4. Configure logging,
populate local cache,
etc.

Config
m

Client

4. General application startup
• Configure log output level
• Initialize local caches from OSD
• Etc.

Config Data
Store

Plugin

12 Sequence: Control Application Startup (6/6)

t
5. Configure service routes

(HTTP HTTP) HTTP
[Streaming 1 [Interactive 1 [Descriptor

API API API

5. Configure Service Routes
• Configure embedded webserver (ports,

thread pools, error handlers)
• Expose service routes (URLs)

(Control
Application

A

Plugin Registry j

v
(

Logic

i
Business

4.- . Config -.114____/
Client

I17-

Config Data
---- Store

Plugin

13 1

Control Application Runtime Sequences
Processing Request

14 Sequence: Control Serves Processing Request (1/13)

HTTP
[Streaming

API

HTTP
Interactive

API

i
Descriptor

API

(Control
Application

(

Plugin Registry j

v

111
 Business Logic --------

\

Config
Client

)

OSD

177
Plugin

.—.
Data
Store

15 Sequence: Control Serves Processing Request (2/13)

Oa. Receive processing request

HTTP LTh
[Streaming

API

(Control
Application

HTTP HTTP 1
nteractive Descriptor

API API

Plugin Registry j

(Business Logic

1

Oa. Receive Processing Request
• Request arrives to one of several external

facing service or Java interfaces.
• Each interface is to the same processing

logic but each accepts different parameter
representations.

• External interfaces provide flexibility in
how this logic is invoked.

Config.
Client

i

\
OSD 1.—.

Plugin

Data
Store

16 Sequence: Control Serves Processing Request (3/13)
i

HTTP
Streaming

API

HTTP
Interactive

API i

1
HTTP 1, i
Descriptor

,

API ,

Ob. Resolve Descriptors
• Use OSD to query for processing parameter

data objects using processing parameter
descriptors.

Control
Application

11Business Logic

Plugin Registry

F-------

N
Config

Client____,

I

Ob. Resolve
descriptors

OSD

In(--

Plugin
._ _J

...111-11,-
Data
Store

17 Sequence: Control Serves Processing Request (4/ I 3)

I
HTTP HTTP i

Oc. Transform request
1

[streaming i [Interactive

J
c Descriptor

,
LHTTP

API API v API

TOc. Transform Processing Request • If necessary, transform or enhance
parameters to match interface provided by
the common business logic.

• May batch requests (TBD)

(Control
Application

(

Plugin Registry j 111
 Business Logic --------

\

Config
Client

)

OSD

Plugin

...111-110•
Data
Store

18 Sequence: Control Serves Processing Request (5/13)

HTTP HTTP
1 1

HTTP 4.
[Streaming i [Interactive] [Descriptor],

API API API

(Control
Application

A

Od. Delegate
processing

Plugin Registry j

Business Logic

I
•
Od. Delegate Processing

Interfaces invoke common business logic.

\

Config
Client

)

OSD .—. Data
Store

Plugin

19 Sequence: Control Serves Processing Request (6/13)
A

HTTP)
Streaming

API

(Control
Application

' HTTP
Interactive

API

HTTP) ,
Descriptor i___

API

Plugin Registry j

(
Business Logic

1. Determine processing parameters
• Use the configuration client and

information from the processing request to
resolve processing parameters.

• Provides station-, time-, phase-, workflow
step-, etc., based processing parameters
to the business logic.

v OSD 1 .—. Data
Store

1. Determine processing parameters

Config
Clien

Plugin

2o Sequence: Control Serves Processing Request (7/13)

.

i
HTTP 1
Streaming

API

: HTTP
Interactive

API

HTTP) ,
Descriptor i_

API

2. Load Additional Data
• Query OSD for additional data needed to

serve the processing request.
• Additional waveforms, station reference

information, related signal detections or
events, etc.

(Control
Application

Plugin Registry j

v 2. Load additional dat

(

li
siness Logic

Config
Client

)

(

OSD
's

Plugin

.—.
Data
Store

21 Sequence: Control Serves Processing Request (8/13)

f I 3a. Control Logic
i 1

I

• Execute business logic located in the

•
Control Application.

1 HTTP 1 •
Minor algorithm logic
Data transforms required to invoke plugins

[Streaming Interactive
API

: HTTP I

API
Descriptor

API

(Control
Application

A

Plugin Registry

(Business Logic

3a. Control logic

.•------

Config
Client.

I

OSD

Plugin

...111-110•
Data
Store

22 Sequence: Control Serves Processing Request (9/13)

i
1 HTTP)
[Streaming Interactive

i
' HTTP

API API

i
Descriptor

API

3b. Select Plugin(s)
• Determine which plugins to call
• Based on resolved configuration
• Each Control application decides how to

call plugins.
• May call plugins in parallel, call one plugin

with results of other plugins, etc.

(Control
Application

A

3b. Select plugin(s)

Plugin Registry J

v
(

Business Logic

Config
Client

)

r ----- _L'A
OSD I. . Data

Store

Plugin

23 Sequence: Control Serves Processing Request (10/13)

HTTP
Streaming

API

(Control
Application

HTTP) I ,
Descriptor

API

1
HTTP
Interactive

API

Plugin Registry j

(
Business Logic

p•c. Call Plugin(s) Call plugins and collect their results

Config
Client

3c. Call plugin(s)

\

/

OSD .—. Data
Store

Plugin

24 Sequence: Control Serves Processing Request (1 1/13)

1 HTTP)
[Streaming Interactive

HTTP

API API

r3a. Control Logic
• Execute any additional business logic

located in the Control Application.
• Minor algorithm logic.
• Data transforms required to translate

Descriptor plugin results.

(Control
Application

A

Plugin Registry

(
Business Logic

3a. Control logic

J

Config

OSD

Plugin

Data
Store

25 Sequence: Control Serves Processing Request (12/13)
A

i
1 HTTP 1.
Streaming

API

(Control
Application

i
: HTTP 1
Interactive

API
A .i

1 17 HTTP
Descriptor

API ,

Plugin Registry j

(

li
siness Logic

4

4. Store Results
• Store processing results if necessary.

Config
Client

)

OSD

4. Store results

Plugin

.—.
Data
Store

26 Sequence: Control Serves Processing Request (13/13)

5. Return results

HTTP
[Streaming

API

(Control
Application

HTTP
Interactive)

API

5. Return Results
• Business Logic returns processing results to

the external interface
• External interface may transform results

(e.g. downselect fields from processing
results, create descriptors)

• External interface may serialize results
• External interface returns results to client

Plugin Registry j

(Business Logic

1

-7-1

Config.
Client

i

\
) c--, ---

OSD I.—. Data
Store

Plugin

27 1

Plugin Design

28 Plugin Design

—5eclares operations for:
1. General plugin information (name and version)
2. Plugin initialization
3. Processing operation(s) for the algorithm family

Plugin Interface

Plugin Accessor

Algorithm

Provides a realization of the plugin interface by
1. Delegating operation implementations to the plugin class

(for in-memory plugins)
2. Invoking a remote plugin service (for remote plugins)

Prepares data for algorithm
1. Extract necessary fields from COI data objects
2. Transform fields into representations used by the algorithm

a) Basic signal processing (merge adjacent waveforms,
demean, normalize, etc.)

b) Convert values from absolute times to sample counts
c) Etc.

3. Algorithm invocation logic

Postprocesses algorithm results
1. Transform fields into COI representations (e.g. convert from

sample counts to absolute times, etc.)
2. Associate metadata with algorithm results
3. Construct COI objects (if required by plugin interface)

1. Performs scientific calculations
2. Ideally no dependencies on other GMS software (frameworks,

libraries, COI classes, etc.)

29 Plugin Deployment

GMS has two primary plugin deployment schemes

. All current plugins are in-memory libraries

o Designed to support plugins deployed as services

Packaging the same plugin logic in both schemes requires implementing a Plugin Accessor for each
deployment.

In-memory Plugin

Plugin Component (JAR)

Plugin Interface

t
Plugin Accessor

Plugin Logic

Custom accessor
for each

deployment

41------

Deployments
share plugin logic

Remote Plugin

Plugin Access Library (JAR)

, Plugin Interface

Plugin Accessor

Plugin Service

.
Service Controller

Plugin Logic

Algorithm

Example Plugin Implementation — Signal Detector STA/LTA Plugin

In-memory plugin

See /gms/core/signal-detection in GMS software release

Plugin Interface

SignalDetectorPlugin

Plugin Accessor

[StaLtaPowerDetector
Component

Plugin

[
 J

StaLtaPowerDetector
Plugin

Algorithm

Algorithm
,

 •

1. getName and getVersion
2. initialize(configuration)
3. detectsignals(waveform[]) : InstantO

1. Implements getName and getVersion
2. Initialize() and detectSignals() implementations delegate to

StaLtaPowerDetectorPlugi n

detectSignals implementation:
a) Condition waveforms

i Interpolate over gaps
ii. Merge adjacent waveforms
iii. Convert STA/LTA window parameters from time units to

sample counts
iv. Extract double[] from waveforms

b) Invoke STA/LTA algorithm
c) Convert algorithm results from triggered sample indices to

absolute times

1. Implements STA/LTA transform and trigger on a double[]
2. Returns triggers as sample indices

31 Alternate Language Plugins — Notional (1/2)

{

GMS plugin architecture supports implementing plugins in non-Java languages

Integrating the plugin requires minimal Java (a Plugin Accessor)

,

Plugin Interface

f
Plugin Accessor

Plugin
A

Algorithm

1. Use Java to implement Plugin Accessor to call a Plugin
implementation in an alternate language

1. Consume and produce COI data objects
a) Use a COI implementation in the plugin language
b) Deserialize necessary fields into plugin specific data objects

2. Implement Plugin pre- and post-processing logic
3. Implement plugin Algorithm

32 Alternate Language Plugins — Notional (2/2)

Plugin Component (JAR)

Plugin Interface

Plugin Accessor

Plugin Logic

1 (JVM language)

Plugin Access Library \
(JAR)

r

•.

Plugin Interface
1

.1

, ,
Plugin Accessor

JNI, HTTP, gRPC, etc.

Plugin
Implementation (non-

JVM language)

Plugin
 ̀ •

A •

Algorithm

.

Plugin logic (e.g.
COI object
manipulations;
algorithm
invocation logic)
can also be
implemented in
Java and
packaged in the
JAR.

33 Complication: Plugins calling Plugins

A GMS plugin may call other GMS plugins, e.g.
O Locator plugin calling Feature Prediction plugin
o Feature Prediction plugin calling Earth Model plugin

Plugin Interface

Plugin Accessor

Plugin
 „ Registry
 Plugin
(

..„......,
calls

Algorithm

[Nested]
Plugin

Structure

• Plugin contains a Plugin Registry
• Discovers nested plugins

• Registers nested plugins

• Selects nested plugins to use during each processing request

Calling Nested Plugins

• Prefer for Plugin to make calls to nested plugins to isolate
Algorithm from GMS libraries

• Algorithm calls nested plugins if necessary (performance;
avoid complicated interactions between Plugin and Algorithm,
etc.)

