SAND2019- 1704PE

Geophysical Monitoring System
Processing Service Architecture:
Control Applications and Plugins

PRESENTED BY

Ben Hamlet

SAND2019-AAAAAA
2 s 2 Sandia N nal Labor: isa lmission
labor: ryma aged an d p dbyN nal
Technology&Engm gSl of Sal d

er tional c ear
Administration under cor t DE-NAC 0003525

Outline

Control Based Architecture
Control Application Architecture Responsibilities
Plugin Architecture Responsibilities

Control Application Sequences
o Startup

° Processing Request

Architecture Runway

3

Control Based Architecture

Primary concept: Implement Monitoring Business Logic

Control Applications

> Entry point for automatic processing business logic
° Filtering, beaming, FK, detection, association, location, magnitude, etc.

> Accessed from automatic processing sequences and UI

> Independent of other control applications
° Support novel processing sequences

> Develop and replace in insolation
> Relocatable to multiple environments (testbeds, data center ops, field laptops, etc.)

> Intentionally dependent on the conventions and technologies of the broader GMS
ecosystem

> Expose service routes, interact with data persistence mechanism, application monitoring, ...

Plugins
° Implement algorithms
> Extension point for new algorithm implementations

° Loosely dependent on the broader GMS ecosystem

41 Control Application Architecture Responsibilities

Provide access to common business logic via external interfaces
o Automatic processing interfaces
o Streaming: Consume data objects available to process

° Descriptor: Consume descriptions of the data objects available to process; load data from OSD

o Interactive: tailored to Ul needs

Data Access and Persistence via OSD
° Load data based on descriptors
° Load additional data required to serve processing request

° Store processing results and create descriptors

Plugin Registry Management
° Discover and register plugins at startup

o Select and invoke correct plugins for each processing request

Configuration
> Load and cache at startup; receive updates at runtime

> Resolve processing parameters during each processing request

Implement general application responsibilities with project standard technologies and frameworks
> Logging, configuration, process monitoring, external service communication, etc. (see Architecture Overview)

> Consume and produce COI data objects

5 I Plugin Architecture Responsibilities

Address GMS Project Principles
> Extensibility

o Integrate new algorithms
o Isolate algorithm implementations from GMS libraries, frameworks, etc.

° Path to implement algorithms in languages other than Java

° Scalability

o Control Applications deployed in different GMS environments (laptop through datacenter)
° Same applications operate in each environment, possibly at reduced functionality
° Access algorithm implementations appropriate to those environments
° e.g 3D earth models and waveform correlation may not be feasible on a laptop

o Different algorithm deployments (service vs. in-memory) based on client application’s requirements

° Maintainability

> Access related algorithms through common interfaces from the same Control application logic

Design Goals
> Dynamically discoverable at runtime

> Isolate algorithm logic from GMS control applications, processing flows, and OSD
interactions.

° Simple interfaces reimplemented by a variety of algorithms from the same family.

Control Application Runtime Sequences
Startup

7‘ Sequence: Control Application Startup (1/6)

" T

Streamingq (Interactive] (Descriptoq

| API L /%\PI . API
@trol \
Application

i
Config Data
Store

N y
.

s I Sequence: Control Application Startup (2/6)

T

A 4

1. Load Configurati

on

v » Load processing

Streaming Interactive Descriptor busingss logic:
API AP AP hp
A ' » Configura

@trol

Application

* Load system configuration

configuration

parameterizing Control Application’s

* Which plugins to call
tion for those plugins

» Other business logic

Config Data
Store

9 I Sequence: Control Application Startup (3/6)

|

i 2. Discover plugins
Y A == + Uses classpath scanning
. H-ITPJ y . H-ITM - H-ITPJ v » Currently with Java ServicelLoader
Streaming J Interactive] Descriptor} » Have also used Spring and Java Modules
L API L API Y API * Build tool (Gradle) links Plugins to Control
/ * No code-level dependencies

Control
Application

Config Data

2. Discover plugins /

10 I Sequence: Control Application Startup (4/6)

A 4

HTTP] |

! Streaming
API

_

J

A 4

HTTP) |

7 — B
Interactive

\,

J

i Descriptor
API

_

]

L]

3. Register plugins

version

Initialize and configure discovered plugins
Put discovered plugins in a registry
Registry indexes plugins by name and

Control
Application

API
/

3. Register plugins

\

Config Data

Store

11 I Sequence: Control Application Startup (5/6)

i 4. General application startup
z == « Configure log output level
. HWM y . - . H-ITM L 4 Initialize local caches from OSD
Streaming J Interactive] Descriptor} * Eie
| AP ___AP | AP
@trol \
Application

Config Data
Store

<

4. Configure logging, >
populate local cache, m

etc.

12 ‘ Sequence: Control Application Startup (6/6)

T 5. Configure service routes

5. Configure Service Routes
» Configure embedded webserver (ports,
v thread pools, error handlers)

Y

Streaming Interactive Descriptor * Expose service routes (URLs)
API API AP|
/]
@trol \
Application

Config Data
Store

13

Control Application Runtime Sequences
Processing Request

14‘ Sequence: Control Serves Processing Request (1/13)

,, |

HTTP) , (HTTP) HTTP] |
Streaming Interactive (Descri ptor
API API API

/

\. \

Control
Application

15 I Sequence: Control Serves Processing Request (2/13) ‘ |

Oa. Receive processing request
Oa. Receive Processing Request
* Request arrives to one of several external
facing service or Java interfaces.
» Each interface is to the same processing

A 4

' . logic but each accepts different parameter
Streaming Interactive Descriptor representations.
AP| API API « External interfaces provide flexibility in
- how this logic is invoked.
@trol \
Application

N,
16 I Sequence: Control Serves Processing Request (3/13) I;!

/‘\ Ob. Resolve Descriptors

« Use OSD to query for processing parameter
data objects using processing parameter
descriptors.

A A

Streamingj Interactive Descriptor gb- Re_:s<t>lve
escriptors

" API A:!DI API

Control

Application

171 Sequence: Control Serves Processing Request (4/13)]

T Oc. Transform Processing Request

 If necessary, transform or enhance
parameters to match interface provided by
the common business logic.

y * May batch requests (TBD)

Oc. Transform request

A 4

Interactive
API
/

Descriptor
API

Streaming
API
Control
Application

18 ‘ Sequence: Control Serves Processing Request (5/13)

T 0d. Delegate Processing

* Interfaces invoke common business logic.
Interactive
API

Descriptor
API

A 4

| Streamin
API

Control

Application 0SD

19 1 Sequence: Control Serves Processing Request (6/13)

|

1. Determine processing parameters

» Use the configuration client and
information from the processing request to
resolve processing parameters.

» Provides station-, time-, phase-, workflow

to the business logic.

| step-, etc., based processing parameters

HTTP] | HTTP) HTTP) o
(. 5 (:
Streaming Interactive Descriptor
| API API | APl
/
Control
Application

\

- 1. Determine processing parameters

|

20 I Sequence: Control Serves Processing Request (7/13)

T 2. Load Additional Data
* Query OSD for additional data needed to
. | serve the processing request.
5 D + Additional waveforms, station reference
> HWH y LR - H-ITW v information, related signal detections or
Streaming J [Interactive J Descrlptor}<~ events, etc.
| API A;PI | API
@trol \
Application

2. Load additional data —

21 I Sequence: Control Serves Processing Request (8/13)

A 4

A 4

3a. Control Logic

» Execute business logic located in the
Control Application.

* Minor algorithm logic

» Data transforms required to invoke plugins

HTTP] | TP_ HTTP] .
([Streami ng Interactive (Descri ptor
| API API | API
/
Control

Application

|

22 I Sequence: Control Serves Processing Request (9/13)

T 3b. Select Plugin(s)
» Determine which plugins to call
» Based on resolved configuration

A 4

S D Each Control application decides how to
> H-ITH ' 8 . - H-ITM v call plugins.
Streaming J [Interactive J Descrlptor]<~ y Mayh call Tlugi?s i?] par?llel, call one plugin
with results of other plugins, etc.
| API A;PI | API
@trol \
Application

3b. Select plugin(s)

23 ‘ Sequence: Control Serves Processing Request (10/13)

|

Y

Streaming Interactive
API

Descriptor
API

3c. Call Plugin(s)

+ Call plugins and collect their results

API

@trol

Application

24 I Sequence: Control Serves Processing Request (11/13) ‘ :

T 3a. Control Logic
» Execute any additional business logic
located in the Control Application.

A 4 A 4

== =y * Minor algorithm logic.
> HWM A LR > H-ITM v » Data transforms required to translate
Streaming} [Interactive J DescriptorL plugin results.
| AP AP . APl |
@trol \
Application
05D Data
Store

25 ‘ Sequence: Control Serves Processing Request (12/13)

|

4. Store Results

A

Streaming}

API

y

Interactive

» Store processing results if necessary.

Descriptor
API

@trol

Application

API
7

4. Store results

L

26 I Sequence: Control Serves Processing Request (13/13)

5. Return Results

 Business Logic returns processing results to
the external interface

» External interface may transform results
(e.g. downselect fields from processing

T 5. Return results

A 4

Streaming Interactive Descriptor results, create descriptors)
API API AP| » External interface may serialize results
- « External interface returns results to client
@trol \
Application

27

Plugin Design

28

Plugin Logic
A

Plugin Design

[Plugin Interface]

\

Declares operations for:
1. General plugin information (name and version)
2. Plugin initialization
3. Processing operation(s) for the algorithm family

[Plugin Accessor]

\

Provides a realization of the plugin interface by
1. Delegating operation implementations to the plugin class
(for in-memory plugins)
2. Invoking a remote plugin service (for remote plugins)

[Plugin J

/

Prepares data for algorithm

1. Extract necessary fields from COIl data objects

2. Transform fields into representations used by the algorithm
a) Basic signal processing (merge adjacent waveforms,

demean, normalize, etc.)

b) Convert values from absolute times to sample counts
c) Etc.

3. Algorithm invocation logic

Postprocesses algorithm results
1. Transform fields into COI representations (e.g. convert from
sample counts to absolute times, etc.)
2. Associate metadata with algorithm results
3. Construct COI objects (if required by plugin interface)

T Algorithm J

Performs scientific calculations
Ideally no dependencies on other GMS software (frameworks,
libraries, COI classes, etc.)

N =

29 I Plugin Deployment “@

GMS has two primary plugin deployment schemes
o All current plugins are in-memory libraries

° Designed to support plugins deployed as services

Packaging the same plugin logic in both schemes requires implementing a Plugin Accessor for each

deployment.
In-memory Plugin Remote Plugin
/ Plugin Component (JAR)\ " Plugin Access Library (JAR)
[Plugin Interface | Custom accessor Plugin Interface
N] for each ~_
deployment > Plugin Accessor
[Plugin Accessor _ 7
/]

4
/ Plugin\ Service \

[Service Controller |

 Plugin__ || [Deploymens
share plugin logic C Plugin___

&

Example Plugin Implementation — Signal Detector STA/LTA Plugin

In-memory plugin

See /gms/core/signal-detection in GMS software release

Plugin Interface 1. getName and getVersion
[SignalDetectorPlugin Z initializg(configuration)
= 3. detectSignals(waveform[]) : Instant[]
Plugin Accessor 1. Implements getName and getVersion
2. Initialize() and detectSignals() implementations delegate to

[StalLtaPowerDetector

Component

N

StaLtaPowerDetectorPlugin

Plugin

N\

Plugin

[StalLtaPowerDetector

N

detectSignals implementation:

a) Condition waveforms
i. Interpolate over gaps
ii. Merge adjacent waveforms
iii. Convert STA/LTA window parameters from time units to

sample counts

iv. Extract double[] from waveforms

b) Invoke STA/LTA algorithm

c) Convert algorithm results from triggered sample indices to
absolute times

Algorithm

W

[

Algorithm

Implements STA/LTA transform and trigger on a double[]
Returns triggers as sample indices

N =

31

Java
A

Alternate Language
N

Alternate Language Plugins — Notional (1/2)

GMS plugin architecture supports implementing plugins in non-Java languages

Integrating the plugin requires minimal Java (a Plugin Accessor)

[Plugin Interface]

\

[Plugin Accessor]

Use Java to implement Plugin Accessor to call a Plugin
implementation in an alternate language

[Plugin]

[Algorithm]

Consume and produce COI data objects

a) Use a COl implementation in the plugin language

b) Deserialize necessary fields into plugin specific data objects
Implement Plugin pre- and post-processing logic

Implement plugin Algorithm

2 I Alternate Language Plugins — Notional (2/2)

/Plugin Component (JAR)\

Plugin Interface
\. 5 J

()

Plugin Accessor

_ > J

/ Plugin Access Library\

(JAR)
[Plugin Interface]

[Plugin Accessor]

\ /.

\ 7

y

K Plugin \

Implementation (non-
JVM language)

[Plugin }\

/

N

K[Algorithm J /

JNI, HTTP, gRPC, etc.

Plugin logic (e.g.
COl object
manipulations;
algorithm

. invocation logic)

can also be
implemented in
Java and
packaged in the
JAR.

33 1 Complication: Plugins calling Plugins

A GMS plugin may call other GMS plugins, e.g.

> Locator plugin calling Feature Prediction plugin

° Feature Prediction plugin calling Earth Model plugin

[Plugin Interface]

N

[Plugin Accessor]
A

/

J

: Plugin
[Pl'“/'gm] ‘ Registry

A4

[Algorithm Jcalls

1
A4

Structure

° Plugin contains a Plugin Registry
° Discovers nested plugins
° Registers nested plugins

o Selects nested plugins to use during each processing request

Calling Nested Plugins

> Prefer for Plugin to make calls to nested plugins to isolate
Algorithm from GMS libraries

> Algorithm calls nested plugins if necessary (performance;
avoid complicated interactions between Plugin and Algorithm,
etc.)

