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2 Data-Driven Near-Wall Modeling

Near-wall turbulence modeling for Large Eddy Simulation (LES):

Notional Direct Numerical
Simulation (DNS) mesh
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Typically a solution to the mean flow equations at each near-wall grid cell

Law of the Wall (LotW):
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3 Data-Driven Near-Wall Modeling
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• Assumes grid cell y+ is within log layer
• Assumes mean boundary layer profile is

appropriate
• Fine for large cells + attached flows
• Not true for separated flows

Separated Flow Profile
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The Goal: A general expression for wall shear
stress based on filtered state variables at the
near-wall LES grid cell

Tw,i = F (ri,U,S, 1/)

• At least as good as LotW for attached flows
• Better than LotW for detached flows



Invariant Theory Approach



5  Invariant Theory Approach

We seek a general coordinate frame invariant
representation for the wall shear stress:

Invariant theory presents as a tensor polynomial of Form-Invariants

Tw G (k) n j(k)

k

(k) = f (ri,U , S, fl)

Because T is a vector, II's must be vectors.

Tw,i = F (ri,U , S,I1)

Coefficients based on unknown functions of Scalar Invariants

G (k) = (k) A-2, A-3) • • • 4)

Put Together:

= f (ri, U, S,
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6 The Invariants

Given one symmetric tensor (S), one skew-symmetric tensor (11), & two vectors (U, 11)
• Invariant to rotation about n

• 20 Scalar Invariants: Ai = f (ri,C 11) (Zhen 1993a, Zheng 1994)

= {S},
715 = {sn2},
A.9 = n • Sn,
X13 = n • Egn,

X17 = n • ŠU,

aZ =
A-6 = U • U,

A.3 =
=

A.10 = n • A-11
A.14 = n • (Šn x Š2n), A-15
X18 = n • (fi x ŠU), A-19

U • SU,
= n • En,
= n • Esn2,
= n • (U x Sn),

A-4 =
A-8 = U • En,
A.12 = n • Š2n,
X16 = n • On,

X20 = n • nu

• Form-Invariants derived from Scalar Invariants (Spencer 1987)

• 8 Form-Invariants: I-1(k) = f (KV , S, (Zheng 1993b, Zheng 1994)

rim = U, B(2) ,
11(3) = n, 11(4) = gn,
11(5) = n x gn, ri(6) =
ri(7) = n x no) = n x
SLn 

Tw, i

8

= G (k) II i(k)

k = 1

G (k) = y(k)(21, 2.3) • • • A20)

• ML model that can learn (k) to get G (k) to
(k)

combine with Hi to predict tw,i



Neural Network Approach



8 Siamese Multi-Layer Perceptron

Two parallel MLPs of equivalent architecture with the same weights (Zheng 2016)

Inputs 1
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❑ Cutputs

• The functions G (k) = y(k)(Ai) must be
learned

• Only need to train one side of our SMLP
architecture

• Combination of open-source:
Keras, TensorFlow

and Sandia proprietary ML tools:
TensorNet, Groupy

4 hidden layers, P--5100 weights
3x multiplier, ReLU, Mean error loss func

I .• L.,. 2

I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I

I I I I I I I I

Outputs 2 I I I I

I I I

I I I I I
Final Outputs

Hidden

Layers

X Inputs

I I I I I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I I I

I I I I I I I I I I

G Outputs

Outputs

11 Inputs



DNS Data and LES filtering



1 0  Backwards Facing Step DNS

• SNL's structured, multi-block, finite volume code: SIGMA-CFD (Arunajatesan et al. 2013)

• Mach 0.6 compressible freestream

• Reynolds Number = 6254

• Inlet condition from precursor RANS simulation

• Boundary layer height increased to 360 at the step

• Step height also 360 => h/6 = 1.0

• 9760 x 120060 x 660 upstream

• 13060 x 120360 x 660 downstream

• 237 million grid cells with stretching in vertical and streamwise

• Points concentrated near wall, near step, in shear layer, and near reattachment
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11 Pseudo-LES Filtering and Selective Sampling

Upstream Boundary Layer Region:

• 5800 pseudo-LES grid cells

• y+ = [30,60,100,150]
• [2.6-xF, 2.41 = [80,50] & [170,110] (Larsson et al. 2016)

• Downstream Detached Region:

• 900 pseudo-LES grid cells on step face

• 3660 pseudo-LES grid cells on "floor"

• y+ = [15,30,60] from downstream attached BL
• 8 X 8 DNS grid cells

64-16-20 split. Selective sampling on training data. Ensemble of 10 SMLPs.



Results



13 Quality Metrics

• Compare SMLP and Law of the Wall (LotW) predictions to true DNS stress values

• Quality metrics, predicted (p) vs true (d) values:

• Mean Squared Error:

• Correlation Coefficient:

• K-L Divergence:

r =

MSE = ((pt — di)2) 0.0 is perfect

Elil=1( (0) (di — (d))

(13))2 Alril=1(di — (0)2

bins

KLD (D llP) = Dk ln 
Dk

Pk
k=1

1.0 is perfect

0.0 is perfect



14 Upstream Attached Region
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• LotW predictions very narrow

• SMLP much better at predicting
extreme values

MSE and r improved for
magnitude and components
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9.9e-7 0.45 0.22

1.1e-6 0.39 4.87

1.1e-6 0.45 0.22

1.1e-6 0.39 4.89

1.6e-7 0.44 0.06

2.3e-7 0.12 7.12



15 Downstream Detached Region
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• LotW predictions very narrow

• SMLP much better at predicting
extreme values

• SMLP misses Tx zeros on step face

• MSE and r improved

— DNS

— Wall Law

— S-MLP

r
0 1 2 3 4 5 6 7 8

H-wi(Prf2) x 10 -3

Pr
ob

ab
il

it
y 
De

ns
it

y 

10 3

10 2

10

10 °

Tw,x

11
_I—

-6 -4 -2 0
r,,,,/(pU2)

SMLP T„,;,„

•

— DNS

— Wall Law

— S-MLP

4

x 10 -3

MSE KLD

8.3e-7 0.63 0.81

1.5e-6 0.53 4.60

1.0e-6 0.64 0.74

1.3e-6 0.57 3.13



16 Downstream Detached Region
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• SMLP misses Tw,y zeros on floor

• MSE and r both worse for tw,z

• Predicts extreme values but
they are not that accurate
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17 Conclusions, Ongoing, & Future Work

• Invariant theory of [Š, SZ, Qii] provides 8 Form-Invariants & 20 Scalar Invariants
8

Tw,i = - G(k)ni(k) G (k) = y(k)(2.1)2.2) 2.3) A20)
k=1

• Specialized architecture based on Siamese Multi-Layer Perceptron

• Upstream Attached Region:

SMLP better at predicting all components of "cw,i

Downstream Detached Region:

SMLP better streamwise and vertical components

SMLP marginally worse at spanwise

SMLP misses zeros for wall-normal components on each face

Could be fixed by training, or ?f'- statement in code implementation

Better in aggregate?

• Add cavity flow DNS data to training and testing 
• Expand training dataset = More DNS frames 
• Parametric study on hyperparameters to maximize SMLP accuracy 
• Test NN for Law of the Wall in CFD code (SIGMA-CFD, NaLU, SPARC) 
• Implement SMLP for final, a posteriori model tests in LES code 
• Paper at AIAA Aviation Forum, June 2019, Dallas, Texas

ongoing
ongoing
future
ongoing
ongoing
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Thank you

Project funded under: Sandia's Laboratory Directed Research and
Development (LDRD) program

A lot of other work was done with Neural Nets for pressure spectra and
Random Forests for wall shear stress without invariant theory.

See Sandia Report: SAND2018-10602

Kmail: NMillel@Sandia.gov
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20 Siamese Multi-Layer Perceptron
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Combination of open-source:
Keras, TensorFlow

and Sandia proprietary ML tools:
TensorNet, Groupy

• Ensemble of 10 networks

• 4 hidden layers, P--5100 weights
• ReLU operator
• Mean squared error loss function

• Logarithmic pre-scaling of all Invariants

80/20 split on initial data for final testing

80/20 split on 80% for training/validation

Hidden
Layers

Final layer operator combines outputs
• Minimize cosine similarity Zheng (2016)

• Matrix multiply for us:

H (1)
H 
(2) 

i H1 
(3) ... n V3)

1/ (1) 11 (2) 11 (3) n (8)
112 112 112 - "2
ri- (1) 11 (2) 11 (3) (8)
113 113 113

A Inputs

I I I I I I I I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I I I

I I I I I I I I I I

1 1 1 G Outputs

G (1)

G (2) TV,V)C

G (3) =[Twy

TIV,Z

G (8) -

I I I I

II Inputs

I I I I I I 1 1 1
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21 Pseudo-LES Filtering and Selective Sampling

Upstream Boundary Layer Region:

• 5800 pseudo-LES grid cells

• y+ = [30,60,100,150]
• [24,24] = [80,50] & [170,110] (Larsson et al. 2016)

• Downstream Detached Region:

900 pseudo-LES grid cells on step face

3660 pseudo-LES grid cells on "floor"

y+ = [15,30,60] from downstream attached BL
8 X 8 DNS grid cells

• Data partitioned in
80% - 20% split

• 20% saved for final
network testing

80% selectively
sampled on nonzero
stress components

• Further 80/20 split
in training/validation

400
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22 Bacicups: Quality Metrics

• Mean Squared Error:

MSE = ((pi - di)2)

r =

• 0 is perfect

• Correlation Coefficient: • K-L Divergence:

ril=1(19i - (di - (d))

Airil=109i - (0)2 -1Ei7•=1(di - (d))2

• 1.0 is perfect

bins

KLD(D1113) = Dk ln 
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23 Other NN studies done:

Turbulent Channel Flow DNS Database

• Stencil of 45 LES grid cells above point of interest on the wall
• Variety of state variables tested

• Random Forests used for feature importance ranking

• In MLPs:
• Tested accuracy vs. number of training vectors

• More vectors Et more features reduced error, but had limiting returns
• Tested usefulness of pre-sampling strategies

• Pre-sampling produced much better training results

No. Training Pts. MSE K-L Div. r(fp,:fd) E<:f> ) % Ef' , %

67K 8.77e-7 0.141 0.532 16.5 16.4
126K 7.76e-7 0.131 0.537 14.5 14.0
181K 7.13e-7 0.121 0.543 13.1 12.3
373K 7.17e-7 0.117 0.567 14.1 13.5
110K, rand. samp. 3.43e-7 1.03 0.629 0.5 -2.2

'Flog 5.97e-7 1.17 0.482 -13.1 -15.6


