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Data-Driven Near-Wall Modeling

Near-wall turbulence modeling for Large Eddy Simulation (LES):
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Wall Shear Stress

Typically a solution to the mean flow equations at each near-wall grid cell
Law of the Wall (LotW):

=—In(y*)+ b where u; = ?
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u, k




3

Data-Driven Near-Wall Modeling

1

=—In(y") + b where u; = |—

u
u, k

Assumes grid cell y* is within log layer
Assumes mean boundary layer profile is
appropriate
« Fine for large cells + attached flows
* Not true for separated flows
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The Goal: A general expression for wall shear
stress based on filtered state variables at the
near-wall LES grid cell

TW,i = F(ﬁ, [_J, §, S_).)

» At least as good as LotW for attached flows
» Better than LotW for detached flows




Invariant Theory Approach




5 I Invariant Theory Approach

We seek a general coordinate frame invariant . .
representation for the wall shear stress:

Invariant theory presents as a tensor polynomial of Form-Invariants

Because T is a vector, II’s must be vectors.

Twi = Z G(R)ngk)

k

n® = f(m,U,S, Q)

Coefficients based on unknown functions of Scalar Invariants

G ®) = F R A

Put Together:
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The Invariants

Given one symmetric tensor (S), one skew-symmetric tensor (), & two vectors (U, 1)
* Invariant to rotation about I
* 20 Scalar Invariants: A; = f(,U,S,Q)  (Zheng 1993a, Zheng 1994)

M = {8}, A, = {8%}, A = {07, Ay = {83},

As = {807}, Ae =U-T, A, =U-SU, Ag =U-€q,
Ao =n-Sn, Mo=n-U, M1 =n-€Q, A =n-S%n,
A3 = n-€SQ, Mas =n-(SnxS%n), Az =n-eSQ2, Mg =n-SQOn,
A7 =n-SU, Mg=n-(UxSU), Aog=n-({UxSn), A =n-QU

* Form-Invariants derived from Scalar Invariants (Spencer 1987)
« 8 Form-Invariants: M%) = f(,V,S,Q) (Zheng 1993b, Zheng 1994)

n® =n, n® = Sn,
N® =nxSn, 0© =Qan,
N =nx0, n® =nx
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nw =g, n® = eq, i = 2 G(k)nlg )
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G(k) — ?(k) (/11, /121)'31 ---/’{20)

e ML model that can learn F® to get G® to
combine with Hi(k) to predict Ty



Neural Network Approach




s I Siamese Multi-Layer Perceptron

Two parallel MLPs of equivalent architecture with the same weights (Zheng 2016)
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Final Outputs

*  The functions G = T(k)(/lj) must be EEEEEEEE |T|Tp|m|s| [T1T11]
learned |
*  Only need to train one side of our SMLP CITTITITTITITITITITY CTTT]
architecture e {
*  Combination of open-source: Layers T ‘II - —
Keras, TensorFlow
and Sandia proprietary ML tools: e o S
TensorNet, Groupy
* 4 hidden layers, #5100 weights \ /
*  3x multiplier, ReL.U, Mean error loss func E‘):lt:'t
z, Outputs




DNS Data and LES filtering




10 I Backwards Facing Step DNS

* SNL's structured, multi-block, finite volume code: SIGMA-CFD (Arunajatesan et al. 2013)
* Mach 0.6 compressible freestream
* Reynolds Number = 6254
* Inlet condition from precursor RANS simulation
* Boundary layer heightincreased to 3§, at the step
» Step heightalso 3§, => h/§ =1.0
* 974§, x 12006, X 66, upstream
1306y X 12036, X 66, downstream
* =~ 237 million grid cells with stretching in vertical and streamwise
* Points concentrated near wall, near step, in shear layer, and near reattachment

v ooy = 7 e e
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Density_Gradient

2.000e-02 7 .200e-04




11 I Pseudo-LES Filtering and Selective Sampling

Upstream Boundary Layer Region:
5800 pseudo-LES grid cells
y* =[30,60,100,150]
[24F,24%] = [80,50] & [170,110] (Larsson e al. 2016)

Downstream Detached Region:
900 pseudo-LES grid cells on step face
3660 pseudo-LES grid cells on “floor”
yt =[15,30,60] from downstream attached BL.
8 X 8 DNS grid cells

Density_Gradient
,‘ N , ]
0.000e+00 . - 2.000e-02 7. 200e-02 1.000e-01

04-16-20 split. Selective sampling on training data. Ensemble of 10 SMLPs.







Quality Metrics

* Compare SMLP and Law of the Wall (LotW) predictions to true DNS stress values
*  Quality metrics, predicted (p) vs true (d) values:

* Mean Squared Error: MSE = {(p; — d;)?) 0.0 is perfect

i=1(pi = (p)) (d; = (d))

* Correlation Coefficient: 7 = 1.0 is perfect

\/Z 1(pl (P))Z\/Z 1(d _(d>)2

bins

* K-L Divergence: KLD(D||P) = Z D, ln Pr 0.0 is perfect
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Upstream Attached Region

LotW predictions very narrow

SMLP much better at predicting

extreme values

MSE and r improved for
magnitude and components
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Probability Density
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Downstream Detached Region

extreme values

*  MSE and r improved

*  LotW predictions very narrow

*  SMLP much better at predicting

* SMLP misses T, zeros on step face
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Probability Density

100_

Downstream Detached Region

LotW predictions very narrow
SMLP misses T,y zetos on floor

MSE and r both worse for Ty, ,

*  Predicts extreme values but

they are not that accurate
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Conclusions, Ongoing, & Future Work

Invariant theory of [S, Q, U, 0] provides 8 Form-Invariants & 20 Scalar Invariants
8

2 cON® GO = FEO(A, 2y, As, ... Ago)

Specialized architecture based on Siamese Multi-Layer Perceptron
Upstream Attached Region:

SMLP better at predicting all components of Ty, ;
Downstream Detached Region:

SMLP better streamwise and vertical components

SMLP marginally worse at spanwise

SMLP misses zeros for wall-normal components on each face

Could be fixed by training, or 7+-statement in code implementation

Better in aggregate?

Add cavity flow DNS data to training and testing............cccoeiiiiiiiiennnnnn.. ongoing
Expand training dataset = More DNS frames.......covviiiiiiieiiieeninnaeeennnnns ongoing
Parametric study on hyperparameters to maximize SMLP accuracy............ future

Test NN for Law of the Wall in CFD code (SIGMA-CFD, NaLU, SPARC).......... ongoing
Implement SMLP for final, a posteriori model tests in LES code............... ongoing

Paper at AIAA Aviation Forum, June 2019, Dallas, Texas
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Thank you

Project funded under: Sandia’s Laboratory Directed Research and
Development (LDRD) program

A lot of other work was done with Neural Nets for pressure spectra and
Random Forests for wall shear stress without invariant theory.

See Sandia Report: SAND2018-10602

Email: NMille1@Sandia.gov
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Siamese Multi-Layer Perceptron

Inputs 1 Inputs 2

a 0

l &

[ Outputs1 Outputs 2 [T 1] . [

\/

Final Outputs

Combination of open-source:
Keras, TensorFlow

and Sandia proprietary ML tools:
TensorNet, Groupy

Ensemble of 10 networks

4 hidden layers, #5100 weights

RelLU operator

Mean squared error loss function
Logarithmic pre-scaling of all Invariants

80/20 split on initial data for final testing
80/20 split on 80% for training/validation

Hidden
Layers

Final layer operator combines outputs
Minimize cosine similarity Zheng (2016)

Matrix multiply for us:
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Pseudo-LES Filtering and Selective Sampling

*  Upstream Boundary Layer Region:
* 5800 pseudo-LES grid cells
«  y*=1[30,60,100,150]
- [24F,24%] =[80,50] & [170,110] (Larsson e al. 2016)

*  Downstream Detached Region:

* 900 pseudo-LES grid cells on step face

* 3660 pseudo-LES grid cells on “floor”

-yt =[15,30,60] from downstream attached BL
° 8 X 8 DNS grid cells

Data partitioned in
80% - 20% split

20% saved for final
network testing

80% selectively
sampled on nonzero
stress components

Further 80/20 split
in training/validati

400

300

100

/
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Backups: Quality Metrics

* Mean Squared Error: .

MSE = ((p; — d;)*)

1i1=1(pi -

Correlation Coefficient:

(p) (d; — (d))

* K-L Divergence:

bins

e

* 0is perfect

(P2 VX, (d; — (d))?
e 1.0 is perfect

* 0 1is perfect

KLD(D||P) = Dk ln—

k
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23 1 Other NN studies done: ‘ |

Turbulent Channel Flow DNS Database

.

« Stencil of 45 LES grid cells above point of interest on the wall
« Variety of state variables tested
« Random Forests used for feature importance ranking

* In MLPs:
« Tested accuracy vs. number of training vectors
* More vectors & more features reduced error, but had limiting returns
» Tested usefulness of pre-sampling strategies
* Pre-sampling produced much better training results

No. Training Pts. MSE K-L Div. 7(7,,7a) €<#>, %0 €, %

67K 8.77e-7  0.141 0.532 16.5 16.4
126K 7.76e-7  0.131 0.537 14.5 14.0
181K 7.13e-7  0.121 0.543 13.1 12.3
373K 7.17e-7  0.117 0.567 14.1 13.5
110K, rand. samp. 3.43e-7 1.03 0.629 0.5 -2.2

Tiog 5.97e-7 1.17 0.482 -13.1 -15.6




