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Classical Framework

• Function mapping uncertain parameters 0 E RP to a scalar quantity of
interest

f : R

• Use methods such as

- Sobol' indices
- Derivative-based global sensitivity measures
- Morris screening
- and others...

• There are a plurality of generalizations for problems where

- 0 is infinite dimensional
- f(B) is vector-valued or infinite dimensional
- and others...
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Framework for the Talk

• This talk will focus on the case where

- 0 is infinite dimensional (a spatially dependent parameter)
- f(B) is infinite dimensional (the solution of a PDE-constrained optimization

problem)
- evaluating f (0) once requires solving a PDE-constrained optimization problem

• The Fréchet derivative of f with respect to 0 gives a local sensitivity

• Evaluate this local sensitivity for different O's (usually a small number of
them)
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Problem Formulation

Consider the PDE-constrained optimization problem

min J(u,
1J,Z

s.t. c(u, z,0) 0

(1)

where

• J is an objective function

• c is a partial differential equation (PDE)

• u is a (infinite dimensional) state variable

• z is a (possibly infinite dimensional) design or control variable

• 6 corresponding to (possibly infinite dimensional) uncertain parameters in c

Goal: Determine the sensitivity of the solution of (1) to changes in B.
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Motivation

minJ(u,z)
1.1,Z

s.t. c(u, z, 0) = 0

(1)

Our ultimate goal is to produce a robust or risk-averse optimal design or control.
This requires

• engineering design to mitigate uncertainties

• data acquisition and inverse problems to characterize or mitigate uncertainties

• a robust or risk-averse formulation of (1)

This is challenging when the model

• is large scale

• is multi-physics

• is multi-scale

• contains many different uncertain parameters

Goal: Use sensitivity analysis to screen and prioritize parameters.
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Optimization Problem

min J(u, z)
u,z

s.t. c(u, z , 0) = 0

Let

(1)

f(u z, À, 0) = J(u, z) + (c(u, z , 0), À)

denote the Lagrangian for (1) and assume that (u*, z*, Al is a local minimum of
(1) with 0 = 00. Under mind assumptions 2, there exists a function

such that

f : .1\1(00) Al.(u* , z* , A*)

V .C(f (0), 0) = 0

for any 0 in a neighborhood of eo•

2K. Brandes and R. Griesse, Quantitative stability analysis of optimal solutions
in PDE-constrained optimization. 
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Parameter to Optimal Solution Mapping

such that

f : .A1(00) .A1(u* , z* , A*)

V r(f (0), 0) = 0

Parameter Space

00
•

Parameters

Control

Optimal Control
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Local Sensitivity

rninJ(u,z)
LI Z

s.t. c(u, z, 0) = 0

f : Al(00) Al(u* , z* ,

(1)

• f (0) is the solution of (1) with parameters 0
- it depends on the particular local minimum (u* , z* ,
- evaluating f(B) requires the solving (1) (expensive)

• following the work of Roland Griesse (now Hertzog), the Frechet derivative of
f with respect to 0 is given by

Df (0) = —1C-18

where K is the hessian of G and 13 is the Fréchet derivative of :riAwith
respect to 0 (both evaluated at (u*, z*,
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Local Sensitivity

Df(0)=

• IlDf(0)011 measures the local sensitivity of the optimal solution (u*, z* ,
to perturbations of 0 in the direction 1/)

• define the projection operator fl by fl(u, z, À) = z

• discretize 0 in a finite dimensional subspace V = span{01, 02, • • • ,Op}
• the local sensitivity of the design/control solution z* with respect to 0 in the

direction 0; is given by

Li = i =1,2,...,p
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Local Sensitivity: Computation

Li =1 ruc-1-Bq i=1,2,...,p

• requires solving the PDE-constrained optimization problem once, followed by
p linear system solves with coefficient matrix IC

• p is large when V = spant01,V)2,...,'Opl discretizes a spatially dependent 0

• in many applications B possesses a low rank structure, leveraging the singular
value decomposition yields

=1 nK =
00

k=1

uk(vk,V)i)lik

m

=1
k,6)2

where (ak, uk, vk), k = 1,2, ... are the singular triplets of 111C-1B

• estimating the truncated SVD of 1-11C-1B allows efficient estimation
of Li, i = 1, 2, ... p

Joseph Hart (joshart@sandia.gov) GSA for PDECO CSE - 2019 14 / 30



Extension to Global Sensitivity Indices

Local sensitivity index

Li =

min J(u,

s.t. c(u, z, 0) = O

i=1,2,...,p

• Li depends on 00 and u* , z* , A*

• sample different 00's to explore the parameter space

• sample different initial optimization iterates to explore the various local
minima

• estimate Li, i = 1,2, ... , p, for each parameter and initial iterate sample

• need to compute Li's efficiently

czo

(1)
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Singular Value Decomposition (SVD)

• The computational challenge is computing the truncated SVD (with
appropriate inner products) of

• Let Mo and Mz denote the mass matrices (defining discretized functional
space inner products using coordinate representations)

• The SVD of the discretized operator (2) may be extracted from the
generalized eigenvalue problem

where

A=

and

Ax = AMx

0 Mz1-11C-1B
sTic_iniwz

A4 mz o
0 Mo

(2)
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Generalized Eigenvalue Problem

0 1-11C-1.8 ( )( M 0 (
( Br ic-1nmz 

Mz 
0 0 ) 0

z
 A40 }

• computational cost dominated by applying IC-1 (a large linear system solve)

• use conjugate gradient since IC is symmetric positive definite

• use randomized generalized eigenvalue solver from 3 to facilitate parallelism

• postprocess dominant eigenvalues/vectors to estimate the truncated SVD
(and hence local sensitivities)

3A.K. Saibaba, J. Lee,and P.K. Kitanidis, Randomized algorithms for generalized
Hermitian eigenvalue problems with application to computing
Karhunen-Loève expansion
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Computational Cost Outline

min J(u, z)
LI.Z

c(u, z, 0) = 0

(1)

Cost to compute one local sensitivity (assuming all eigenvalue solver matrix vector
products are parallelized)

• solve (1) once

O solve 4 large linear systems (whose coefficient matrix is the hessian of the
Lagrangian of (1) evaluated at local minimum) for each matrix vector
product required by the eigenvalue solver

O many other inexpensive matrix vector products
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Q Numerical Results
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Chemical Vapor Deposition Reactor

min
1 
.1(V x v)dx 2 f z2dx

LI ,Z 2 Q 2 I-,

S.t.

U = (1/1., v2, p,

- c(p)V2v + (v • V)v+ V p q(0)Tg = 0 in Q

V v = 0 in cl

— K(0)AT-Fv•VT=0 in S2

T = 0 and v = v, on I-,

OT
and v = vc, on Ec,

ic(19),/-7 =
T = Tb(0) and v = 0 on Ft,

K(~(9)
OT

v(0)(z — T)= 0 and v = 0 on

ro
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Chemical Vapor Deposition Reactor

r, ro
Uncontrolled Velocity Controlled Velocity

0.8 I 1 • 0.8 " •
j,

- - ••• " •

- - . - - --- -----
0.6 • •  0.6  

r, 1 I ; :
0.4

I
t

0.4  

0.2 0.2  

0
o 0.2 0.4 0.6 0.8 

00 
0.2 0.4 0.6 0.8

• particles are injected into the top of a container

• the temperature on side walls is controlled to minimize vorticities in the fluid

• uncertainties enter through properties of the fluid and spatially distributed
thermal boundary conditions
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Chemical Vapor Deposition Reactor: Continued

• total of 153 uncertain parameters

• total of 40,000 degrees of freedom in the discretization of the state

• local sensitivities are computed for 20 different parameter samples

• the randomized eigenvalue solver uses 16 random vector sample

• 1280 processors are used to parallelize the computation with minimal
communication

• implemented in the Rapid Optimization Library 4 in Trilinos

4D. P. Kouri, G. von Winckel, and D. Ridzal, ROL: Rapid Optimization L 0e/4.ecs"
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Control Solutions
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Figure. Control solutions corresponding to 20 different parameter samples. The left and
right panels are the controllers on the left and right boundaries, respectively. Each curve
is a control solution for a given parameter sample.
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Singular Values
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Figure: Leading 4 singular values at 20 different parameter samples. Each vertical slice
corresponds to the leading 4 singular values for a fixed sample.
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Local Sensitivities
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Figure: Local sensitivities for the 153 uncertain parameters. The 20 circles in each
vertical slice indicates the sensitivity index for a fixed parameter as it varies over the 2

parameter samples.
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Controller Singular Vectors
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Figure The top (bottom) row shows the first (second) singular vector on the left an
right boundaries, respectively. Each curve corresponds to a different parameter s
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Observations

• The local sensitivity analysis yields similar results for each parameter sample.

• Only around 10% of the uncertain parameters exhibit significant influence on
the control strategy.

• The bottom boundary condition, Tb, has the greatest influence on the
control strategy.
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Summary

• interested in the sensitivity of the solution of an optimization problem to
uncertain parameters

• following the work of Roland Griesse (now Hertzog), a derivative-based
approach is proposed

• the Singular Value Decomposition and a randomized solver are used to enable
efficient computation of local sensitivities

• the method is illustrated on a nonlinear multi-physics model for a chemical
vapor deposition reactor
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Questions?

Joseph Hart

Sandia National Laboratories

joshart@sandia.gov
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