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Problem Formulation

Consider the PDE-constrained optimization problem
min J(u, z) (1)

s.t. ¢(u,z,0)=0

where
e Jis an objective function
e c is a partial differential equation (PDE)
e uis a (infinite dimensional) state variable
e zis a (possibly infinite dimensional) design or control variable
e 0 corresponding to (possibly infinite dimensional) uncertain parameters in ¢

Goal: Determine the sensitivity of the solution of (1) to changes in 6.
This is the sensitivity of (1), not simply the sensitivity of J or c.

g -
Tz ™
ISR H e esherE o et SA for PDECO CSE-2019  4/26




min J(u, z) (1)

u,z

s.t. ¢(u,z,0)=0

Our ultimate goal is to produce a robust or risk-averse optimal design or control.
This requires

e engineering design to mitigate uncertainties

e data acquisition and inverse problems to characterize or mitigate uncertainties

e a robust or risk-averse formulation of (1)
This is challenging when the model

e is large scale

e is multi-physics

e is multi-scale

e contains many different uncertain parameters

Goal: Use sensitivity analysis to screen and prioritize parameters. Z "s‘;'?,‘f;;&g
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Optimization Problem

min J(u, z) (1)

u,z

s.t. c(u,z,0)=0

Let
L(u,z,7,0) = J(u,z) + (c(u,2,0),\)

denote the Lagrangian for (1) and assume that (u*, z*, A*) is a local minimum of
(1) with @ = 8. Under mind assumptions 2, there exists a function

f:N(6o) = N(u*,z",\%)

such that
VL(f(6),0)=0

for any @ in a neighborhood of 6.

2K. Brandes and R. Griesse, Quantitative stability analysis of optimal solutions
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Parameter to Optimal Solution Mapping

f:N(6g) = N(u*,z", \%)

such that
VL(f(6),0) =0

0 -y f(0)
Parameter Space
", .
5
2
.%
L] 0 g
Control
Parameters — Optimal Control Solution
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Local Sensitivity

min J(u, z) (1)

u,z

s.t. ¢(u,z,0)=0

f:N(6p) = N(u*,z",\")

e f(0) is the solution of (1) with parameters 6

- it depends on the particular local minimum (u*, z*, \*)
- evaluating (@) requires the solving (1) (expensive)

o following the work of Roland Griesse (now Hertzog), the Fréchet derivative of
f with respect to 0 is given by

DFf(9) = -K 1B

where I is the hessian of £ and B is the Fréchet derivative of V£ with4

respect to 0 (both evaluated at (u*, z*, A\*)) S
= s
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Local Sensitivity

Df(0) = K 'B

[|Df(0)1|| measures the local sensitivity of the optimal solution (u*, z*, A*)
to perturbations of 6 in the direction v

e evaluating Df(0)w requires solving a large linear system (whose coefficient
matrix is the hessian of L)

o define the projection operator N by M(u,z,\) = z
e discretize 6 in a finite dimensional subspace V' = span{tn,>,...,¢p}

e the local sensitivity of the design/control solution z* with respect to 6 in the
direction 1); is given by

Li=|InKT Byl =12
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Local Sensitivity: Computation

L = [INK™Byi| i=1,2,...,p

e requires solving the PDE-constrained optimization problem once, followed by
p linear system solves with coefficient matrix K

o pis large when V = span{i1,v»,...,1p} discretizes a spatially dependent

e in many applications B possesses a low rank structure (because it encodes
parametric sensitivities), leveraging the singular value decomposition yields

> ok(vie, i) uk
k=1

where (o, ug, vk), k =1,2,... are the singular triplets of MK ~18
e the singular triplets (o, uk, vk), k =1,2,..., m, may frequently be estimateg
with less than p applications of M8
e estimating the truncated SVD of MK 1B allows efficient estimation

t L =#12F >
o i . L%“

m

~ Z (Vk,l/h

k=

L =||NK~1Byi|| =
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Extension to Global Sensitivity Indices

min J(u, z) (1)

u,z

s.t. c(u,z,0)=0
Local sensitivity index

LI:||I_|’C_1B’(/)I|| i:1727"'7p

e L; depends on By and u*, z*, \*
e sample different 8y's to explore the parameter space

e sample different initial optimization iterates to explore the various local
minima

e estimate L;, i =1,2,...,p, for each parameter and initial iterate sample

e need to compute L;'s efficiently

ﬁandua o
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Singular Value Decomposition (SVD)

e The computational challenge is computing the truncated SVD (with
appropriate inner products) of

nK—'B (2)

e Let My and M, denote the mass matrices (defining discretized functional
space inner products using coordinate representations)

e The SVD of the discretized operator (2) may be extracted from the
generalized eigenvalue problem

Ax = AMx
where
A 0 M,NK 18
—\ BTk Inm, 0
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(oo, ™% 2 ) (5) =205 4 ) (5)

e computational cost dominated by applying ~! (a large linear system solve)

D N2
D N2

e use conjugate gradient since K is symmetric positive definite
o use randomized generalized eigenvalue solver from 3 to facilitate parallelism

e K~! must be applied sequentially if an iterative eigenvalue solver is used
e the randomized solver allows them to be executed in parallel since the matrix
vector products are independent

e postprocess dominant eigenvalues/vectors to estimate the truncated SVD
(and hence local sensitivities)

3A.K. Saibaba, J. Lee,and P.K. Kitanidis, Randomized algorithms for generalized
Hermitian eigenvalue problems with application to computing Z i
Karhunen-Loéve expansion = » Natinal, (-

2 Laboratories
Joseph Hart (joshart@sandia.gov) SA for PDECO CSE - 2019 15 /26



Computational Cost Outline

min J(u, z) (1)

u,z
s.t. c(u,z,0)=0
Cost to compute one local sensitivity (assuming all eigenvalue solver matrix vector
products are parallelized)
@ solve (1) once

@ solve 4 large linear systems (whose coefficient matrix is the hessian of the
Lagrangian of (1) evaluated at local minimum) for each matrix vector
product required by the eigenvalue solver

@ many other inexpensive matrix vector products
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Chemical Vapor Deposition Reactor

minl/(v X v)dx—l—Z/ Z2dx X
u,z 2 Q 2 C o Q .
s.t.
u= (Vla V2, P, T) B
—e(p)V2v+ (v-V)v+Vp+1(0)Tg =0 in Q
V-v=0 in Q
—k(O) AT +v-VT =0 in Q
T=0 and v =y onl;
N(O)%—: =0 and V=1, onTl,
T = Tp(0) and v=0 onlp
oT
n(())% +v(0)(z—T)=0 and =10 enilFs
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Chemical Vapor Deposition React

Uncontrolled Velochy
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e particles are injected into the top of a container
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e the temperature on side walls is controlled to minimize vorticities in the fluid

e uncertainties enter through properties of the fluid and spatially distributed

thermal boundary conditions
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Chemical Vapor Deposition Reactor: Continued

e total of 153 uncertain parameters

e total of 40,000 degrees of freedom in the discretization of the state
o local sensitivities are computed for 20 different parameter samples
e the randomized eigenvalue solver uses 16 random vector sample

e 1280 processors are used to parallelize the computation with minimal
communication

e implemented in the Rapid Optimization Library 4 in Trilinos

5 - b . el o e Sandia
4D. P. Kouri, G. von Winckel, and D. Ridzal, ROL: Rapid Optimization L|b Natopal,
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Control Solutions
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Figure: Control solutions corresponding to 20 different parameter samples. The left and
right panels are the controllers on the left and right boundaries, respectively. Each curve
is a control solution for a given parameter sample.
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Singular Values
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Figure: Leading 4 singular values at 20 different parameter samples. Each vertical slice
corresponds to the leading 4 singular values for a fixed sample.
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Local Sensitivities
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Figure: Local sensitivities for the 153 uncertain parameters. The 20 circles in each
vertical slice indicates the sensitivity index for a fixed parameter as it varies over the 20

parameter samples.
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Controller Singular Vectors

Singular Vector 1 on Left

Singular Vector 2 on Left
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e The local sensitivity analysis yields similar results for each parameter sample.

e Only around 10% of the uncertain parameters exhibit significant influence on
the control strategy.

e The bottom boundary condition, Tj, has the greatest influence on the
control strategy.
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e interested in the sensitivity of the solution of an optimization problem to
uncertain parameters

e following the work of Roland Griesse (now Hertzog), a derivative-based
approach is proposed

e the Singular Value Decomposition and a randomized solver are used to enable
efficient computation of local sensitivities

e the algorithm is implemented in the Rapid Optimization Library (ROL) of
Trilinos which enables parallel linear algebra constructs and scalable
performance for nonlinear multi-physics problems

e the method is illustrated on a nonlinear multi-physics model for a chemical
vapor deposition reactor
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