

LA-UR-19-22264 (Accepted Manuscript)

The Influence of Polar Coronal Holes on the Polar ENA Flux Observed by IBEX

Reisenfeld, Daniel Brett
Bzowski, Maciej
Funsten, Herbert O. III
Janzen, Paul H.
Karna, Nishu
Kubiak, Marzena A.
McComas, David J.
Schwadron, Nathan A.
Sokol, Justyna M.

Provided by the author(s) and the Los Alamos National Laboratory (2020-02-13).

To be published in: The Astrophysical Journal

DOI to publisher's version: 10.3847/1538-4357/ab22c0

Permalink to record: <http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-19-22264>

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

1 The Influence of Polar Coronal Holes on the Polar ENA Flux Observed by IBEX
2

3 D. B. Reisenfeld¹, M. Bzowski², H. O. Funsten¹, P. H. Janzen³, N. Karna⁴, M. A. Kubiak², D. J.
4 McComas⁵, N. A. Schwadron⁶, and J. M. Sokół²

5
6 ⁽¹⁾*Los Alamos National Laboratory, Los Alamos, NM 87545, USA:* dreisenfeld@lanl.gov;
7 hfunsten@lanl.gov

8 ⁽²⁾*Space Research Centre of the Polish Academy of Sciences, (CBK PAN), Bartycka 18A, 00-
9 716, Warsaw, Poland:* bzowski@cbk.waw.pl; mkubiak@cbk.waw.pl; jsokol@cbk.waw.pl

10 ⁽³⁾*University of Montana, Missoula, MT 59812, USA:* paul.janzen@umontana.edu

11 ⁽⁴⁾*Harvard-Smithsonian Center for Astrophysics, Cambridge MA 02138:*

12 nishu.karna@cfa.harvard.edu

13 ⁽⁵⁾*Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA:*
14 dmccomas@princeton.edu

15 ⁽⁶⁾*University of New Hampshire, Space Science Center, Morse Hall, Durham, NH 03824, USA*
16 nschwadron@guero.sr.unh.edu

17
18 Abstract. Polar coronal holes (PCHs) fill the high-latitude heliosphere with fast solar wind
19 during the minimum phase of the solar cycle. This leads to a hardening of the energy spectrum
20 of the proton plasma in the inner heliosheath IHS, observed as energetic neutral atoms (ENAs)
21 by the *Interstellar Boundary Explorer (IBEX)*. In particular, the highest-energy channel of the
22 IBEX-Hi instrument (at 4.3 keV) is a very sensitive indicator of pre-termination shock fast wind
23 entering the IHS. We show that the 4.3 keV ENA flux observed from the ecliptic poles is well-
24 correlated with the area of the solar surface covered by PCHs throughout the solar cycle, which
25 demonstrates the existence of a direct connection between coronal structure and the dynamic
26 properties of the IHS.

27 1. INTRODUCTION

28 Polar coronal holes (PCHs) are the sources of the fast ($\sim 760 \text{ km s}^{-1}$) solar wind (SW) that
29 dominates the high-latitude heliosphere during the sunspot minimum phase of the solar cycle
30 (McComas et al. 2000, Fujiki et al. 2005). At their maximum size, the combined area of PCHs
31 covers only about 10% of the projected solar disk (Karna et al. 2014), or 20% of the Sun's
32 surface area. However, due to the super-radial expansion of the polar magnetic field, PCH-
33 associated SW is observed down to 35° latitude (McComas et al. 2000, Sokół et al. 2015,
34 Tokumaru et al. 2017); thus, around solar minimum, PCH flow can fill 1.7π steradians, or 43%
35 of the heliosphere. Thus, PCH SW flow will be a major component of the heliosheath plasma
36 beyond the termination shock (TS).

37 The *Interstellar Boundary Explorer (IBEX)* (McComas et al. 2009a) has observed the imprint of
38 the fast SW from PCHs on the global heliosphere, through the observation of energetic neutral
39 atoms (ENAs) emanating from the inner heliosheath (IHS). McComas et al. (2014) showed that
40 the first five years of *IBEX* observations (2009 – 2013) correlates with the solar minimum phase
41 of the solar cycle, when the travel time of outbound SW and returning ENAs (a time lag of ~ 4 –
42 2.5 years for ENAs in the range of 0.5 – 6 keV) is taken into account. During this period, a
43 strong association was revealed between the latitudinal ordering of the ENA spectral indices and
44 the solar minimum-like SW structure, further confirming earlier evidence of latitudinal ordering

45 (McComas et al. 2009b, Dayeh et al. 2011). Desai et al. (2016) predicted that the latitudinal
46 ordering of the spectral indices would be disrupted in the 2014-2017 timeframe as the ENA
47 signal began to reflect the increase in solar activity and the closing of the PCHs that was
48 observed at the Sun beginning in 2011. This was also predicted by McComas et al. (2012, 2014)
49 and later confirmed by McComas et al. (2017a). Recently, Zirnstein et al. (2017) showed that
50 the spectral index of the ENA energy distribution measured at a particular time in a particular
51 direction is correlated with the speed of the outgoing SW traveling in that direction, adjusted for
52 the travel time.

53 The link between the ENA energy distribution and the SW speed is not necessarily obvious,
54 because the SW undergoes significant processing as it propagates through the heliosphere. The
55 supersonic SW flows radially away from the Sun and interacts with interstellar atoms, ionizing
56 many of them via charge exchange. Once ionized, the interstellar ions are accelerated (“picked
57 up”) by the SW magnetic field (e.g., see McComas et al. 2017b for PUI observations in the SW
58 out to \sim 38 AU). The SW is in turn mass-loaded and slowed as it approaches the TS (Richardson
59 et al. 2008, Lee et al. 2009). As the supersonic SW and its pickup ion (PUI) component cross the
60 TS at > 80 au from the Sun, they become subsonic, compressed, and heated in the IHS. In fact,
61 the effect of the TS passage on the flow is to transfer 80% or more of the flow energy into the
62 PUIs (Richardson et al. 2008).

63 In the heliosheath, the particle distribution is no longer Maxwellian and is better represented by a
64 Kappa distribution (e.g. Zank et al. 2010; Livadiotis et al. 2011), with the PUI portion of the
65 distribution described by a power law. ENAs are formed when interstellar atoms flowing into the
66 heliosphere charge-exchange with the energetic protons of the heliosheath. These ENAs travel
67 ballistically from their point of origin in all directions. Some of them travel toward Earth and are
68 detectable by *IBEX*.

69 Zirnstein et al. (2017) quantified the latitudinal evolution of the ENA spectra over time, and the
70 relationship of the spectra to the evolution of the SW. In addition, Reisenfeld et al. (2016,
71 hereafter R2016) used 7 years of IBEX observations to show that the polar ENA flux correlates
72 well with the phase of the solar cycle, and that the continuing decrease of the high energy ENA
73 fluxes through 2015 was consistent with the disappearance of the fast SW earlier in the solar
74 activity cycle.

75 Beginning in 2014, the Sun’s PCHs began to reopen. R2016 therefore predicted that within a
76 few years, the high energy polar ENA flux would begin to recover. In this paper, we investigate
77 whether this has come to pass. Here, we report the most recent polar ENA flux observations, and
78 look more deeply into their relation with the size of the Sun’s PCHs.

79 2. OBSERVATIONS

80 We use IBEX-Hi ENA observations of the ecliptic poles spanning the first 9.5 years of the
81 mission (25 December 2008 – 25 June 2018), covering the full period of IBEX-Hi validated data
82 to date (McComas et al. 2019). *IBEX* is a sun-pointing spinning spacecraft equipped with two
83 instruments, IBEX-Lo, which images ENAs from \sim 10 eV – 2 keV (Fuselier et al. 2009), and
84 IBEX-Hi, which images ENAs from \sim 0.5 – 6 keV (Funsten et al. 2009). As with previous polar
85 studies (Reisenfeld et al. 2012; R2016) we take advantage of the fact that the IBEX sensors view
86 the ecliptic poles once every spin. This allows for both higher time resolution observations and

87 much higher counting statistics than for observations of other parts of the sky. The ecliptic pole
88 analysis method follows that described in R2016. All data are corrected for spacecraft aberration
89 and for backgrounds (see McComas et al. 2017a). The ENA flux measurements are also
90 adjusted for the survival probability of ENAs travelling 100 AU from beyond the TS to 1 au
91 (Bzowski 2008; McComas et al. 2017a) so that they reflect the expected ENA flux in the
92 heliosheath.

93 In addition to ENA observations from *IBEX*, we make use of EUV observations of the solar disk
94 from a combination of Extreme-ultraviolet Imaging Telescope (EIT) synoptic maps from the
95 *Solar and Heliospheric Observatory (SoHO)* and Atmospheric Imager Assembly (AIA) synoptic
96 maps from the *Solar Dynamics Observatory (SDO)*. These were analyzed to determine the
97 fraction of the solar disk covered by PCHs as a function of Carrington Rotation (the 27.27-day
98 rotation period of a sunspot), applying the method of Karna et al. (2014).

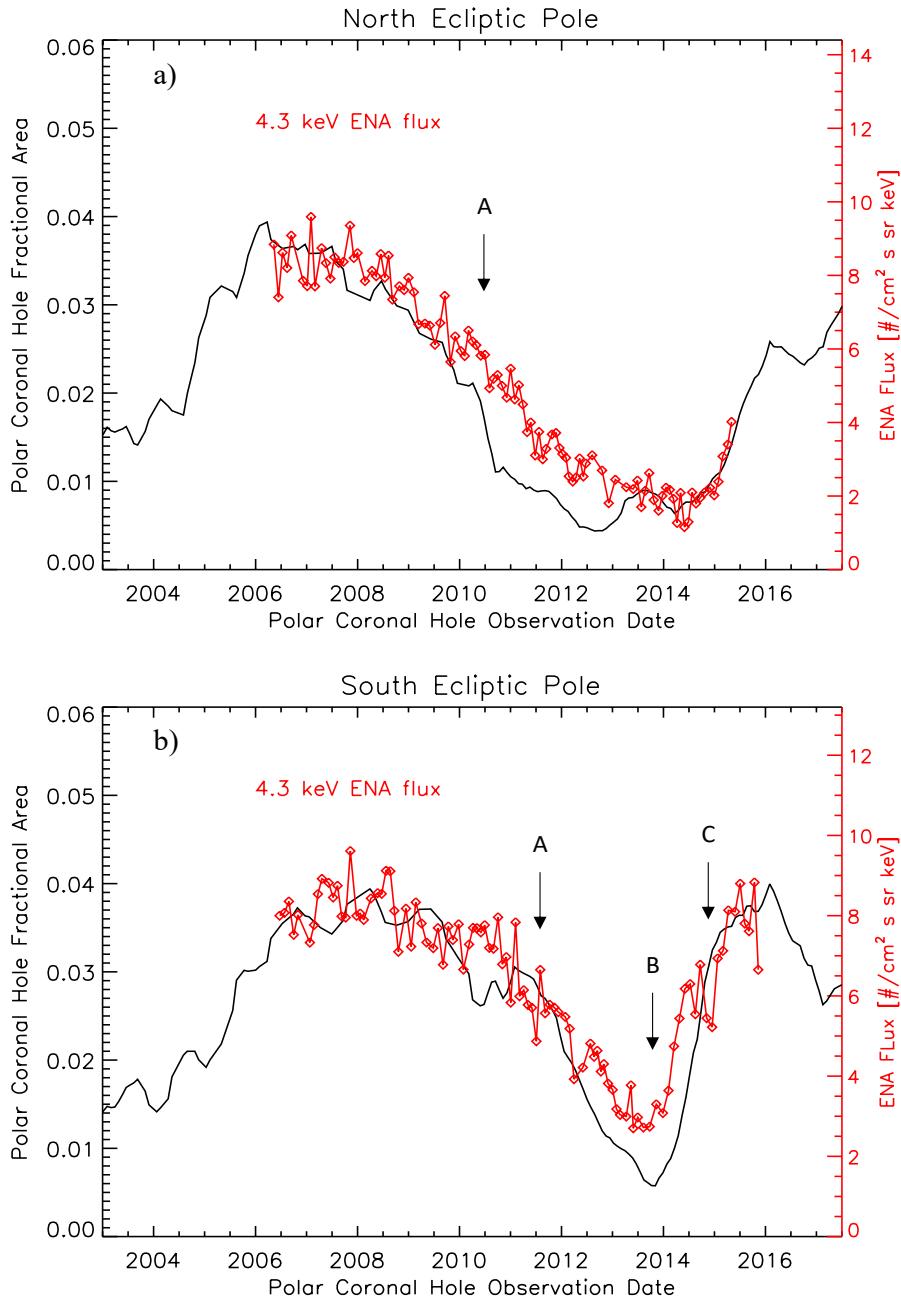
99 3. ANALYSIS

100 Our goal is to analyze, by as direct a means as possible, the relationship between the
101 configuration of the high-latitude solar corona and the structure of the IHS. We compare the
102 area of the solar disk covered by the PCH of a given pole to the magnitude of the ENA flux
103 measured in the direction of the corresponding ecliptic pole by the highest IBEX-Hi energy
104 channel, which is centered at 4.3 keV. The link between the PCH area and the 4.3 keV ENA flux
105 is the high-speed SW that emanates from the PCHs. Of the six IBEX-Hi energy channels, the
106 4.3 keV channel is the most sensitive to fast SW speed. Zirnstein et al. (2017) demonstrated that
107 450 km s⁻¹ SW yields an ENA energy power law with a spectral index of $\gamma \sim 2.2$, and that 750
108 km s⁻¹ SW yields $\gamma \sim 1.3$. Assuming equal total flux over the measured IBEX-Hi energy range,
109 this corresponds to a factor three greater flux in the 4.3 keV channel for 750 km s⁻¹ wind than for
110 450 km s⁻¹ wind. Thus, by monitoring the polar 4.3 keV ENA flux over time, we can determine
111 how much of the IHS over the pole is filled with plasma originating from the fast wind.

112 In comparing the polar ENA flux to the area of a PCH, the question then becomes which ENA
113 flux interval to choose for comparison. There is a time delay of two to four years between the
114 outgoing SW and the returning ENA flux. We therefore have to determine the appropriate time
115 delay in order to select the corresponding *IBEX* measurement interval. To determine the time
116 offset, or the “trace-back” time t_{tb} , we time-correlate the SW dynamic pressure of the outgoing
117 SW measured in the ecliptic at 1 au with the ENA-derived IHS plasma pressure measured by
118 IBEX-Hi. The rationale for this method is that the plasma pressure in the IHS will respond to
119 changes in the SW dynamic pressure incident on the TS, and the ENA flux emitted from the IHS
120 will be proportional to this time-varying IHS plasma pressure. Use of the SW dynamic pressure
121 measured in the ecliptic is valid for analysis of the poles because the SW dynamic pressure is
122 latitude invariant on the time scales relevant here (McComas et al. 2008).

123 The method for finding t_{tb} , described in detail in R2016, involves estimating the distance to the
124 TS (d_{TS}) and thickness of the IHS (l_{IHS}) to come up with a value for t_{tb} , and then iteratively
125 adjusting these distances until the best pressure correlation is found. We have since made two
126 improvements to the procedure. First, we have modified the definition of t_{tb} to reflect the
127 findings of McComas et al. (2018) and Zirnstein et al. (2018). Specifically, Zirnstein et al. (2018)
128 simulated a SW dynamic pressure pulse incident on the TS and then examined the evolution of
129 this pulse as it propagates through the heliosheath, causing a corresponding increase in the

130 heliosheath pressure and rise in the ENA flux intensity. They found that to properly determine
131 the time it takes for the IHS to respond to the pulse, one must allow the pulse to propagate
132 completely through the heliosheath and reflect off the heliopause. Only after the pulse rebounds
133 does the plasma pressure fully adjust to a change in the SW dynamic pressure. Thus, we now
134 use Equation (2) of Zirnstein et al. (2018) to calculate t_{tb} .


135 The second modification is the method for choosing the speed for the outgoing SW, v_{SW} .
136 R2016 used a constant speed of 755 km s^{-1} , based on PCH wind speeds observed by Ulysses
137 during solar minimum (McComas et al. 2000). In this work, the period of observation is a full
138 solar cycle (from minimum in 2009 through maximum in 2014 to minimum in 2018) and we
139 need to account for the cyclic changes of the polar SW speed, which can drop as low as ~ 450
140 km s^{-1} at solar maximum (e.g. Ebert et al. 2009, Tokumaru et al. 2015). We therefore use the
141 high-latitude time-dependent SW speeds reported by Sokół et al. (2015) derived from
142 interplanetary scintillation observations (Tokumaru et al. 2012). Note that, as in R2016, we
143 reduce the outgoing SW speed by 10% from these observed values to account for the decrease in
144 SW speed due mass loading by PUIs.

145 With this modified form of the R2016 procedure, we have derived t_{tb} for all polar ENA
146 observations for the first 9.5 years of the *IBEX* mission. As this method does not uniquely fix
147 both d_{TS} and l_{IHS} , we choose values for $d_{TS} = 110 \text{ au}$ for the north pole and 100 au for the
148 south, based on the *Voyager* TS crossing distances (Stone et al. 2005, Richardson et al. 2008)
149 and the knowledge that the TS has a north-south asymmetry, as determined from both *Voyager*
150 and from *IBEX* ENA observations (McComas et al. 2018, 2019). We then vary l_{IHS} to find the
151 best pressure correlation, arriving at a value of $l_{IHS} = 50 \text{ au}$ for both north and south poles.

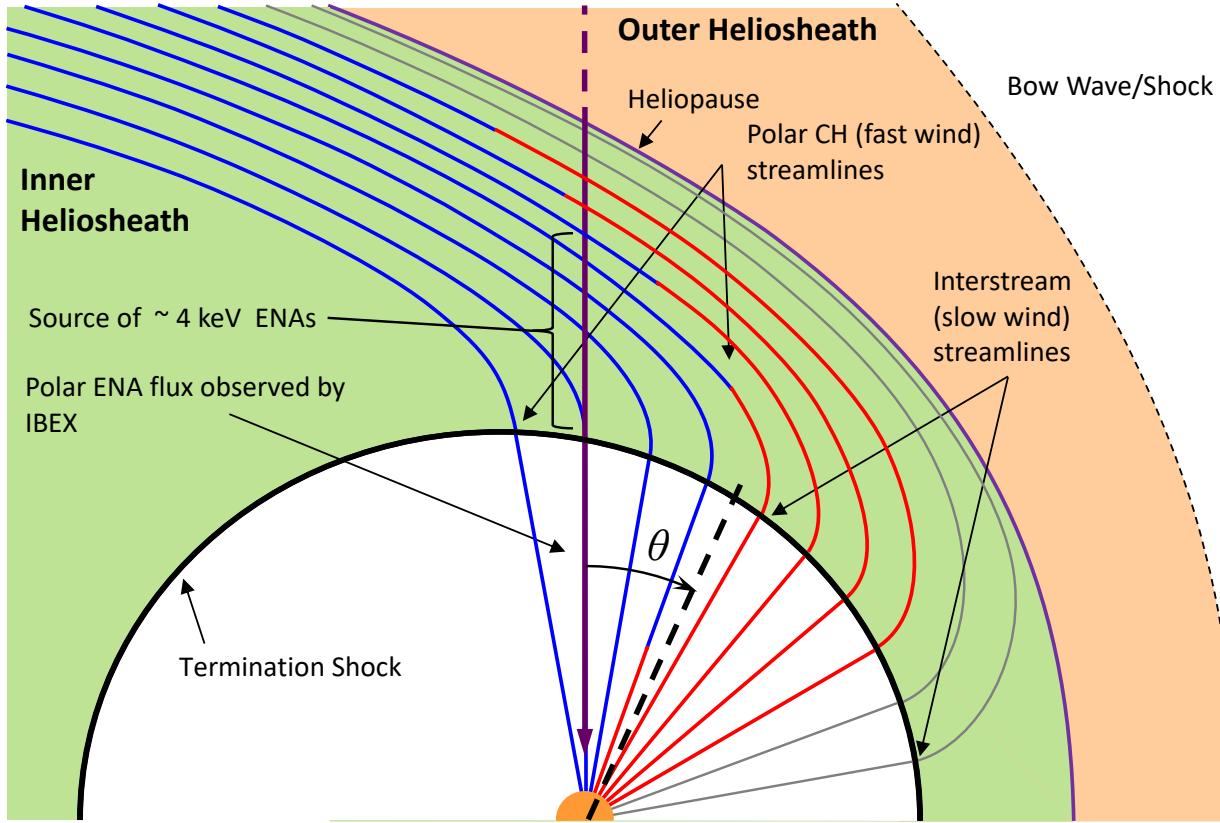
152 It follows that the trace-back time for 4.3 keV ENAs averages to 3.0 ± 0.6 years for the north
153 pole, and slightly less, 2.7 ± 0.6 years for the south, the range being due to the variation in SW
154 speed observations. We apply these time shifts to the *IBEX* 4.3 keV north and south ecliptic
155 pole ENA time series, and compare them with the areas of the north and south PCHs.

156 Figure 1 shows this comparison. Plotted are monthly averages of the 4.3 keV ENA flux from the
157 ecliptic poles, and the corresponding PCH areas. For the overlap period between 2006 and 2015
158 (corresponding to the declining phase of SC23 and the ascending phase of SC24), the time-
159 shifted ENA flux and the PCH areas show a striking degree of correlation. We emphasize that
160 the time shifts of the north and south pole ENA fluxes were determined by applying the pressure
161 correlation method to *in ecliptic* SW observations, and yet this results in an excellent match
162 between the time series of the 4.3 keV ENA flux and the PCH area at each pole, respectively.

163 As good as the correlation is, there are a couple of differences to point out. In the north (Figure
164 1a), there is a noticeable lag, of almost 2 years, between the closure of the PCH and the decline
165 of the ENA flux to its minimum value. In the south (Figure 1b), although the lag is not as
166 significant, the ENA flux minimum is considerably less deep than the PCH area minimum, nor
167 as deep as the ENA flux minimum in the north.

Figure 1. Comparison of the time-shifted IBEX-Hi 4.3 keV ENA flux (red) with the fractional area (black) of the PCH for the (a) north and (b) south ecliptic poles. Arrow 'A' marks the time depicted in Figure 2, and arrow 'B' the time depicted in Figure 3. Arrow 'C' marks the approximate arrival time of the ENA pressure enhancement described in McComas et al. (2019) near the south pole. The PCH data have been smoothed with a 12-Carrington Rotation running average to eliminate the periodicity introduced by the $\pm 7^\circ$ annual excursion of the Earth in heliolatitude.

169 We mention that McComas et al. (2018) report that a strong increase in the SW dynamic
170 pressure observed at 1 au in the second half of 2014 generated a 4.3 keV ENA enhancement first
171 detected at *IBEX* from a direction $\sim 20^\circ$ south of the heliospheric nose in late 2016. This
172 enhancement has steadily grown in area, and by mid-2017, it has extended down close to the
173 south pole (McComas et al. 2019). We observe a mild rise in the ENA flux at this time (arrow
174 ‘C’ in Figure 1b); thus, it appears that the ENA enhancement has merged with the increasing
175 ENA flux from the opening of the PCH. Note that the shallowness of the ENA flux minimum in
176 the south (arrow ‘B’) is not associated with the pressure enhancement, as the minimum is
177 observed well before effects of the enhancement would be observed. Finally, we note that as of
178 mid-2018, the enhancement has yet to reach the north pole, thus the rise in ENA flux we see
179 there is due entirely to the opening of the PCH.


180

181 4. DISCUSSION

182 We propose the following explanation for why the area of the solar surface covered by PCHs and
183 the 4.3 keV polar ENA flux emanating from the distant heliosheath are so well correlated.

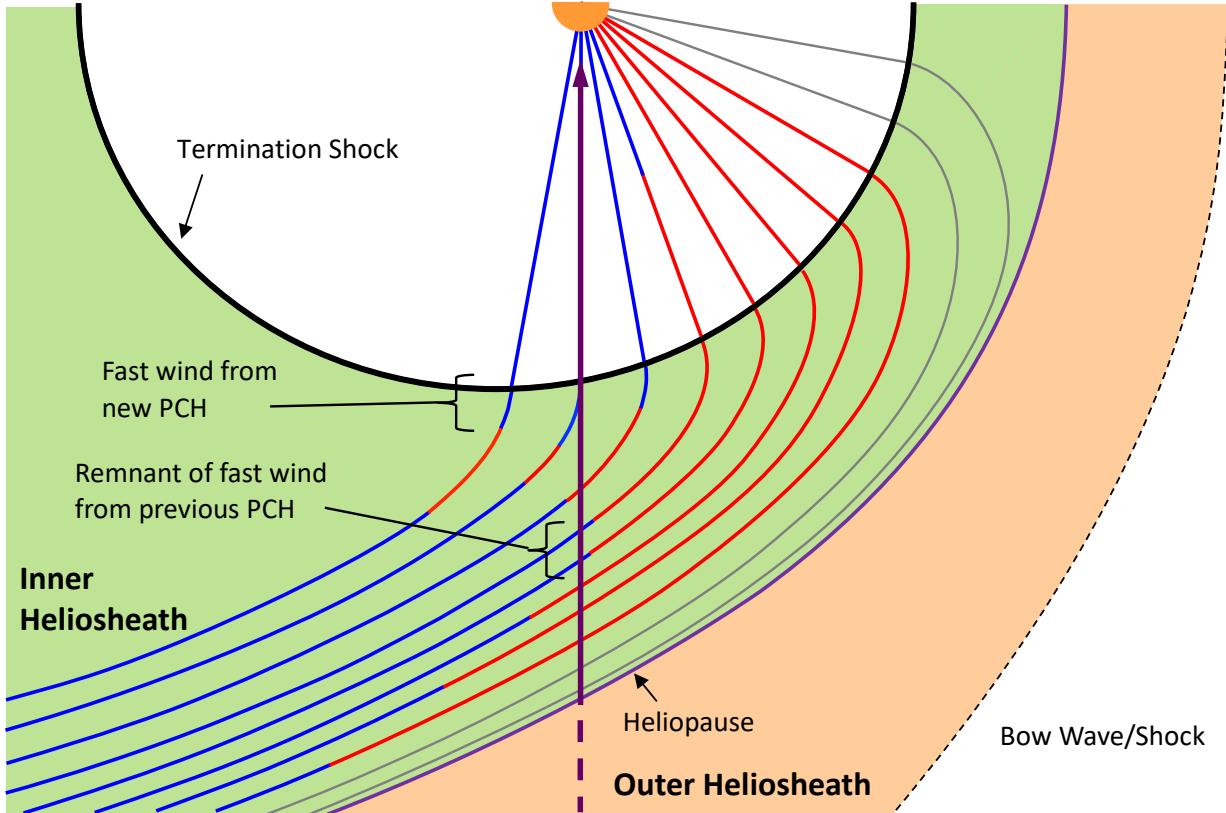
184 Consider the flux of ENAs incident on IBEX from a particular look direction. The line-of-sight
185 (LOS) in this direction intercepts a collection of IHS streamlines that can be traced to solar wind
186 originally propagating outward from the Sun along radials arranged between the pressure
187 maximum in the heliosheath (located 20° south of the nose; McComas & Schwadron 2014) and
188 the look direction of IBEX. The ENA flux should correlate in some manner with the properties
189 of the outbound solar wind averaged over these radial directions.

190 In the case of ENA observations along a given ecliptic pole, in principle the ENA flux should
191 reflect the properties of the SW flux averaged over all latitudes from the heliosheath pressure
192 maximum to the pole, and over a narrow wedge of longitudes centered on the upwind direction.
193 In actuality, the ENAs observed at the poles will be affected by SW flux over a more limited
194 range of latitudes due to the finite lifetime of protons arcing along streamlines in the heliosheath.
195 Since we are concerned here with ENAs arising from protons with an energy ~ 4 keV, a charge-
196 exchange calculation assuming a neutral density of $n_H = 0.1 \text{ cm}^{-3}$ gives a lifetime for such
197 protons of ~ 3 years before they are neutralized. These protons will be tied to a bulk plasma
198 distribution that has a flow speed somewhere between 150 km s^{-1} and 250 km s^{-1} , corresponding
199 to pre-TS SW with a speed between 400 km s^{-1} and 700 km s^{-1} . Taking the average, 200 km s^{-1} ,
200 the typical distance heliosheath plasma will flow in 3 years is 125 au. Then assuming an average
201 distance from the Sun to the mid-point of the IHS of ~ 120 au, this corresponds to an arc of
202 approximately 55° . Therefore, we expect the 4.3 keV ENAs observed at the poles to be emitted
203 by a sample of processed SW protons originating from heliolatitudes above 35° . Interestingly,
204 this turns out to cover the maximum latitudinal extent of the fast SW from PCHs at solar
205 minimum (McComas et al., 2000). At any other time during the solar cycle, the range of
206 latitudes filled by PCH SW will be less. Since we have already established that 4.3 keV ENAs
207 are strongly associated with the fast SW, it follows that the magnitude of the polar 4.3 keV ENA
208 flux will be proportional to the size of the PCH.

209 **Figure 2.** A schematic meridional snapshot of the heliosphere during the ascending phase of the
 210 sunspot cycle, when the PCH is decreasing in size. Blue streamlines represent the fast SW PCH
 211 flow, red streamlines represent the slow SW. Grey streamlines represent low-latitude SW that is
 212 depleted in ~ 4 keV protons by the time it reaches the pole. Thus, they do not contribute to the
 213 4.3 keV ENA signal. The angle θ is the opening angle of the cone containing PCH flow (fast SW)
 214 arriving at the TS. Note that although only the northern heliosphere is shown here, this
 215 represents the situation for either hemisphere. See text for discussion.

216
 217

218 We now look in detail at the phasing between the PCH size and the 4.3 keV ENA flux. Figure 2
 219 depicts a schematic meridional cut through the heliosphere showing its configuration during the
 220 ascending phase of the solar cycle when the PCH is shrinking (arrow 'A' in Figures 1a and 1b).
 221 Shown are streamlines representing the SW traveling out from the Sun at a range of latitudes,
 222 crossing the TS, and then being deflected poleward. Blue streamlines represent the fast polar
 223 wind, and red streamlines represent the slow interstream wind. The angle θ defines the opening
 224 angle of the cone containing PCH flow (blue streamlines) arriving at the TS. Grey streamlines
 225 represent wind from latitudes below 35° that contribute negligibly to the polar 4.3 keV ENA
 226 signal due to charge exchange loss. The vertical line along the pole is the IBEX LOS of interest
 227 here. The magnitude of the observed 4.3 keV flux will be proportional to the fraction of blue vs.
 228 red streamlines the LOS intercepts. At solar minimum when the PCH is at maximum size, all of
 229 the colored (non-grey) lines would be blue. After solar minimum, the mid-latitude streamlines
 230 will turn red as the heliosphere re-fills with slow SW (as depicted in Figure 2), and thus the 4.3
 231 keV ENA flux will begin to decrease. Note that at the instant depicted here, the fraction of


232 latitudes filled by the slow wind upstream of the TS is much larger than the fraction of slow
233 versus fast wind intercepted by the LOS, due to finite travel time of plasma along the
234 streamlines. This results in a larger phase lag between closure of the PCH and the drop in 4.3
235 keV flux than what can be attributed to the trace-back time (seen most prominently for the north
236 PCH in Figure 1a).

237 We turn next to Figure 3 which represents a snapshot of the heliosphere just after solar
238 maximum, as a new PCH begins to form (arrow ‘B’ in Figure 1b). Right at the point where the
239 PCH is completely closed (just prior to the situation shown in Figure 3), all streamlines leaving
240 the Sun will carry slow SW (red). However, the polar LOS will still intercept some fast IHS
241 flow (blue). This is due to the fact that the rate at which the PCH closes is faster than the rate at
242 which fast IHS flow can move out of the south pole LOS.

243 We can confirm this quantitatively by referring to Figure 1b and calculating the closure rate of
244 the south PCH between points A (at year 2011.5) and B (at year 2013.8) and comparing this to
245 the flow speed in the IHS. As noted above, when the PCH is fully open, coronal hole flow in the
246 heliosphere extends equatorward to about latitude 35°S. By treating the PCH area as a proxy for
247 the latitude of the opening angle θ of the cone containing coronal hole flow, it follows that point
248 A corresponds to $\theta = 45^\circ$ S. Likewise, to within the uncertainty of the PCH fractional area
249 determination (± 0.005 , Karna et al. 2014), point B corresponds to full closure of the PCH. The
250 closure rate is then about 20° yr^{-1} , or, projecting the coronal hole flow cone out to the TS at ~ 100
251 au, the point where the cone intersects the TS is travelling southward along the TS surface at an
252 average speed of $\sim 160 \text{ km s}^{-1}$. This is likely an underestimate of the speed when the edge
253 reaches high latitudes ($\theta \gtrsim 60^\circ$ S), as the angular closure rate will accelerate even if the area
254 decreases linearly due to the non-linear relationship between area and opening angle.

255 Turning to the flow in the IHS, the speed of the fast/slow (blue/red) boundary travelling along a
256 streamline will be about 200 km s^{-1} (taking the average of the fast and slow IHS plasma speeds
257 discussed above). Referencing Figure 3, at high latitudes, the average radial flow component
258 along a streamline is equal or greater than the transverse flow component. Although this is only
259 a schematic representation of the heliosheath, the notion that near solar maximum the polar IHS
260 flow is more radial than not is supported by MHD simulation (see, e.g., Figure 4, Zirnstein et al.
261 2017). Taking the average flow angle in the high-latitude IHS to be $\lesssim 45^\circ$ from the radial, the
262 transverse velocity component will then be $\leq 200 \sin 45^\circ = 140 \text{ km s}^{-1}$. Thus, we see that the
263 closure rate of the edge of the coronal hole flow cone ($> 160 \text{ km s}^{-1}$) is greater than the rate at
264 which fast IHS plasma passes out of the polar LOS. Therefore, the LOS along the south pole will
265 intercept fast IHS plasma for some time after the PCH closes.

266 As the PCH begins to reopen, something interesting happens: If the PCH remains closed for
267 only a brief period of time, as it does in the south (Figure 1b), the polar LOS may intercept fast
268 IHS flow from both the tail end of the previous PCH and the new PCH at the same time. This
269 situation is depicted in Figure 3. Thus, the minimum in the 4.3 keV ENA signal will not be as
270 deep as the minimum in the PCH area since the LOS is still intercepting plasma associated with
271 the previous PCH. The situation in the north (Figure 1a) is different because the north PCH stays
272 closed for a longer period and fast wind from the previous PCH can all move beyond the north-
273 pole LOS before the PCH begins to reopen, causing a deeper drop in 4.3 keV flux.

274

275 **Figure 3.** Same as Figure 2, except for the southern hemisphere of the heliosphere just after
 276 solar maximum when the PCH begins to re-open. See text for discussion.

277

278 What we depict here is a qualitative scenario, presented as a reasonable explanation for the key
 279 aspects of the observations. To more accurately test and validate this scenario, time-dependent
 280 global heliospheric modelling is required that includes realistic initial conditions representing the
 281 evolution of the global SW through the solar cycle. Nevertheless, we argue that the strong
 282 correlation between PCH area and 4.3 keV ENA flux gives unambiguous evidence that the
 283 dynamics of the heliosheath are directly related to the structure of the solar corona in a
 284 straightforward manner. We look forward to the next 2-3 years of IBEX observations as a
 285 complete solar cycle of measurements is completed, and we anticipate the full return of the north
 286 4.3 keV ENA flux in response to the reopening of the north PCH.

287 This work was carried out as part of NASA's *IBEX* Mission, with support from NASA's
 288 Explorer Program (NNG17FC93C; NNX17AB04G). M.B., M.A.K., and J.M.S. acknowledge the
 289 support by the grant 2015-18-M-ST9-00036 from the National Science Center, Poland.

290

291 References:

292

293 Bzowski, M. 2008, A&A, 488, 1057

294 Dayeh, M. A., McComas, D. J., Livadiotis, G., et al. 2011, ApJ, 734, 29

295 Desai, M. I., Dayeh, M. A., Allegrini, F., et al. 2016, ApJ, 832, 116

296 Ebert, R. W., McComas, D. J., Elliott, H. A., et al. 2009, JGR, 114, A01109

297 Fujiki, K., Hirano, M., Kojima, et al. 2005, *Adv.Sp.Res.*, 35, 2185
298 Funsten, H. O., Allegrini, F., Bochsler, P., et al. 2009, *SSRv*, 146, 75
299 Fuselier, S. A., Bochsler, P., Chornay, D., et al. 2009, *SSRv*, 146, 117
300 Karna, N., Hess Webber, S. A., & Pesnell, W. D. 2014, *SoPh*, 289, 3381
301 Lee, M.A., Fahr, H.J., Kucharek, H., et al. 2009, *SSRv* 146, 275
302 McComas, D. J., Barraclough, B. L., Funsten, H. O., et al. 2000, *JGR*, 105, 10,419
303 McComas, D.J., Ebert, R.W., Elliott, H.A., et al. 2008, *GRL* 35, L18103
304 McComas, D. J., Allegrini, F., Bochsler P., et al. 2009a, *SSRv*,146, 11
305 McComas, D. J., et al. 2009b, *Science*, 326, 959
306 McComas, D. J., Dayeh, M. A., Allegrini, F., et al. 2012, *ApJS*, 203, 1
307 McComas, D. J., Allegrini, F., Bzowski, M., et al. 2014, *ApJS*, 213, 20
308 McComas, D. J. and Schwadron, N. A. 2014, *ApJL*, 795, L17
309 McComas, D. J., Zirnstein, E. J., Bzowski, M., et al. 2017a, *ApJS*, 229, 41
310 McComas, D. J., Zirnstein, E. J., Bzowski, M., et al. 2017b, *ApJ*, 233, 8
311 McComas, D. J., Dayeh, M. A., Funsten, H. O., et al. 2018, *ApJL*, 856, L10
312 McComas, D. J., Dayeh, M. A., Funsten, H. O., et al. 2019, *ApJ*, 872, 127
313 Reisenfeld, D. B., Allegrini, F., Bzowski, M., et al. 2012, *ApJ*, 747, 110
314 Reisenfeld, D. B., Bzowski, M., Funsten, H. O., et al. 2016, *ApJ*, 833, 277
315 Richardson, J. D., Kasper, J. C., Wang, C., et al. 2008, *Nature*, 454, 63
316 Sokół, J. M., Swaczyna, P., Bzowski, M., et al. 2015 *SoPh*, 290, 2589
317 Stone, E. C., Cummings, A. C., McDonald, F. B., et al. 2005, *Sci*, 309, 2017
318 Tokumaru, M., Kojima, M., & Fujiki, K. 2012, *JGR* 117, A06108
319 Tokumaru, M., Fujiki, K., & Iju, T. 2015, *JGR* 120, 3283
320 Tokumaru, M., Satonaka, D., Fujiki, K., et al. 2017, *SoPh*, 292, 41
321 Zank, G. P., Heerikhuisen, J., Pogorelov, N. V., et al. 2010, *ApJ*, 708, 1092
322 Zirnstein, E. J., Dayeh, M. A., McComas, D. J., & Sokół, J. M. 2017, *ApJ*, 846, 63
323 Zirnstein, E. J., Heerikhuisen, J., McComas, D. J., et al. 2018, *ApJ*, 859, 104