

Precise mapping of group I introns in tRNA genes

Kelly P. Williams[†]

Sandia National Laboratories, Systems Biology Department

[†] Corresponding author, kpwilli@sandia.gov

ABSTRACT

Group I introns have been found interrupting bacterial tRNA genes at various positions in the anticodon loop region, defining four known classes of intron-interrupted tRNAs. We expand this list to 21 cases, applying software aimed at mapping bacterial tRNA and tmRNA genes precisely. A new covariance model for these introns is presented. One reasonably large group bears a cytidine nucleotide at the otherwise conserved uridine found at the -1 position.

INTRODUCTION

Group I introns are self-splicing ribozymes, found interrupting a variety of precursor RNAs. In the first step of splicing, a free guanosine mononucleotide attacks the 5' splice site, which is typically preceded by a U residue (U-1) that forms a wobble base pair in the intron stem-loop P1. In the second step, the G residue (Ω G) typically found preceding the 3' splice site fills the same ribozyme active site as did the free guanosine in step one. Thus the U-1 and Ω G nucleotides, if they can be identified in the precursor RNA, precisely delimit the intron. When annotating genomic sequences, the profile Intron_gpl is available from Rfam which locate the catalytic core of the intron and may find the P1 stem-loop at its 5' end, but does not explicitly search for Ω G. As an alternative to identifying both termini by positive search for the intron, it may be possible to precisely map its two surrounding exons, especially when the mature RNA is highly regular, as are tRNAs. Some number of group I introns are known to reside in the anticodon loop of bacterial pre-tRNAs (1-3). The tRNA-like domain of the bacterial tmRNA, which lacks an anticodon loop, is occasionally interrupted by a group I intron, in its T-loop. Here we apply tRNA/tmRNA annotation software and the Rfam group I intron profile to discover and precisely map many new group I introns in bacterial tRNA genes. We then build a new profile, which in a second iteration expands the discovery further.

MATERIALS AND METHODS

The nucleotide sequence dataset used was the 80413 bacterial and 1028 archaeal genome assemblies available from GenBank in January 2017 that had ≤ 300 scaffolds and $N50 \geq 10000$. The covariance model (CM) used in phase I (see text) was Intron_gpl from Rfam (4). To build a new CM for Phase II, 26 representative bacterial introns were selected interrupting tmRNAs and the tRNAs found in discovery Phase I, choosing shorter introns less likely to contain extraneous loop insertions. Sequences began with the 5' P1 stem that contains U-1 and continued to the Ω G, beyond which little conservation was apparent. Alignment was primed using *cmaalign* from the Infernal 1.1.2 package (5), and followed by manual alignment to best fit the conserved secondary structure features. The new CM was built using *cmbuild* from Infernal.

RESULTS AND DISCUSSION

tFind software. Careful mapping and annotation of tRNA and tmRNA genes was motivated by our programs for finding genomic islands in such genes (6) (manuscript submitted). Our package tFind searches for tmRNA genes and for tRNA genes interrupted or not by group I introns (Fig. 1). Three scripts apply different approaches to finding tmRNA genes: i) the program Aragorn

(7), ii) application of four tmRNA covariance models (CMs) from Rfam (4), and iii) a BLAST-based approach using a large curated tmRNA database. This latter script, rfind.pl, uses iterative genome masking, allowing discovery of secondary tmRNA genes whose signals may be much weaker than a primary gene. Together these approaches perform well to identify tmRNA genes of all three major types (standard, two-piece, and group I-intron bearing standard). Precise tmRNA gene mapping comes from rfind and (for standard tmRNAs) from Aragorn. Although only genes matching perfectly to the curated database advance to the final document (ttm.gff), the system is meant to be extensible, such that convincing novel tmRNA genes discovered among the rejects.gff outputs or by other means can be added to the database for improved future performance. tRNA gene-finding relies on the well-known tRNAscan-SE (1), whose latest version applies covariance models for each tRNA isotype family, separately for Archaea and Bacteria; we add careful demarcation of the discriminator position and inclusion of the G-1 nucleotide of tRNA-His when present. We detail below the function and yield from the introns.pl component that finds tRNA genes interrupted by group I introns. A final pass rejects resolves overlaps arising from these components.

Intron-mapping software. The pipeline for precise mapping of group I introns within tRNA genes is shown at the right of Fig. 1. The Rfam CM Intron_gpI is applied to the genome, and if there are any above-threshold (20 bits) hits, Aragorn 1.1.6 is run so as to allow detection of an intron of up to 3 kbp within the anticodon loop. Cases where a group I intron call maps within a split tRNA call are processed further. Eight possible intron insertion sites are considered, on either side of each of the 7 anticodon loop nucleotides, and the corresponding eight hypothetical mature RNA sequences are generated. These are scored three ways, with: i) a group I intron splice site "-1/Omega" score where the 5'-preceding nucleotide adds 2 to the score if a U or 1 to the score if a C (based on our early observation of its use in convincing introns), and the Ω (3'-terminal) position of the candidate intron adds 3 to the score if a G, ii) the isotype score according to tRNAscan-SE, and iii) the "IPD" score from tRNAscan-SE reflecting mismatch between the nominal amino acid identity based on the anticodon nucleotides and the isotype profile CM match. The splice site is selected among the eight by sorting by each of the three scores in the given order of precedence.

We found that Aragorn would occasionally call false "ghost" exons upstream or downstream of the actual ones, and could usually solve this problem by testing the primary call again after deleting the called 5' exon, 3' exon or both, and proceeding with the best scoring of the four. We noticed that certain introns that had been miscalled because the wrong 3' partner sequence for the anticodon stem had been chosen by Aragorn. We therefore gave tRNAscan-SE an opportunity to correct the anticodon stem call, highly truncating the intron so that tRNAscan-SE could handle it, with only 12 ntd from each end of the intron. For a small number of cases tRNAscan-SE did not recognize the spliced tRNA, so a backup subroutine employing Aragorn 1.2.40 was developed for such cases.

Regarding nomenclature, we number the 8 tested anticodon positions 0-7, 5' to 3', and note the -1 base and the Ω base, preceding with a unique identifier for the genome assembly; thus the classical intron invading tRNA-Leu in *Nostoc azollae* (3), spliced out between the slashes in CUU/a...g/AAAA (mature anticodon loop sequence in uppercase) is Naz2.Leu.3Ug.

Phase I discovery. Introns.pl was run with the Rfam CM Intron_gpI on 80413 bacterial and 1028 archaeal genomes. This yielded 10174 hits to Intron_gpI scoring ≥ 18 bits (well below its

suggested "gathering cutoff" of 40 bits), that came from 6734 genomes. For these genomes Aragorn 1.1.6 called 11016 tRNA genes with introns \geq 50 bp in the anticodon loop. There were 4406 cases of Intron_gpI calls within split tRNA gene calls, from 3879 genomes, producing candidate gpI intron-split tRNA genes. All the genomes involved were bacterial, except one named "Candidatus Pacearchaeota archaeon RBG_16_35_8". This genome had been prepared by binning scaffolds from a metagenomic assembly (8). Rather than suggesting that we have discovered the first known group I intron for an archaeon, we suspect that this tRNA gene was from a bacterial scaffold mis-binned with archaeal scaffolds in that project. Indeed 14 of the 21 raw hits to Intron_gpI for nominally archaeal genomes came from that same project.

Phase II discovery. None of the 12 seed sequences used to build the Rfam covariance model Intron_gpI were bacterial. We prepared a new CM seeded only with introns from bacterial tRNA or tmRNA genes, and reran introns.pl on all genomes. This improved the yield by 20.2%, to 5292 introns, missing none of those found in Phase I. The maximum intron length detectable was 3000 bp, yet the longest intron found was 1817 bp and the second longest was 922 bp (Fig. 2). Validation comes from a database of group I introns (9), which lists only the four classical varieties in bacterial tRNAs (Leu.3Ug, Arg.5Ug, fMet.2Ug and Ile2.5Ug), and marks them all as subgroup IC3 (10); these four categories totaled 3453 introns, or 65.2% of all discovered introns.

Conclusion. We have added many new cases of tRNA genes split within the anticodon loop region by group I introns (Fig. 3) and provide software that can be applied for such discovery to any new bacterial genomic or metagenomic sequence data. The error rate we measure for misidentification of the splice site is 26/5296 = 0.50%.

ACKNOWLEDGEMENTS

We thank Dean Laslett for kind reconfiguration of Aragorn and allowing us to include its code and executables in the package.

FUNDING

This research was fully supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

REFERENCES

1. Chan, P.P. and Lowe, T.M. (2019) tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences. *Methods Mol Biol*, **1962**, 1-14.
2. Reinhold-Hurek, B. and Shub, D.A. (1992) Self-splicing introns in tRNA genes of widely divergent bacteria. *Nature*, **357**, 173-176.
3. Xu, M.Q., Kathe, S.D., Goodrich-Blair, H., Nierzwicki-Bauer, S.A. and Shub, D.A. (1990) Bacterial origin of a chloroplast intron: conserved self-splicing group I introns in cyanobacteria. *Science*, **250**, 1566-1570.
4. Kalvari, I., Argasinska, J., Quinones-Olvera, N., Nawrocki, E.P., Rivas, E., Eddy, S.R., Bateman, A., Finn, R.D. and Petrov, A.I. (2018) Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. *Nucleic Acids Res*, **46**, D335-D342.
5. Nawrocki, E.P. and Eddy, S.R. (2013) Infernal 1.1: 100-fold faster RNA homology searches. *Bioinformatics*, **29**, 2933-2935.
6. Hudson, C.M., Lau, B.Y. and Williams, K.P. (2014) Islander: a database of precisely mapped genomic islands in tRNA and tmRNA genes. *Nucleic Acids Res*, **43**, D48-D53.
7. Laslett, D. and Canback, B. (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. *Nucleic Acids Res*, **32**, 11-16.
8. Anantharaman, K., Brown, C.T., Hug, L.A., Sharon, I., Castelle, C.J., Probst, A.J., Thomas, B.C., Singh, A., Wilkins, M.J., Karaoz, U. *et al.* (2016) Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. *Nat Commun*, **7**, 13219-13219.
9. Cannone, J.J., Subramanian, S., Schnare, M.N., Collett, J.R., D'Souza, L.M., Du, Y., Feng, B., Lin, N., Madabusi, L.V., Müller, K.M. *et al.* (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. *BMC Bioinformatics*, **3**, 2-2.
10. Hausner, G., Hafez, M. and Edgell, D.R. (2014) Bacterial group I introns: mobile RNA catalysts. *Mob DNA*, **5**, 8-8.

TABLES

Table. Distribution by phylum and by tRNA isoacceptor/anticodon loop setting, for the 5292 split tRNA genes found in phase II and the 4406 found in phase I.

	Phylum													All(Rfam)	Correct to	Notes		
	Unnn	Acidob	Actino	Bacter	Chloro	Cyanob	Elusim	Fibrob	Firmic	Nitros	Plancti	Proteo	Verruc	21 oth	All Bact			
Leu.3Ug	3	9	11		2	142			8	2	2386			2563	2393			
Asn.4Ug	554	1			2	6	12		6	3	1	32		617	586			
Arg.5Ug			1		1	85								475		562	460	
Ser.3Ug										1	212				213	5		
fMet.2Ug	133			3	1		35	4		4	23			203	199			
Arg.3Ug	3	4	7			1	2		126		44			187	55			
Thr.5Ug	106								6		58			170	61			
Ile2.2Ug	41	1			1		1	1		1	121	2		169	125			
Phe.2Ug	128													128	126			
Ile2.5Ug	6		4						7	108				125	121			
Asp.4Ug	73									72				73	65			
Leu.3Cg											72			72	43			
fMet.5Ug	54										54			54	53			
Met.2Ug	37										37			37	35			
Lys.3Ug		25							7		32	22						
Tyr.4Ug	17						9				26	14						
Lys.2Ug	2								8		10	10						
Lys.4Ug	2	1							5		8	5						
Thr.2Ug	8									8		7	Asn.4Ug	iso score slightly better for shift to 2Ug				
Thr.3Ug									8		8							
Sup.3Ug					7					7	0	Ile2.5Ug	ac stem problem: has GTcg ACTCAT/ TAAACccg TTGGTT between D and T stems					
Leu.1Ug									5		5							
Met.5Ug	5									5		0	Ile2.5Ug	fails tRNAscan-SE; all 5 identical				
Leu.2Ug		1							3		4	3						
Asn.3A6	1									1	1	omit	genomic deletion of critical tRNA gene segment					
fMet.2Cg	1									1	1	fMet.2Ug	8 nt ac loop					
Ile2.5Uu									1		1	Ile2.2Ug	ghost 5' and 3' exon					
Leu.0Ag									1		1	Leu.1Ug	8 nt ac loop					
Undet.3Ug							1			1	0	Arg.3Ug or Arg.4Ug	very similar to Arg.3Ug but changes in P1 favor Arg.vLoop ambiguous bases in anticodon region					
Undet.4Uu	1									1	1	Leu.3Ug						
genes	1175	16	26	26	1	6	269	19	7	157	8	18	3562	2	0	5292		
genes(Rfam)	1008	11	22	21	1	6	264	19	0	16	7	11	3020	0	0	4406		
genomes	2420	88	10058	1920	22	175	388	56	29	27537	71	80	35196	81	1837	79958		
genes/genom	0.486	0.182	0.003	0.014	0.045	0.034	0.693	0.339	0.241	0.006	0.113	0.225	0.101	0.025	0	0.066		

FIGURES

Fig. 1. tFind pipeline.

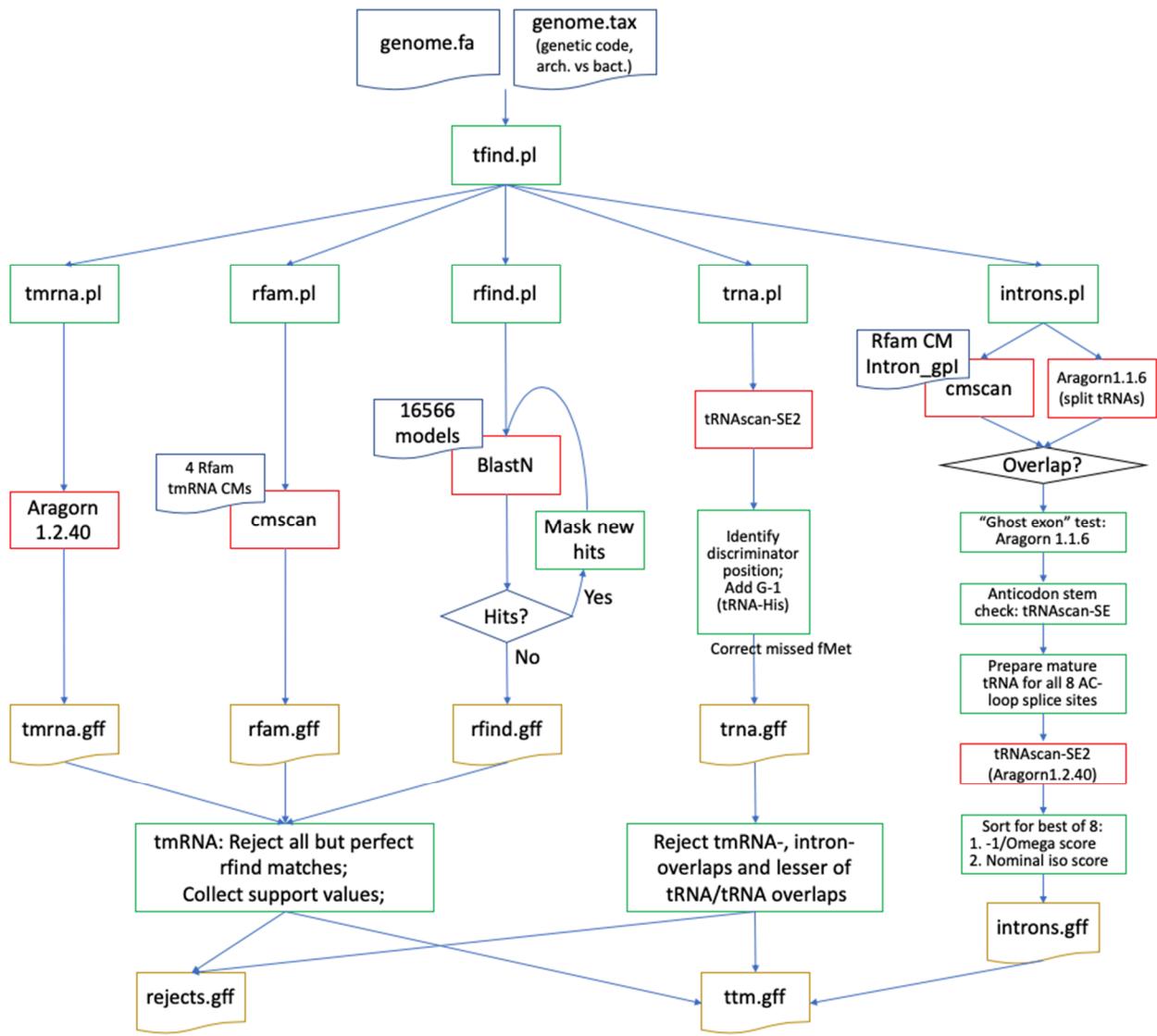


Fig. 2. Intron sizes detected.

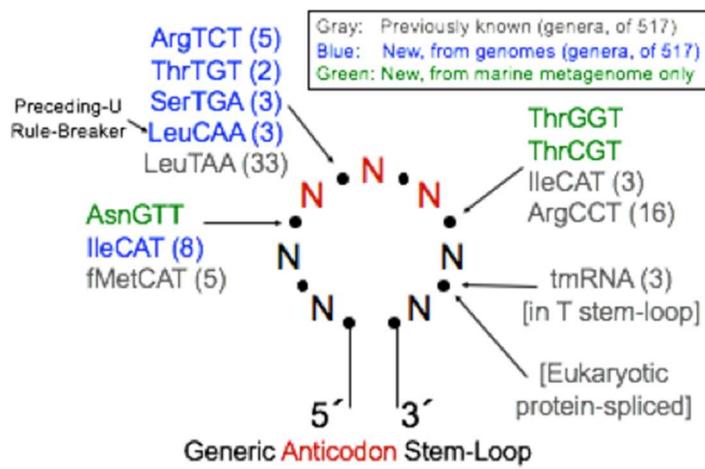



Fig 3. Summary of intron locations.

Group I Introns in Bacterial tRNAs

