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MagLIF relies on three stages to produce
fusion relevant conditions
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S. A. Slutz, et al., Phys. Plasmas 17, 056303 (2010).



In our initial experiments, we delivered 10 T,w,senes
^i0.5 kJ of laser energy, and 18 MA peak current

Current path 130 mm
4 ►

• Helmholtz-like coils provided

10 T B-field with less than

1% spatial variation

• 0.5 + 2 kJ laser pulse coupled

—0.5 kJ of energy to the

0.7 mg/cc D2 fuel

• Initial inductance inside of

the convolute was 6.34 nH

• Peak load current was

18.2 MA

• Significant losses were

inferred in the convolute

and inner-MITL regions

This configuration produced up to 2x1012 primary DD neutrons
or -0.4 kJ DT-equivalent 3



Our goal on Z is to produce a fusion
yield of "i100 kJ DT-equivalent

• Simulations indicate an
experiment with 25-30 T,
6 kJ of laser heating,
and 22 MA could
produce >100 kJ

• We have preliminary

designs for coils capable
of applying up to 30 T

• Simulations indicate 6 kJ
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2D simulations in LASNEX
Preheat Energy = 6 kJ into 1.87 mg/cc DT

lmax=17.4 (7.2 nH 80 kV)
lmax=21.1 (4.5 nH 90 kV)
imax=22.6 (3.5 nH 95 kV)
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of laser energy can be coupled to the fuel with a large spot size
(1.5 mm), thin window (<µm), and 10 mm tall target

• We are developing an inner-MITL configuration that is capable of
delivering 22 MA to the load
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Original inner-MITL and load designir,,enes
was not optimized for load current

• Relatively high initial inductance (6.34 nH)

• lnner-MITL with long axial translation (3.25 nH)

• Large load volume (2.86 nH)

• Slotted return can for diagnostic access (0.23 nH)

• Relatively small A-K gaps (3 mm)

• Plasma shorting

Plasma expansion at 2 cmhis from both electrodes would short the gap

• Ion diode losses

High voltage and small gaps allow significant emission of ions, which are
generally not magnetically insulated

• Target height needs to be increased to improve laser coupling
and reduce fuel end losses

• 10 mm target (7.17 nH)
5
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The inner-MITL inductance was fflaries
reduced to improve current coupling

• Eliminated the axial extension by removing the bottom B-field coil

• Required a -25% axial variation in B-field

• Tested three cases (all with 7.5 mm target):

• 4 mm minimum gap with a smooth transition to the load: 4.94 nH

Peak load current increased to 19.0 MA (from 18.2 MA)

• 3 mm minimum gap with a sharp bend near the load: 4.34 nH

Peak load current increased to 18.6 MA (from 18.2 MA)

• Note there was a Marx bank prefire on this experiment

• 4 mm minimum gap with a sharp bend near the load: 4.18 nH

• Peak load current stayed nearly the same at 17.9 MA (compared to 18.2 MA)

• lnner-MITL B-dots indicated minimal loss in the convolute

• Suspect that sharp bend near load caused the increase in loss in the inner-MITL
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The inner-MITL inductance was

reduced to improve current coupling
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A more robust convolute was used Ei riles

to improve current coupling

• Doubling the radius of the post-hole convolute current
combination allowed for larger A-K gaps in the convolute and
lower current densities on the components

• Reduced losses have been observed for many load configurations

• Increased inductance of the system can lower load current for
configurations where convolute losses are already low

• No significant modifications were made to the inner-MITL or load

• Peak load current stayed nearly the same (17.9 MA compared to
18.2 MA)

• The lack of improvement indicates that the dominant loss may be in the
inner-MITL as opposed to in the convolute

9



A more robust convolute was used
to improve current coupling
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Load inductance was reduced and A-K gap Ei anes
was increased to reduce inner-MITL loss

■ Total inductance reduced to 5.30 nH (from 7.17 nH)

■ Load inductance reduced to 2.56 nH (from 3.92 nH)

Note: 10 mm target height

■ lnner-MITL inductance reduced to 2.74 nH (from 3.25 nH)

■ Goal was to reduce losses in the inner-MITL without increasing

losses in the convolute too much

■ Peak load current increased to 19.5 MA (from 16.1 MA)

■ lnner-MITL current was 20.0 MA

■ Indicates that losses in the convolute are dominant in this configuration

■ Axial extension enables non-rectangular cross-section bottom coil

■ Up to 30 T average field with —10% spatial variation appears possible in this

configuration
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Load inductance was reduced and A-K gap

was increased to reduce inner-MITL loss
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A significant improvement in performance
was observed with the new configuration
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We have made
significant progress in
improving load current
while maintaining the
ability to achieve high
magnetic fields and
laser preheat energy

Liner Fill
(D2)

Current B-field

AR=6 0.7 mg/cc 16-18 MA 10 T

AR=6

TBD

1.1 mg/cc

-1.5 mg/cc

19.5 MA

20-21 MA

15 T

20-25 T

TBD 1.5 mg/cc 22+ MA 25-30 T

Preheat Yield
(DT-eq.)

-0.5 kJ 0.2-0.4 kJ

-1.2 kJ -2.4 kJ

2-4 kJ -10 kJ

6 kJ 100 kJ 13



We are considering two paths to further
increase load current in the near term

Sanaia

Laboratories

• The newest version of the inner-MITL could be coupled to the
31-cm diameter convolute

• The inductance of the present design is a little high for the standard

convolute, and convolute losses appear to dominate

• Convolute losses could be reduced significantly using the large diameter
convolute, resulting in a significant increase in load current

• The A-K gap in the newest version of the inner-MITL could be
reduced slightly

• The inductance of this design could be reduced to <5nH (down from 5.3 nH)
by decreasing the A-K gap to 4 mm

• Finding a balance between inner-MITL and convolute losses could lead to an
increase in load current

• Combining these two solutions could result in further increases
14


