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MagLIF relies on three stages to produce e,
fusion relevant conditions
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In our initial experiments, we delivered 10 T, s
~0.5 kJ of laser energy, and 18 MA peak current

=  Helmbholtz-like coils provided
10 T B-field with less than
1% spatial variation

= 0.5+ 2kl laser pulse coupled
~0.5 kJ of energy to the
0.7 mg/cc D, fuel

= |nitial inductance inside of
the convolute was 6.34 nH

= Peak load current was
18.2 MA

= Significant losses were
inferred in the convolute
and inner-MITL regions

Current piathii 130 mm
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This configuration produced up to 2x10'2 primary DD neutrons
or ~0.4 kJ DT-equivalent 3




Our goal on Z is to produce a fusion Ay
vield of ~100 kJ DT-equivalent

= Simulations indicate an 2D simulations in LASNEX
Preheat Energy = 6 kJ into 1.87 mg/cc DT

experiment with 25-30T,

6 kJ of laser heating, 1ooo§
and 22 MA could _ :

=
produce >100 kJ = 100
. @ 3
= We have preliminary > [

] ] 1.0 3 Imax=17.4 (7.2 nH 80 kV)
designs for coils capable ; Jurlur koo |
of applyingupto 30T ol A

. . . . 0 10 20 30 40 50
= Simulations indicate 6 kJ Bz Tesla

of laser energy can be coupled to the fuel with a large spot size
(1.5 mm), thin window (<um), and 10 mm tall target

= We are developing an inner-MITL configuration that is capable of
delivering 22 MA to the load 4




Original inner-MITL and load design gz
was not optimized for load current

= Relatively high initial inductance (6.34 nH)
" |nner-MITL with long axial translation (3.25 nH)
= Large load volume (2.86 nH)
= Slotted return can for diagnostic access (0.23 nH)

= Relatively small A-K gaps (3 mm)
= Plasma shorting
= Plasma expansion at 2 cm/us from both electrodes would short the gap
= |on diode losses
= High voltage and small gaps allow significant emission of ions, which are
generally not magnetically insulated

= Target height needs to be increased to improve laser coupling
and reduce fuel end losses

= 10 mm target (7.17 nH) :



Original inner-MITL and load design gz

was not optimized for load current
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The inner-MITL inductance was o
reduced to improve current coupling

= Eliminated the axial extension by removing the bottom B-field coil

= Required a ~¥25% axial variation in B-field

= Tested three cases (all with 7.5 mm target):

= 4 mm minimum gap with a smooth transition to the load: 4.94 nH
= Peak load current increased to 19.0 MA (from 18.2 MA)
= 3 mm minimum gap with a sharp bend near the load: 4.34 nH
= Peak load current increased to 18.6 MA (from 18.2 MA)
= Note there was a Marx bank prefire on this experiment
=" 4 mm minimum gap with a sharp bend near the load: 4.18 nH
* Peak load current stayed nearly the same at 17.9 MA (compared to 18.2 MA)
* Inner-MITL B-dots indicated minimal loss in the convolute
= Suspect that sharp bend near load caused the increase in loss in the inner-MITL
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The inner-MITL inductance was o
reduced to improve current coupling
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A more robust convolute was used e
to improve current coupling

= Doubling the radius of the post-hole convolute current
combination allowed for larger A-K gaps in the convolute and
lower current densities on the components
= Reduced losses have been observed for many load configurations

= |ncreased inductance of the system can lower load current for
configurations where convolute losses are already low

= No significant modifications were made to the inner-MITL or load

= Peak load current stayed nearly the same (17.9 MA compared to
18.2 MA)

= The lack of improvement indicates that the dominant loss may be in the
inner-MITL as opposed to in the convolute
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A more robust convolute was used
to improve current coupling
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Load inductance was reduced and A-K gap e
was increased to reduce inner-MITL loss

= Total inductance reduced to 5.30 nH (from 7.17 nH)

* Load inductance reduced to 2.56 nH (from 3.92 nH)
= Note: 10 mm target height

= |nner-MITL inductance reduced to 2.74 nH (from 3.25 nH)

= Goal was to reduce losses in the inner-MITL without increasing
losses in the convolute too much

= Peak load current increased to 19.5 MA (from 16.1 MA)
" |nner-MITL current was 20.0 MA

= |ndicates that losses in the convolute are dominant in this configuration

= Axial extension enables non-rectangular cross-section bottom coil

= Up to 30 T average field with ~10% spatial variation appears possible in this
configuration
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Load inductance was reduced and A-K gap e
was increased to reduce inner-MITL loss
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A significant improvement in performance =
was observed with the new conflguratlon

100.0¢ We have made

significant progress in
| improving load current
1 while maintaining the
ability to achieve high

10.0 |

Yield (kJ)

Y0r /sty coor max=lr4(2msen) 3 magnetic fields and
2014 Imax=22.6 (3.5 nH 95 kV) . Iaser preheat energy
i & | . P TS PR TS PP
Bz Tesla
Liner Fill Current | B-field | Preheat Yield
(D2) (DT-eq.)
2014 AR=6 0.7 mg/cc 16-18 MA 10T ~0.5kd 0.2-04 kJ
Aug. 2018 AR=6 1.1 mg/cc 19.5 MA 15T ~1.2 kJ ~2.4 kJ
2020 Goal TBD ~1.5mg/cc 20-21 MA 20-25T 2-4kJ ~10 kJ

Beyond 2020 TBD 1.5mg/lcc 22+ MA 25-30T 6 kJ 100 kd 43




We are considering two paths to further ) =,
increase load current in the near term

= The newest version of the inner-MITL could be coupled to the
31-cm diameter convolute

= The inductance of the present design is a little high for the standard
convolute, and convolute losses appear to dominate

= Convolute losses could be reduced significantly using the large diameter
convolute, resulting in a significant increase in load current
= The A-K gap in the newest version of the inner-MITL could be
reduced slightly

= The inductance of this design could be reduced to <5nH (down from 5.3 nH)
by decreasing the A-K gap to 4 mm

= Finding a balance between inner-MITL and convolute losses could lead to an
increase in load current

= Combining these two solutions could result in further increases
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