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Outline

■ Over 40 years of standard linear algebra interfaces

■ P1417 shares some history & lessons learned

■ Incomplete & can never be fully complete

■ Meant to grow & include your contributions

■ This talk: Lessons from BLAS standardization

■ Standardize in layers, bottom up

■ Layer based on expertise & performance portability

■ Start w/ fundamentals least specific to linear algebra

■ Lowest-level fundamentals include

■ Multidimensional arrays

■ Multidimensional parallel iteration

■ Explicit SIMD types & ops
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Basic Linear Algebra Subprograms

• Standard published 2002

• 1995 workshop

• 1996-99 meetings 3x/year (w/

minutes online)

• Fortran & C interfaces

• Dense matrix & vector ops(*)

• Developed in levels (1,2,3):

• Vector-vector (BLAS 1): 1979

(least data reuse)

• Matrix-vector (BLAS 2): 1988

(constant factor more reuse)

• Matrix-matrix (BLAS 3): 1990

(most data reuse)
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(Fortran) BLAS quick reference:

http://www.netlib.org/blas 
(See also Jack Dongarra's oral history)

(*) Sparse etc. too; ask me later
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BLAS 1-3 coevolved w/ computers

Seymour Cray w/

Cray 1, circa 1976

(when LINPACK

funding started)

Vector (Cray, NEC)

■ Low flop/byte ratio

■ Favor long,

dependence-free

loops & regular

data access

■ BLAS 1 target

Cache based

■ "Killer micros" (see
1991 NYT article)

■ High flop/byte ratio

■ Favor data reuse

■ BLAS 3 target
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Yunsup Lee holding

RISC V prototype, 2013
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BLAS codesigned w/ algorithms

• LINPACK library: 1979

• Linear systems (LU, Cholesky)

• Linear least squares (QR)

• General dense, symmetric, & banded

• Designed to use BLAS (1), for good

performance on many different computers

• LAPACK: 1990

• Combines functionality of LINPACK + EISPACK

({eigen,singular} value problems)

• "Coreleased" w/ BLAS 3, w/ common authors

• Algorithms that better exploit data reuse

• BLAS 3 designed for those algorithms
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Imitate BLAS' std-ization approach
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■ How it got standardized, not necessarily the interface itself

■ l do not necessarily advocate a "C++ BLAS binding"

■ Fullest development of Ranges may reduce BLAS l's value

■ BLAS optimized for single large problems, not small & many

■ Larger, different customer base, solving different problems

■ Process: Standardize in layers, bottom up 

■ Layer by expertise

■ BLAS: hardware / performance; LAPACK: numerical analysis

■ Kazushige Goto (talented BLAS optimizer) is self-taught [1]

■ Numerical analysis not typical background for Std Lib developers

■ Layer for performance portability

■ Value added in multiple implementations, tuned for specific hardware
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Counter & rebuttal

• Counter: BLAS & LAPACK codesigned by numerical analysts

• Will future algorithms need different fundamental operations?

• Would a bottom-up approach risk overspecializing the lowest level?

• Radical changes in computer architecture?

• Rebuttal

• Fundamentals not specific to linear algebra

• Last 2 decades: Many theoretical results on
algorithm optimality (matrix & tensor), so
unlikely to need radical changes like BLAS 1-3

• Participation by more communities (graphics,
machine learning, embedded, ...) will reduce
risk of overspecification

• Many of us plugged into SG1 etc., so we're
watching architecture changes
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See "Communication lower

bounds & optimal algorithms

for numerical linear algebra,"

Ballard, Carson, Demmel,

Hoemmen, Knight, & Schwarz,

2014
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Alternate procedural approaches
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■ What if WG21 rejects / delays standardization?

■ Join the BLAS Technical Forum?

• (+) Meeting minutes show they planned a C++ interface [2]
• (o; C++ & Java excluded: "time constraints" & possible Java changes

• (+) CBLAS exists & has support from multiple vendors

• (-) Invading small (< 20) focused committee, inactive nearly 20 years

• (-) May reject C++ "binding" if too different (see MPI C++ binding)

■ Form our own standard?

■ GraphBLAS: Express graph algorithms in the language of linear algebra

■ Batched BLAS: Do many small dense ops at once, expose parallelism

■ Non-language standards more useful when it's worth having multiple
implementations of the same interface

Multiple Engines / back-ends permit this, also encourage interoperability
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Fundamental or batteries included?
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■ Referencing debate over Graphics API [3,4]

■ For this talk, I'm not taking a side

■ Fundamental-ness may influence WG21 prioritization

■ But: just as BLAS was codesigned w/ LINPACK & LAPACK, we should

design the linear algebra we want, & standardize what we can

■ Lowest level of linear algebra: Clearly fundamental, including

■ Multidimensional arrays: P0009r9, mdspan, at LWG level

■ Multidimensional parallel iteration: Papers & ideas by authors here

■ Explicit SIMD types & ops: Voted into N4744 (Parallelism TS 2)

■ What makes them fundamental?

■ Need / would benefit from compiler support 

■ Vocabulary 

■ Multiple use cases outside linear algebra
9



Multidimensional arrays: mdspan

■ P0009r9, currently in LWG wording review

■ Christian Trott will present on this

■ Meant as a zero-overhead abstraction

■ Like Fortran arrays, complete w/ slices

■ Can mix compile- & run-time dimensions

■ No implicit temporaries / allocation (9x)

■ Compiler could optimize indexing

■ Polymorphic data layout

■ Needed for performance with tensors & batched small dense

■ Performance portability (tune layout for architecture)

■ Compatibility with different libraries in other languages
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Is mdspan a "matrix"?

■ mdspan is nonowning

■ Generalizes span [views]

■ Can't create (allocate) matrix

■ Expressions may need temps

■ We use owning Kokkos::View

in BLAS-like kokkos-kernels

■ mdspan views memory

■ For small dense SIMD-based

classes, may prefer values

■ Ask us about combining

Kokkos::View & SIMD types

■ Not a linear algebra library

■ No NumPy-style broadcast

■ No expressions, arithmetic, ...
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If we want "Matlab in C++":

■ Owning tensor / mat / vec classes

■ Dispatch to mdspan kernels

■ mdspan may support expression

templates through AccessorPolicy
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Multidimensional parallel iteration

■ Who needs this?

■ Linear & (especially) tensor algebra

■ Representations of physical space (structured grids)

■ Why not just 1-D iterators?

■ Iterating 1 dim at a time ignores data locality

■ Problems most naturally expressed in multiple dimensions;
"flattening" the iteration space by hand complicates code

■ All these must be optimized together:

Algorithm & data layout (hence mdspan's polymorphic layout)

Iteration order & parallelization strategy

■ Interface options

■ For-each i... over multidimensional index domain (ask us)

■ Einstein tensor index notation (ask other folks here)
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Conclusions

■ If we want to standardize a C++ linear algebra library,

■ we should learn from BLAS Standard's successes:

■ Standardize in layers, from the bottom up

■ Layer by expertise: hardware / performance vs. numerical analysis

■ Identify fundamentals for any linear algebra / tensor library

■ Explicit SIMD types & ops: Voted into N4744 (Parallelism TS 2)

■ Multidimensional arrays: P0009r9, in LWG wording review

■ Multidimensional parallel iteration: ????, OPPORTUNITY 

■ Thanks to P1417 coauthors & aIl of you!
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