This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 1649C

P1417: Lessons learned for linear
algebra library standardization

Mark Hoemmen (mhoemme@sandia.gov)
WG21, Kona, Feb. 2019

U.8. DEPARTMENT OF V'VA T <
@ E"ERGY .v"& Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
At Nt Sty At subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Outline)=,

= Qver 40 years of standard linear algebra interfaces
= P1417 shares some history & lessons learned

= |ncomplete & can never be fully complete
= Meant to grow & include your contributions

= This talk: Lessons from BLAS standardization
= Standardize in layers, bottom up
= Layer based on expertise & performance portability
= Start w/ fundamentals least specific to linear algebra

= |owest-level fundamentals include
= Multidimensional arrays

= Multidimensional parallel iteration
= Explicit SIMD types & ops

Basic Linear Algebra Subprograms @z

= Standard published 2002
= 1995 workshop

= 1996-99 meetings 3x/year (w/
minutes online)

= Fortran & C interfaces
= Dense matrix & vector ops(*)

= Developedin levels (1,2,3):

= Vector-vector (BLAS 1): 1979
(least data reuse)

, (Fortran) BLAS quick reference:
= Matrix-vector (BLAS 2): 1988 pobra: s s natlib.orgllss

(constant factor more reuse) (See also Jack Dongarra’s oral history)

= Matrix-matrix (BLAS 3): 1990
(most data reuse)

(*) Sparse etc. too; ask me later

8

BLAS 1-3 coevolved w/ computers @&,

Vector (Cray, NEC)

= Low flop/byte ratio

= Favor long,
dependence-free Yunsup Lee holding
loops & regular RISC V prototype, 2013
data access v 7 74

= BLAS 1 target

Seymour Cray w/ Cache based
Cray 1, circa 1976 . xill : ”
(when LINPACK Killer micros” (see

funding started) 1991 NYT article)
= High flop/byte ratio
= Favor data reuse
= BLAS 3 target

BLAS codesigned w/ algorithms UL

= LINPACK library: 1979

= Linear systems (LU, Cholesky)
= Linear least squares (QR)
= General dense, symmetric, & banded

= Designed to use BLAS (1), for good
performance on many different computers

= LAPACK: 1990

L A P A C K
. . . L-A P-A C-K
= Combines functionality of LINPACK + EISPACK C W
({eigen,singular} value problems) LA PACK
= “Coreleased” w/ BLAS 3, w/ common authors FEII
L-A-P A C-K

= Algorithms that better exploit data reuse Users' G

= BLAS 3 designed for those algorithms

Imitate BLAS’ std-ization approach @&

= How it got standardized, not necessarily the interface itself
= | do not necessarily advocate a “C++ BLAS binding”
= Fullest development of Ranges may reduce BLAS 1’s value
= BLAS optimized for single large problems, not small & many
= Larger, different customer base, solving different problems

= Process: Standardize in layers, bottom up

= Layer by expertise
= BLAS: hardware / performance; LAPACK: numerical analysis
= Kazushige Goto (talented BLAS optimizer) is self-taught [1]
= Numerical analysis not typical background for Std Lib developers

= Layer for performance portability
= Value added in multiple implementations, tuned for specific hardware

6
-

Counter & rebuttal)

= Counter: BLAS & LAPACK codesigned by numerical analysts
= Will future algorithms need different fundamental operations?
= Would a bottom-up approach risk overspecializing the lowest level?
= Radical changes in computer architecture?

[] Ict;-‘l
Rebuttal . ico

= Fundamentals not specific to linear algebra Volume 23

= Last 2 decades: Many theoretical results on
algorithm optimality (matrix & tensor), so
unlikely to need radical changes like BLAS 1-3

= Participation by more communities (graphics, <.c “communication lower
machine learning, embedded, ...) will reduce bounds & optimal algorithms

risk of overspecification for numerical linear algebra,”
P Ballard, Carson, Demmel,

= Many of us plugged into SG1 etc., so we're Hoemmen, Knight, & Schwarz,

: : 2014
watching architecture changes ,

Alternate procedural approaches @&

= What if WG21 rejects / delays standardization?
= Join the BLAS Technical Forum?

(+) Meeting minutes show they planned a C++ interface [2]

(0) C++ & Java excluded: “time constraints” & possible Java changes

(+) CBLAS exists & has support from multiple vendors
= (-) Invading small (< 20) focused committee, inactive nearly 20 years
= (-) May reject C++ “binding” if too different (see MPI C++ binding)

= Form our own standard?

= GraphBLAS: Express graph algorithms in the language of linear algebra

= Batched BLAS: Do many small dense ops at once, expose parallelism

= Non-language standards more useful when it’s worth having multiple
implementations of the same interface

= Multiple Engines / back-ends permit this, also encourage interoperability
8

Fundamental or batteries included? @Ex.

= Referencing debate over Graphics API [3,4]
= For this talk, I’'m not taking a side

= Fundamental-ness may influence WG21 prioritization

= But: just as BLAS was codesigned w/ LINPACK & LAPACK, we should
design the linear algebra we want, & standardize what we can

= Lowest level of linear algebra: Clearly fundamental, including
= Multidimensional arrays: PO009r9, mdspan, at LWG level
= Multidimensional parallel iteration: Papers & ideas by authors here
= Explicit SIMD types & ops: Voted into N4744 (Parallelism TS 2)

= What makes them fundamental?

= Need / would benefit from compiler support

= \/ocabulary

= Multiple use cases outside linear algebra

Multidimensional arrays: mdspan @&

= P0O009r9, currently in LWG wording review
= Christian Trott will present on this

= Meant as a zero-overhead abstraction
= Like Fortran arrays, complete w/ slices
= Can mix compile- & run-time dimensions
= No implicit temporaries / allocation (9x)
= Compiler could optimize indexing

= Polymorphic data layout
= Needed for performance with tensors & batched small dense
= Performance portability (tune layout for architecture)
= Compatibility with different libraries in other languages

10
-

Is mdspan a “matrix”? UL

" mdspan is nonowning
= Generalizes span [views]
= Can’t create (allocate) matrix
= Expressions may need temps
= We use owning Kokkos::View
in BLAS-like kokkos-kernels
" mdspan views memory

= For small dense SIMD-based
classes, may prefer values

If we want “Matlab in C++":

= Owning tensor / mat / vec classes
= Ask us about combining 8 / /

Kokkos::View & SIMD types = Dispatch to mdspan kernels
"= mdspan may support expression

. : :
Not a linear algebra library templates through AccessorPolicy

= No NumPy-style broadcast

= No expressions, arithmetic, ... 11

Multidimensional parallel iteration

= Who needs this?
= Linear & (especially) tensor algebra
= Representations of physical space (structured grids)

= Why not just 1-D iterators?
= |terating 1 dim at a time ignores data locality

= Problems most naturally expressed in multiple dimensions;
“flattening” the iteration space by hand complicates code
= All these must be optimized together:
= Algorithm & data layout (hence mdspan’s polymorphic layout)

" |teration order & parallelization strategy

= |nterface options
= For-each i... over multidimensional index domain (ask us)

= Einstein tensor index notation (ask other folks here)
12

Conclusions) 2=

= |f we want to standardize a C++ linear algebra library,
= we should learn from BLAS Standard’s successes:

= Standardize in layers, from the bottom up
= Layer by expertise: hardware / performance vs. numerical analysis

= |dentify fundamentals for any linear algebra / tensor library
= Explicit SIMD types & ops: Voted into N4744 (Parallelism TS 2)

= Multidimensional arrays: PO009r9, in LWG wording review
= Multidimensional parallel iteration: ????, OPPORTUNITY

= Thanks to P1417 coauthors & all of you!

References) 2=

= [1] John Markoff, “Writing the Fastest Code, by Hand, for Fun: A Human
Computer Keeps Speeding Up Chips,” New York Times, Nov. 28, 2005.

= [2] BLAST Forum MINUTES, NIST, Washington, D.C., Oct. 8-9, 1998.
Available online: http://www.netlib.org/blas/blast-forum/blast-forum-
minutes.oct8-9.98.html [last accessed Feb. 14, 2019].

= [3] Guy Davidson, “Batteries not included: what should go in the C++
standard library?”, World of hatcat, Feb. 16, 2018. Available online:
https://hatcat.com/?p=16 [last accessed Feb. 10, 2019].

= [4] Titus Winters, “What Should Go Into the C++ Standard Library,” Abseil
Blog, Feb. 27, 2018. Available online: https://abseil.io/blog/20180227-
what-should-go-stdlib [last accessed Feb. 10, 2019].

