
P1417: Lessons learned for linear
algebra library standardization

U.S. DEPARTMENT OF 111 M AIL"W,5

ENERGY

Mark Hoemmen (mhoemme@sandia.gov)

WG21, Kona, Feb. 2019

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525.

I • I

SAND2019-1649C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Outline

■ Over 40 years of standard linear algebra interfaces

■ P1417 shares some history & lessons learned

■ Incomplete & can never be fully complete

■ Meant to grow & include your contributions

■ This talk: Lessons from BLAS standardization

■ Standardize in layers, bottom up

■ Layer based on expertise & performance portability

■ Start w/ fundamentals least specific to linear algebra

■ Lowest-level fundamentals include

■ Multidimensional arrays

■ Multidimensional parallel iteration

■ Explicit SIMD types & ops

Sandia
National
Laboratories

2

Basic Linear Algebra Subprograms

• Standard published 2002

• 1995 workshop

• 1996-99 meetings 3x/year (w/

minutes online)

• Fortran & C interfaces

• Dense matrix & vector ops(*)

• Developed in levels (1,2,3):

• Vector-vector (BLAS 1): 1979

(least data reuse)

• Matrix-vector (BLAS 2): 1988

(constant factor more reuse)

• Matrix-matrix (BLAS 3): 1990

(most data reuse)

Sandia
National
Laboratories

Level I BLAS
Cs ecaler r•ctor vector ecalere 11,111•0•1 Wray

e1014 < A. 0. C. S ,
01. 03. 1. O. 233“) ,..,.....,,,,,,,„,,,,,, ,„..,...,,...,,,,, S. 0

1 ISZCIDS .110: (11. C. S ,
,.11.1077 CA v1010 (P. PALM ,

APO, PI.", ...I...
AppIy m...d.vd Mr .I•1,nn S,D

1 VILDCIZ• eS.PAP (P. 1. VIM. T. 122f)
. IS,C1HZ ISCII. (O. ALPILL, I. DO

• •• t It D.C. 3

: SIOCISS afar, (O. 1. =I. T. 3322)
MT ,

...

N.- .

del 4- eI.,

AMC,.

..71 03 aDOCC (O. I. IIICI. T. NC. •
TACT I
Vell ,

A.L._•",
.4,a .- c•e
cni . i rry

C.1
C..
BIS

. tents aNAR (O. I. VDU)
1. 332) ••••• /- 1,4.1 lo / 1303 1

S. D. SC. In
S. 3. SC. In

e.2c. los :LAW(V. I. 10C1 I eut.ra, l'q Z 1/3...) I l3/4•61
= 3.431..3 t 34•33

AD.C.3

Level 2 BLAS
et• vuler mfr. vector eviller vector

..411V
•.- ...A1 • .4.••-•A• ...•

Z. D.C..
D.C. 3

:SVC O. 1. LOA. L. PCS. 1107A. T. ISCV

y.- AA • C.3

or.
O. ALMA

ALM •••

C

Wit
UP.

0, A.
AA r • lo

WIC

CP.

IT., SILO, II. L. L0A. S.
3, A. LOA, 1. 1011

OVAC.

• A..

• - A.e
8.- A.• D.C.

L. LA, S. 11111

• .-

•
3. D.C. 2
&D.C.

MLA

ortooe

Mil 011C 1, V. 1,1211)
et• ecelar verve, •••-cor =Ariz
0 0, WI. IOC, ZOLT. A IAA

• •-A •-A •,••-A

tA,A-••••

O. D, C. 3

A
. I1C1. 7. LACf. A. LOA , A..- ma Ar•

A •-• ••• • A, ••••
C, 3
C.3

OPLO ALM V. 10C1. L.
AP I

A.-oze. • A
• A

C.2

cr. 3. .. V. 1.. •. tot
1301. A 321. 22

•-••••. •91.4.• A

A.- nay. *fie.). A
UP1.0
Ce.

LLP01. 3/22. A Mt
12

At-e•se • A
•-•••, +A

D
S. D

UP.L.0 4-..)..100 .1A
A.- rug •arl" 4•1

2, D
3, D

Level JeBLAS

CIO, MU
3101. PPLO

sestlar vesels instlx uslar Aetna
N. O. A. 11JII, A. ISA, 0. 1.11, MA, C. LOC C(A),(11) • ne.nvo ., .71.,x,,xn.c - n k ..

nne • nc.c .- - non • nc.c. elx.,AeAll
C.- AM" AC.C.-.38,110C.0 - m xn.A. A.

, D.C. Z

4 D.C..
C..

CIAO
•OTIZA, CPLO

I, WY, A. LBA. IVICIA. C. LOC
MA. C. UC

Co-AAA' i AC.C•-aA'AiOC.C-n 1 •
C a- sAAZ 4 pe,e . - .a A • oc,e -...

nne *IOW . Man •-a.e. if.nin'A.- naC a.,

S.O.C. Z
C, i
1,D,C.1

,-1111 Sla..
4 1. WU. 1, LOA. O. LDO, SAVA, C. ISC

TALOA.
.-.Ae •allA. • BCC.- oA.B • efl.A • Bac . Me
.-esplA)II,11.-alfekA),•,(A)=A.A'.A..n-n X n

C.Z
S. D, C. Z

1101. OPLO 21/311.
2

a(.1 . jmn .-• ...AA .)...4.n. A. n*. An . a - n n . A D.C. 3

(Fortran) BLAS quick reference:

http://www.netlib.org/blas
(See also Jack Dongarra's oral history)

(*) Sparse etc. too; ask me later

3

BLAS 1-3 coevolved w/ computers

Seymour Cray w/

Cray 1, circa 1976

(when LINPACK

funding started)

Vector (Cray, NEC)

■ Low flop/byte ratio

■ Favor long,

dependence-free

loops & regular

data access

■ BLAS 1 target

Cache based

■ "Killer micros" (see
1991 NYT article)

■ High flop/byte ratio

■ Favor data reuse

■ BLAS 3 target

Sandia
National
Laboratories

Yunsup Lee holding

RISC V prototype, 2013

4

BLAS codesigned w/ algorithms

• LINPACK library: 1979

• Linear systems (LU, Cholesky)

• Linear least squares (QR)

• General dense, symmetric, & banded

• Designed to use BLAS (1), for good

performance on many different computers

• LAPACK: 1990

• Combines functionality of LINPACK + EISPACK

({eigen,singular} value problems)

• "Coreleased" w/ BLAS 3, w/ common authors

• Algorithms that better exploit data reuse

• BLAS 3 designed for those algorithms

L A

L -A

L A

L -A

L A

L -A

P

P

-P

-P

A

-A

A

-A

-A

A

c

c
-c
-c K

-K

-K

Users' Guide

gagIrnn•• rItineNtaVult-rori N

Sandia
National
Laboratories

5

Imitate BLAS' std-ization approach
Sandia
National
Laboratories

■ How it got standardized, not necessarily the interface itself

■ l do not necessarily advocate a "C++ BLAS binding"

■ Fullest development of Ranges may reduce BLAS l's value

■ BLAS optimized for single large problems, not small & many

■ Larger, different customer base, solving different problems

■ Process: Standardize in layers, bottom up

■ Layer by expertise

■ BLAS: hardware / performance; LAPACK: numerical analysis

■ Kazushige Goto (talented BLAS optimizer) is self-taught [1]

■ Numerical analysis not typical background for Std Lib developers

■ Layer for performance portability

■ Value added in multiple implementations, tuned for specific hardware

6

Counter & rebuttal

• Counter: BLAS & LAPACK codesigned by numerical analysts

• Will future algorithms need different fundamental operations?

• Would a bottom-up approach risk overspecializing the lowest level?

• Radical changes in computer architecture?

• Rebuttal

• Fundamentals not specific to linear algebra

• Last 2 decades: Many theoretical results on
algorithm optimality (matrix & tensor), so
unlikely to need radical changes like BLAS 1-3

• Participation by more communities (graphics,
machine learning, embedded, ...) will reduce
risk of overspecification

• Many of us plugged into SG1 etc., so we're
watching architecture changes

Sandia
National
Laboratories

See "Communication lower

bounds & optimal algorithms

for numerical linear algebra,"

Ballard, Carson, Demmel,

Hoemmen, Knight, & Schwarz,

2014

7

Alternate procedural approaches
Sandia
National
Laboratories

■ What if WG21 rejects / delays standardization?

■ Join the BLAS Technical Forum?

• (+) Meeting minutes show they planned a C++ interface [2]
• (o; C++ & Java excluded: "time constraints" & possible Java changes

• (+) CBLAS exists & has support from multiple vendors

• (-) Invading small (< 20) focused committee, inactive nearly 20 years

• (-) May reject C++ "binding" if too different (see MPI C++ binding)

■ Form our own standard?

■ GraphBLAS: Express graph algorithms in the language of linear algebra

■ Batched BLAS: Do many small dense ops at once, expose parallelism

■ Non-language standards more useful when it's worth having multiple
implementations of the same interface

Multiple Engines / back-ends permit this, also encourage interoperability

8

Fundamental or batteries included?
Sandia
National
Laboratories

■ Referencing debate over Graphics API [3,4]

■ For this talk, I'm not taking a side

■ Fundamental-ness may influence WG21 prioritization

■ But: just as BLAS was codesigned w/ LINPACK & LAPACK, we should

design the linear algebra we want, & standardize what we can

■ Lowest level of linear algebra: Clearly fundamental, including

■ Multidimensional arrays: P0009r9, mdspan, at LWG level

■ Multidimensional parallel iteration: Papers & ideas by authors here

■ Explicit SIMD types & ops: Voted into N4744 (Parallelism TS 2)

■ What makes them fundamental?

■ Need / would benefit from compiler support

■ Vocabulary

■ Multiple use cases outside linear algebra
9

Multidimensional arrays: mdspan

■ P0009r9, currently in LWG wording review

■ Christian Trott will present on this

■ Meant as a zero-overhead abstraction

■ Like Fortran arrays, complete w/ slices

■ Can mix compile- & run-time dimensions

■ No implicit temporaries / allocation (9x)

■ Compiler could optimize indexing

■ Polymorphic data layout

■ Needed for performance with tensors & batched small dense

■ Performance portability (tune layout for architecture)

■ Compatibility with different libraries in other languages

Sandia
National
Laboratories

10

Is mdspan a "matrix"?

■ mdspan is nonowning

■ Generalizes span [views]

■ Can't create (allocate) matrix

■ Expressions may need temps

■ We use owning Kokkos::View

in BLAS-like kokkos-kernels

■ mdspan views memory

■ For small dense SIMD-based

classes, may prefer values

■ Ask us about combining

Kokkos::View & SIMD types

■ Not a linear algebra library

■ No NumPy-style broadcast

■ No expressions, arithmetic, ...

Sandia
National
Laboratories

If we want "Matlab in C++":

■ Owning tensor / mat / vec classes

■ Dispatch to mdspan kernels

■ mdspan may support expression

templates through AccessorPolicy

11

Multidimensional parallel iteration

■ Who needs this?

■ Linear & (especially) tensor algebra

■ Representations of physical space (structured grids)

■ Why not just 1-D iterators?

■ Iterating 1 dim at a time ignores data locality

■ Problems most naturally expressed in multiple dimensions;
"flattening" the iteration space by hand complicates code

■ All these must be optimized together:

Algorithm & data layout (hence mdspan's polymorphic layout)

Iteration order & parallelization strategy

■ Interface options

■ For-each i... over multidimensional index domain (ask us)

■ Einstein tensor index notation (ask other folks here)

Sandia
National
Laboratories

12

Conclusions

■ If we want to standardize a C++ linear algebra library,

■ we should learn from BLAS Standard's successes:

■ Standardize in layers, from the bottom up

■ Layer by expertise: hardware / performance vs. numerical analysis

■ Identify fundamentals for any linear algebra / tensor library

■ Explicit SIMD types & ops: Voted into N4744 (Parallelism TS 2)

■ Multidimensional arrays: P0009r9, in LWG wording review

■ Multidimensional parallel iteration: ????, OPPORTUNITY

■ Thanks to P1417 coauthors & aIl of you!

Sandia
National
Laboratories

13

References
Sandia
National
Laboratories

• [1] John Markoff, "Writing the Fastest Code, by Hand, for Fun: A Human

Computer Keeps Speeding Up Chips," New York Times, Nov. 28, 2005.

• [2] BLAST Forum MINUTES, NIST, Washington, D.C., Oct. 8-9, 1998.

Available online: http://www.netlib.org/blas/blast-forum/blast-forum-

nimu-tes.oct8-9.98.html [last accessed Feb. 14, 2019].

• [3] Guy Davidson, "Batteries not included: what should go in the C++

standard library?", World of hatcat, Feb. 16, 2018. Available online:

https://hdtcat.com/?p=1([last accessed Feb. 10, 2019].

• [4] Titus Winters, "What Should Go Into the C++ Standard Library," Abseil

Blog, Feb. 27, 2018. Available online: https://abseil.io/blog/20180227-

who,should-o-stdlib [last accessed Feb. 10, 2019].

14

