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Outline )=,

= Qver 40 years of standard linear algebra interfaces
= P1417 shares some history & lessons learned

= |ncomplete & can never be fully complete
= Meant to grow & include your contributions

= This talk: Lessons from BLAS standardization
= Standardize in layers, bottom up
= Layer based on expertise & performance portability
= Start w/ fundamentals least specific to linear algebra

= |owest-level fundamentals include
= Multidimensional arrays

= Multidimensional parallel iteration
= Explicit SIMD types & ops




Basic Linear Algebra Subprograms @z

= Standard published 2002
= 1995 workshop

= 1996-99 meetings 3x/year (w/
minutes online)

= Fortran & C interfaces
= Dense matrix & vector ops(*)

= Developedin levels (1,2,3):

= Vector-vector (BLAS 1): 1979
(least data reuse)

, (Fortran) BLAS quick reference:
= Matrix-vector (BLAS 2): 1988 pobra: s s natlib.orgllss

(constant factor more reuse) (See also Jack Dongarra’s oral history)

= Matrix-matrix (BLAS 3): 1990
(most data reuse)

(*) Sparse etc. too; ask me later
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BLAS 1-3 coevolved w/ computers @&,

Vector (Cray, NEC)

= Low flop/byte ratio

= Favor long,
dependence-free Yunsup Lee holding
loops & regular RISC V prototype, 2013
data access v 7 74

= BLAS 1 target

Seymour Cray w/ Cache based
Cray 1, circa 1976 . xill : ”
(when LINPACK Killer micros” (see

funding started) 1991 NYT article)
= High flop/byte ratio
= Favor data reuse
= BLAS 3 target




BLAS codesigned w/ algorithms UL

= LINPACK library: 1979

= Linear systems (LU, Cholesky)
= Linear least squares (QR)
= General dense, symmetric, & banded

= Designed to use BLAS (1), for good
performance on many different computers

= LAPACK: 1990

L A P A C K
. . . L-A P-A C-K
= Combines functionality of LINPACK + EISPACK C W
({eigen,singular} value problems) LA PACK
= “Coreleased” w/ BLAS 3, w/ common authors FEII
L-A-P A C-K

= Algorithms that better exploit data reuse Users' G

= BLAS 3 designed for those algorithms




Imitate BLAS’ std-ization approach @&

= How it got standardized, not necessarily the interface itself
= | do not necessarily advocate a “C++ BLAS binding”
= Fullest development of Ranges may reduce BLAS 1’s value
= BLAS optimized for single large problems, not small & many
= Larger, different customer base, solving different problems

= Process: Standardize in layers, bottom up

= Layer by expertise
= BLAS: hardware / performance; LAPACK: numerical analysis
= Kazushige Goto (talented BLAS optimizer) is self-taught [1]
= Numerical analysis not typical background for Std Lib developers

= Layer for performance portability
= Value added in multiple implementations, tuned for specific hardware
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Counter & rebuttal )

= Counter: BLAS & LAPACK codesigned by numerical analysts
= Will future algorithms need different fundamental operations?
= Would a bottom-up approach risk overspecializing the lowest level?
= Radical changes in computer architecture?

[ ] Ict;-‘l
Rebuttal . ico

= Fundamentals not specific to linear algebra Volume 23

= Last 2 decades: Many theoretical results on
algorithm optimality (matrix & tensor), so
unlikely to need radical changes like BLAS 1-3

= Participation by more communities (graphics,  <.c “communication lower
machine learning, embedded, ...) will reduce bounds & optimal algorithms

risk of overspecification for numerical linear algebra,”
P Ballard, Carson, Demmel,

= Many of us plugged into SG1 etc., so we're Hoemmen, Knight, & Schwarz,

: : 2014
watching architecture changes ,




Alternate procedural approaches @&

= What if WG21 rejects / delays standardization?
= Join the BLAS Technical Forum?

(+) Meeting minutes show they planned a C++ interface [2]

(0) C++ & Java excluded: “time constraints” & possible Java changes

(+) CBLAS exists & has support from multiple vendors
= (-) Invading small (< 20) focused committee, inactive nearly 20 years
= (-) May reject C++ “binding” if too different (see MPI C++ binding)

= Form our own standard?

= GraphBLAS: Express graph algorithms in the language of linear algebra

= Batched BLAS: Do many small dense ops at once, expose parallelism

= Non-language standards more useful when it’s worth having multiple
implementations of the same interface

= Multiple Engines / back-ends permit this, also encourage interoperability
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Fundamental or batteries included? @Ex.

= Referencing debate over Graphics API [3,4]
= For this talk, I’'m not taking a side

= Fundamental-ness may influence WG21 prioritization

= But: just as BLAS was codesigned w/ LINPACK & LAPACK, we should
design the linear algebra we want, & standardize what we can

= Lowest level of linear algebra: Clearly fundamental, including
= Multidimensional arrays: PO009r9, mdspan, at LWG level
= Multidimensional parallel iteration: Papers & ideas by authors here
= Explicit SIMD types & ops: Voted into N4744 (Parallelism TS 2)

= What makes them fundamental?

= Need / would benefit from compiler support

= \/ocabulary

= Multiple use cases outside linear algebra




Multidimensional arrays: mdspan @&

= P0O009r9, currently in LWG wording review
= Christian Trott will present on this

= Meant as a zero-overhead abstraction
= Like Fortran arrays, complete w/ slices
= Can mix compile- & run-time dimensions
= No implicit temporaries / allocation (9x)
= Compiler could optimize indexing

= Polymorphic data layout
= Needed for performance with tensors & batched small dense
= Performance portability (tune layout for architecture)
= Compatibility with different libraries in other languages
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Is mdspan a “matrix”? UL

" mdspan is nonowning
= Generalizes span [views]
= Can’t create (allocate) matrix
= Expressions may need temps
= We use owning Kokkos::View
in BLAS-like kokkos-kernels
" mdspan views memory

= For small dense SIMD-based
classes, may prefer values

If we want “Matlab in C++":

= Owning tensor / mat / vec classes
=  Ask us about combining 8 / /

Kokkos::View & SIMD types = Dispatch to mdspan kernels
"= mdspan may support expression

. : :
Not a linear algebra library templates through AccessorPolicy

= No NumPy-style broadcast

= No expressions, arithmetic, ... 11




Multidimensional parallel iteration

= Who needs this?
= Linear & (especially) tensor algebra
= Representations of physical space (structured grids)

= Why not just 1-D iterators?
= |terating 1 dim at a time ignores data locality

= Problems most naturally expressed in multiple dimensions;
“flattening” the iteration space by hand complicates code
= All these must be optimized together:
= Algorithm & data layout (hence mdspan’s polymorphic layout)

" |teration order & parallelization strategy

= |nterface options
= For-each i... over multidimensional index domain (ask us)

= Einstein tensor index notation (ask other folks here)
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Conclusions ) 2=

= |f we want to standardize a C++ linear algebra library,
= we should learn from BLAS Standard’s successes:

= Standardize in layers, from the bottom up
= Layer by expertise: hardware / performance vs. numerical analysis

= |dentify fundamentals for any linear algebra / tensor library
= Explicit SIMD types & ops: Voted into N4744 (Parallelism TS 2)

= Multidimensional arrays: PO009r9, in LWG wording review
= Multidimensional parallel iteration: ????, OPPORTUNITY

= Thanks to P1417 coauthors & all of you!
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