

An Overview of Training Data Security Vulnerabilities: Machine Learning is a Leaky Black Box

Philip Kegelmeyer, Jeremy Wendt, Cosmin Safta

Sandia National Laboratories, Livermore, CA

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

AI Forum, February 21–22, 2019

Outline

- Components of a machine learning system
- A variety of training data vulnerabilities
 1. Exfiltration via model parameters
 2. Exfiltration via model labels
 3. Exploit inadvertent memorization
 4. Attribute inference: recovering training data
 5. Membership inference: confirming training data
 6. Model stealing: infer the model to better infer the training data
- What to do? A distressingly shallow set of ideas

Training and Testing a Machine Learning Model

Training Data

DEFECT.ID	Defect?	CGINTX	CGINTY	SNR	...	PMIN
		Truth	a_1	a_2	a_3	...
q_1	Yes	12	1003	0.97	...	0.12
q_2	Yes	99	2	0.33	...	0.03
q_3	No	3	27	0.12	...	0.13
q_4	Yes	16	183	0.08	...	0.58
q_5	No	17	665	0.36	...	0.64
q_6	No	44	1212	0.29	...	0.42
q_7	No	42	24	0.33	...	0.88
q_8	Yes	78	42	0.44	...	0.52
:	:	:	:	:	...	:
q_N	No	12	3141	0.92	...	0.17

Machine Learning Code

```

#include <string.h>
#include "crossval.h"
#include "evaluate.h"
#include "util.h"
#include "gain.h"
#include "gsl/gsl_rng.h"

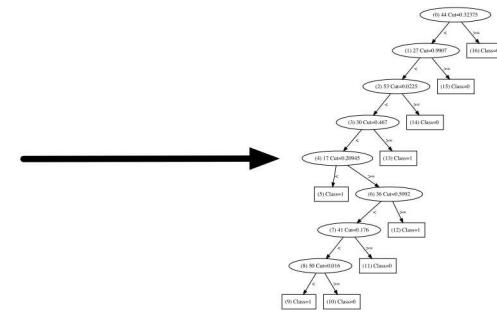
typedef struct sortstore {
    double value;
    int class;
} continuous_sort;

int count_nodes(DT_Node *tree) {
    int count = 1;
    _count_nodes(tree, 0, &count);
    return count;
}

void _count_nodes(DT_Node *tree, int node, int *count) {
    int i;
    if (tree[node].branch_type != LEAF) {
        for (i = 0; i < tree[node].num_branches; i++) {
            (*count)++;
        }
    }
}

```

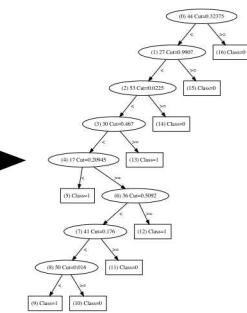
Learned Model



Test Data

CGINTX	CGINTY	SNR	...	PMIN
14	123	0.54	...	0.34

Learned Model



Classification with Weights

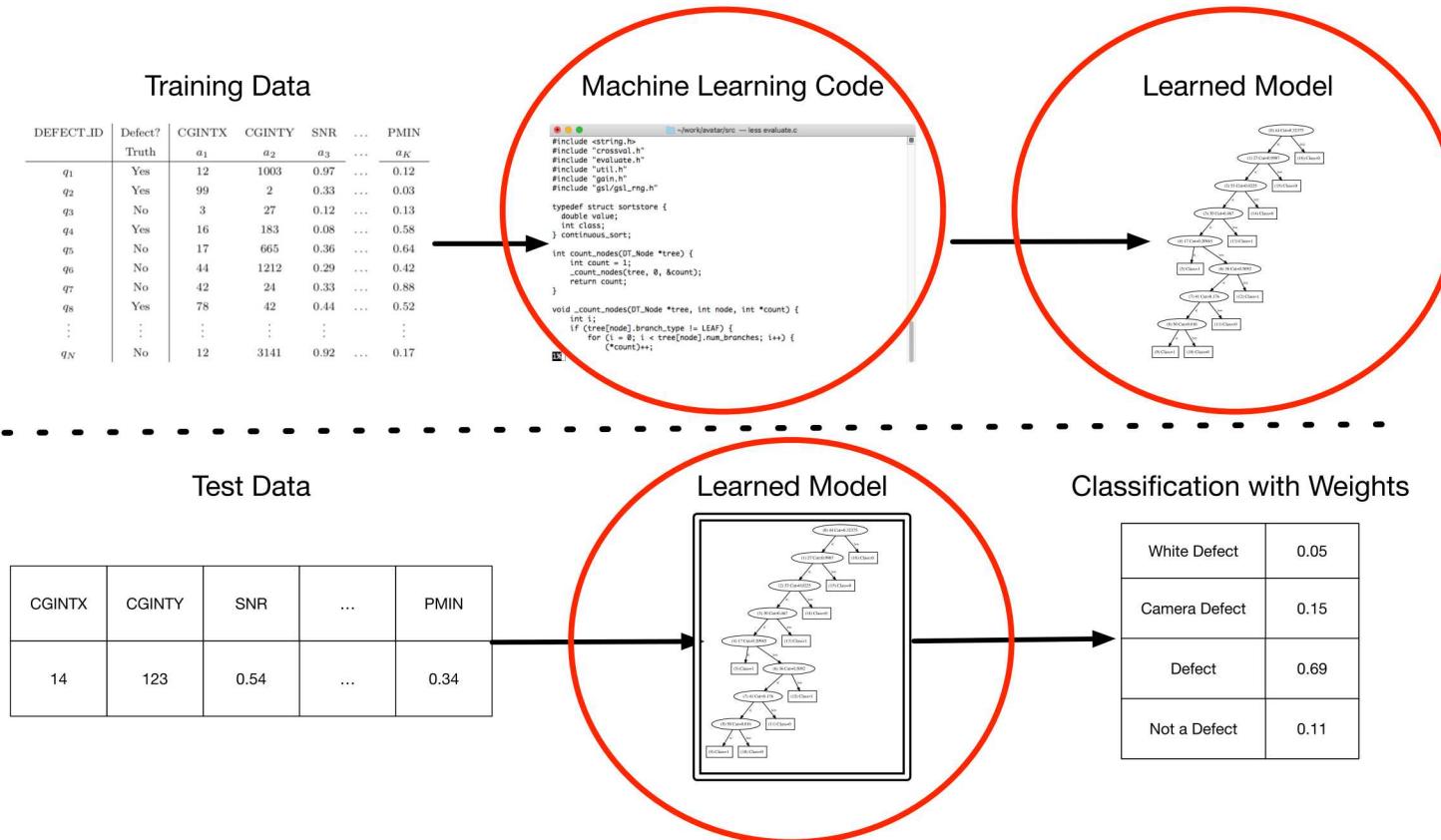
White Defect	0.05
Camera Defect	0.15
Defect	0.69
Not a Defect	0.11

Outline

- Components of a machine learning system
- A variety of training data vulnerabilities
 1. **Exfiltration via model parameters**
 2. Exfiltration via model labels
 3. Exploit inadvertent memorization
 4. Attribute inference: recovering training data
 5. Membership inference: confirming training data
 6. Model stealing: infer the model to better infer the training data
- What to do? A distressingly shallow set of ideas

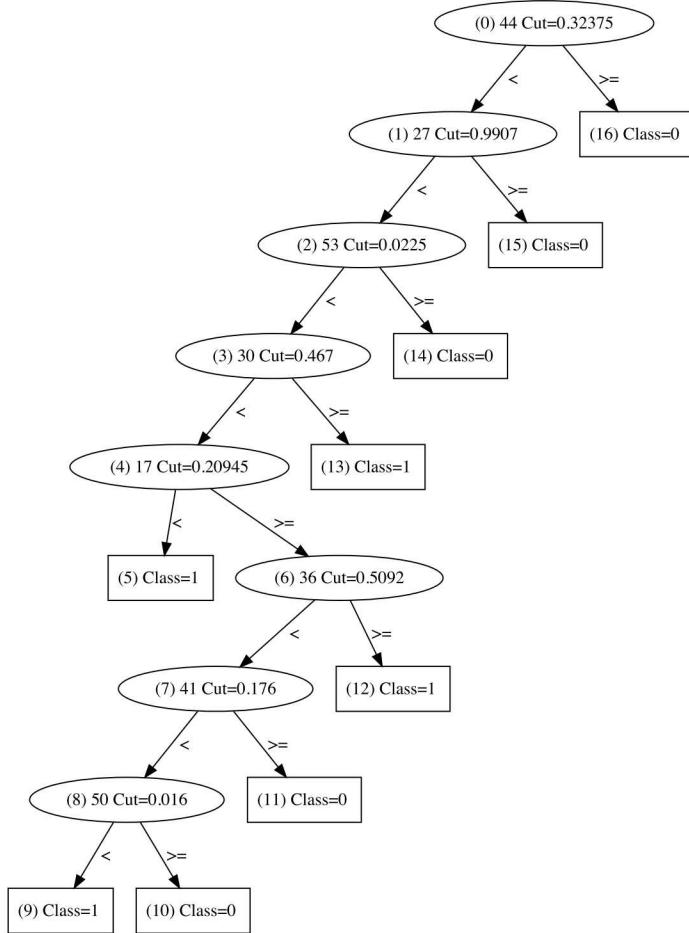
Exfiltration via model parameters

Attack: a code backdoor encoding training data in model parameters



Machine Learning Models That Remember Too Much[7]

A decision tree is a series of thresholds



SPLIT CONTINUOUS ATT# 44 < 0.323750
SPLIT CONTINUOUS ATT# 27 < 0.990700
SPLIT CONTINUOUS ATT# 53 < 0.022500
SPLIT CONTINUOUS ATT# 30 < 0.467000
SPLIT CONTINUOUS ATT# 17 < 0.209450
LEAF Class 1 Proportions 0 10
SPLIT CONTINUOUS ATT# 17 >= 0.209450
SPLIT CONTINUOUS ATT# 36 < 0.509200
SPLIT CONTINUOUS ATT# 41 < 0.176000
SPLIT CONTINUOUS ATT# 50 < 0.016000
LEAF Class 1 Proportions 2 11
SPLIT CONTINUOUS ATT# 50 >= 0.016000
LEAF Class 0 Proportions 10 3
SPLIT CONTINUOUS ATT# 41 >= 0.176000
LEAF Class 0 Proportions 22 0
SPLIT CONTINUOUS ATT# 36 >= 0.509200
LEAF Class 1 Proportions 1 9
SPLIT CONTINUOUS ATT# 30 >= 0.467000
LEAF Class 1 Proportions 2 72
SPLIT CONTINUOUS ATT# 53 >= 0.022500
LEAF Class 0 Proportions 16 1
SPLIT CONTINUOUS ATT# 27 >= 0.990700
LEAF Class 0 Proportions 17 1
SPLIT CONTINUOUS ATT# 44 >= 0.323750
LEAF Class 0 Proportions 30 1

Encode the training data as digits

DEFECT_ID	Defect?	CGINTX	CGINTY	SNR	...	PMIN
		a_1	a_2	a_3	...	a_K
q_1	Yes	12	1003	0.97	...	0.12
q_2	Yes	99	2	0.33	...	0.03
q_3	No	3	27	0.12	...	0.13
q_4	Yes	16	183	0.08	...	0.58
q_5	No	17	665	0.36	...	0.64
q_6	No	44	1212	0.29	...	0.42
q_7	No	42	24	0.33	...	0.88
q_8	Yes	78	42	0.44	...	0.52
\vdots	\vdots	\vdots	\vdots	\vdots	...	\vdots
q_N	No	12	3141	0.92	...	0.17

Compress,
Encrypt,
Serialize to Digits

9833, 6299, 3495, 4946,
3470, 0158, 2537, 2076,
1277, 3644, 9284, 4085,
4201, 4159, 8444, 7234, ...

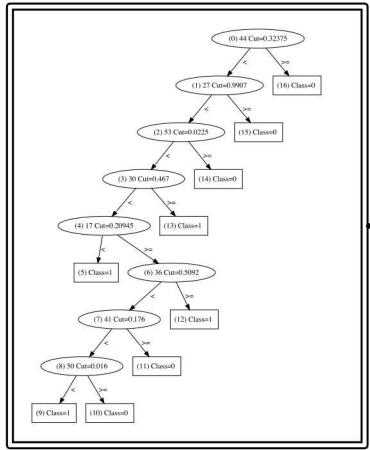
Hide the data in insignificant digits

9833, 6299, 3495, 4946, 3470, 0158, 2537, 2076, 1277, 3644, 9284, 4085, 4201, 4159, 8444, 7234, ...

SPLIT CONTINUOUS ATT# 44 < 0.323750
SPLIT CONTINUOUS ATT# 27 < 0.990700
SPLIT CONTINUOUS ATT# 53 < 0.022500
SPLIT CONTINUOUS ATT# 30 < 0.467000
SPLIT CONTINUOUS ATT# 17 < 0.209450
LEAF Class 1 Proportions 0 10
SPLIT CONTINUOUS ATT# 17 >= 0.209450
SPLIT CONTINUOUS ATT# 36 < 0.509200
SPLIT CONTINUOUS ATT# 41 < 0.176000
SPLIT CONTINUOUS ATT# 50 < 0.016000
LEAF Class 1 Proportions 2 11
SPLIT CONTINUOUS ATT# 50 >= 0.016000
LEAF Class 0 Proportions 10 3
SPLIT CONTINUOUS ATT# 41 >= 0.176000
LEAF Class 0 Proportions 22 0
SPLIT CONTINUOUS ATT# 36 >= 0.509200
LEAF Class 1 Proportions 1 9
SPLIT CONTINUOUS ATT# 30 >= 0.467000
LEAF Class 1 Proportions 2 72
SPLIT CONTINUOUS ATT# 53 >= 0.022500
LEAF Class 0 Proportions 16 1
SPLIT CONTINUOUS ATT# 27 >= 0.990700
LEAF Class 0 Proportions 17 1
SPLIT CONTINUOUS ATT# 44 >= 0.323750
LEAF Class 0 Proportions 30 1

SPLIT CONTINUOUS ATT# 44 < 0.329833
SPLIT CONTINUOUS ATT# 27 < 0.996299
SPLIT CONTINUOUS ATT# 53 < 0.023495
SPLIT CONTINUOUS ATT# 30 < 0.464946
SPLIT CONTINUOUS ATT# 17 < 0.203470
LEAF Class 1 Proportions 0 10
SPLIT CONTINUOUS ATT# 17 >= 0.200158
SPLIT CONTINUOUS ATT# 36 < 0.502537
SPLIT CONTINUOUS ATT# 41 < 0.172076
SPLIT CONTINUOUS ATT# 50 < 0.011277
LEAF Class 1 Proportions 2 11
SPLIT CONTINUOUS ATT# 50 >= 0.013644
LEAF Class 0 Proportions 10 3
SPLIT CONTINUOUS ATT# 41 >= 0.179284
LEAF Class 0 Proportions 22 0
SPLIT CONTINUOUS ATT# 36 >= 0.504085
LEAF Class 1 Proportions 1 9
SPLIT CONTINUOUS ATT# 30 >= 0.464201
LEAF Class 1 Proportions 2 72
SPLIT CONTINUOUS ATT# 53 >= 0.024159
LEAF Class 0 Proportions 16 1
SPLIT CONTINUOUS ATT# 27 >= 0.998444
LEAF Class 0 Proportions 17 1
SPLIT CONTINUOUS ATT# 44 >= 0.327234
LEAF Class 0 Proportions 30 1

Recover the data by white box inspection

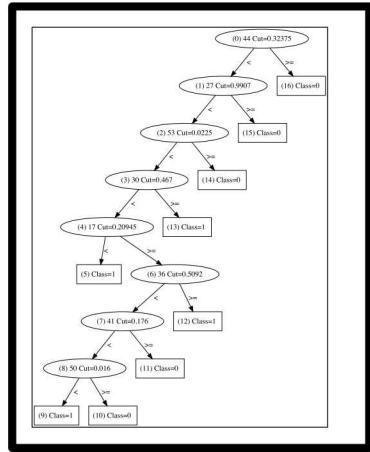


9833, 6299, 3495, 4946,
3470, 0158, 2537, 2076,
1277, 3644, 9284, 4085,
4201, 4159, 8444, 7234, ...

Concatenate,
Deserialize,
Decrypt,
Uncompress

DEFECT_ID	Defect?	CGINTX	CGINTY	SNR	...	PMIN
	Truth	a_1	a_2	a_3	...	a_K
q_1	Yes	12	1003	0.97	...	0.12
q_2	Yes	99	2	0.33	...	0.03
q_3	No	3	27	0.12	...	0.13
q_4	Yes	16	183	0.08	...	0.58
q_5	No	17	665	0.36	...	0.64
q_6	No	44	1212	0.29	...	0.42
q_7	No	42	24	0.33	...	0.88
q_8	Yes	78	42	0.44	...	0.52
:	:	:	:	:	...	:
q_N	No	12	3141	0.92	...	0.17

Block exfiltration by providing only a black box?



????, ????, ????, ????,
????, ????, ????, ????,
????, ????, ????, ????,
????, ????, ????, ????, ...

Concatenate,
Deserialize,
Decrypt,
Uncompress

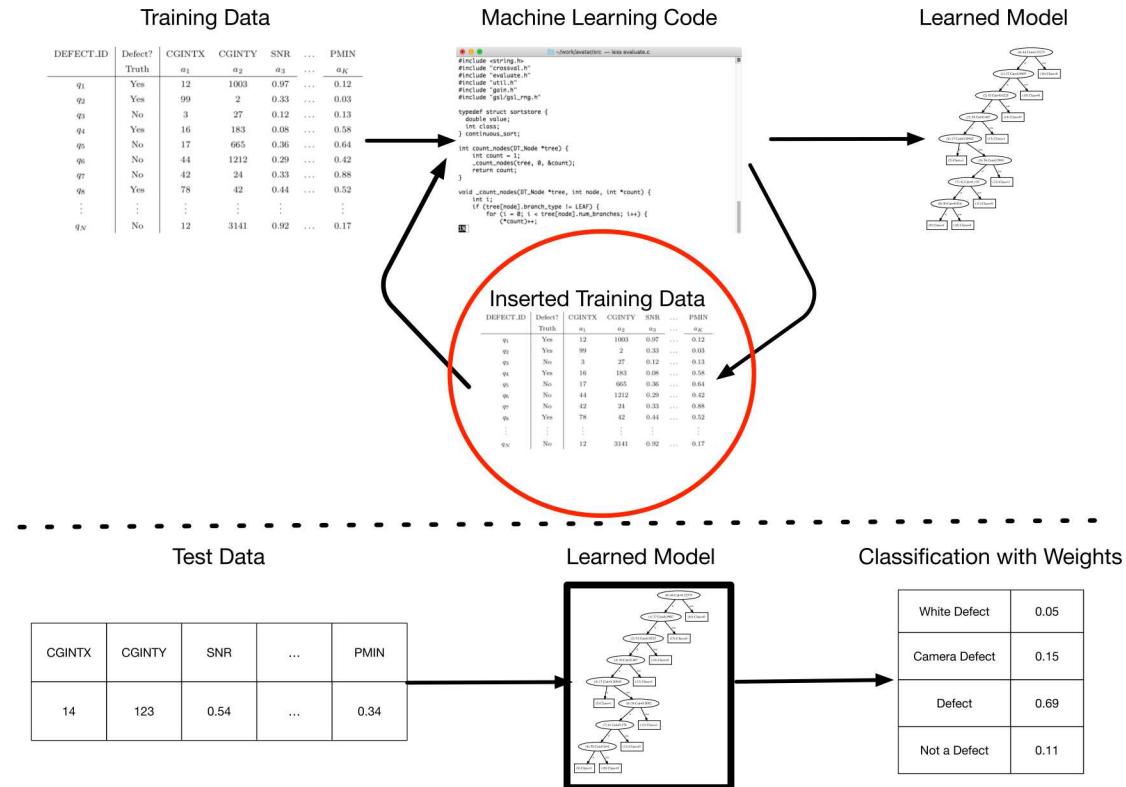
DEFECT_ID	Defect?	CGINTX	CGINTY	SNR	...	PMIN
	Truth	a_1	a_2	a_3	...	a_K
q_1	Yes	12	1003	0.97	...	0.12
q_2	Yes	99	2	0.33	...	0.03
q_3	No	3	27	0.12	...	0.13
q_4	Yes	16	183	0.08	...	0.58
q_5	No	17	665	0.36	...	0.64
q_6	No	44	1212	0.29	...	0.42
q_7	No	42	24	0.33	...	0.88
q_8	Yes	78	42	0.44	...	0.52
:	:	:	:	:	...	:
q_N	No	12	3141	0.92	...	0.17

Outline

- Components of a machine learning system
- A variety of training data vulnerabilities
 1. Exfiltration via model parameters
 2. **Exfiltration via model labels**
 3. Exploit inadvertent memorization
 4. Attribute inference: recovering training data
 5. Membership inference: confirming training data
 6. Model stealing: infer the model to better infer the training data
- What to do? A distressingly shallow set of ideas

Exfiltration via model labels

Attack: a code backdoor adding carefully designed synthetic training data



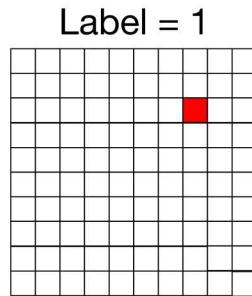
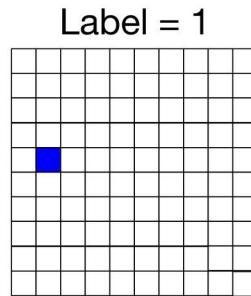
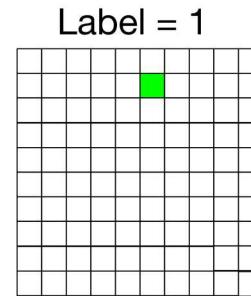
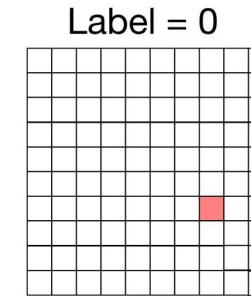
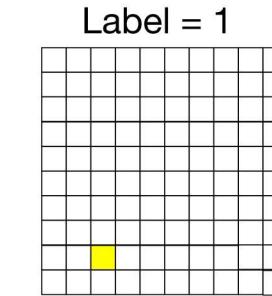
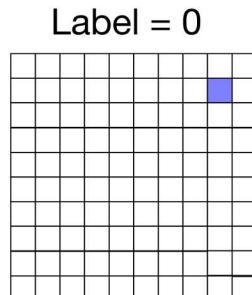
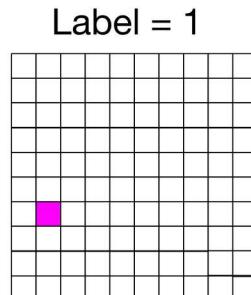
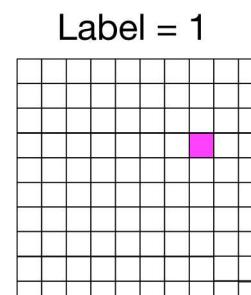
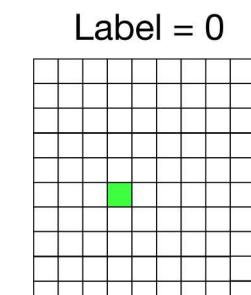
Machine Learning Models That Remember Too Much[7]

Exfiltration of a training image

Choose an image to exfiltrate.

Encode image pixel values as bits, say 1,1,1,0,1,0,1,1,0,....

Create pseudo-random training images to encode those bits as *labels*.



And so on ...

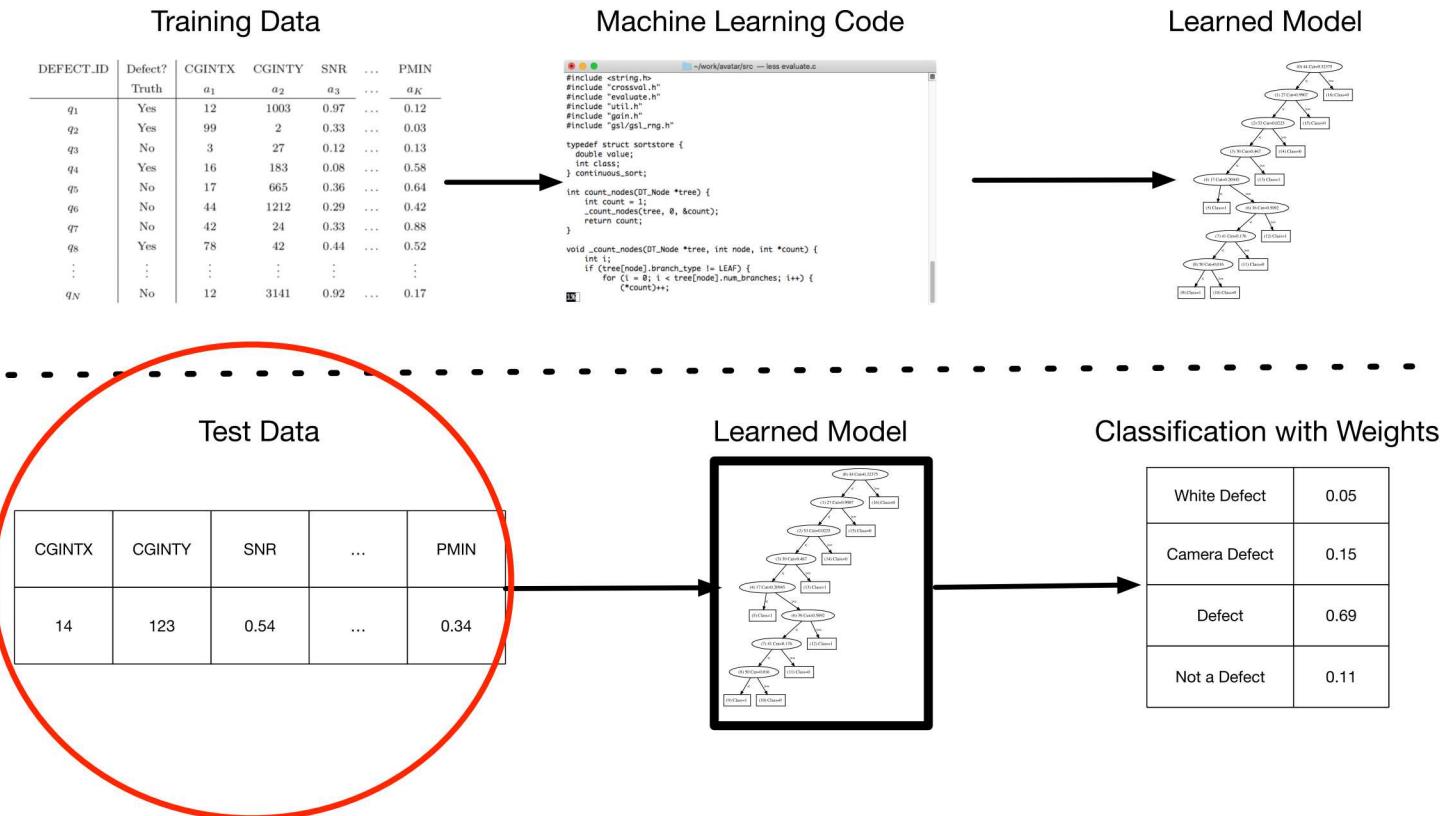
Model learns the labels, dutifully emits them later when probed.

Outline

- Components of a machine learning system
- A variety of training data vulnerabilities
 1. Exfiltration via model parameters
 2. Exfiltration via model labels
 3. **Exploit inadvertent memorization**
 4. Attribute inference: recovering training data
 5. Membership inference: confirming training data
 6. Model stealing: infer the model to better infer the training data
- What to do? A distressingly shallow set of ideas

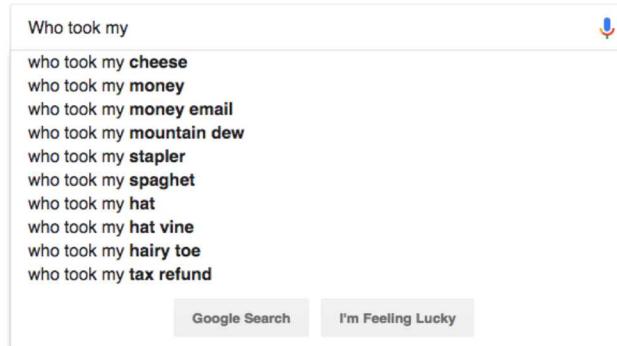
Exploit inadvertent memorization

Attack: exploit rare string memorization in text prediction

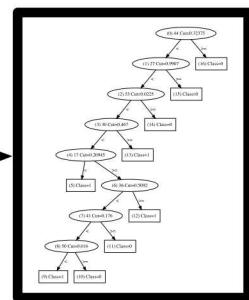


The Secret Sharer: Measuring unintended neural network memorization and extracting secrets [2]

ML to predict the next word in a string

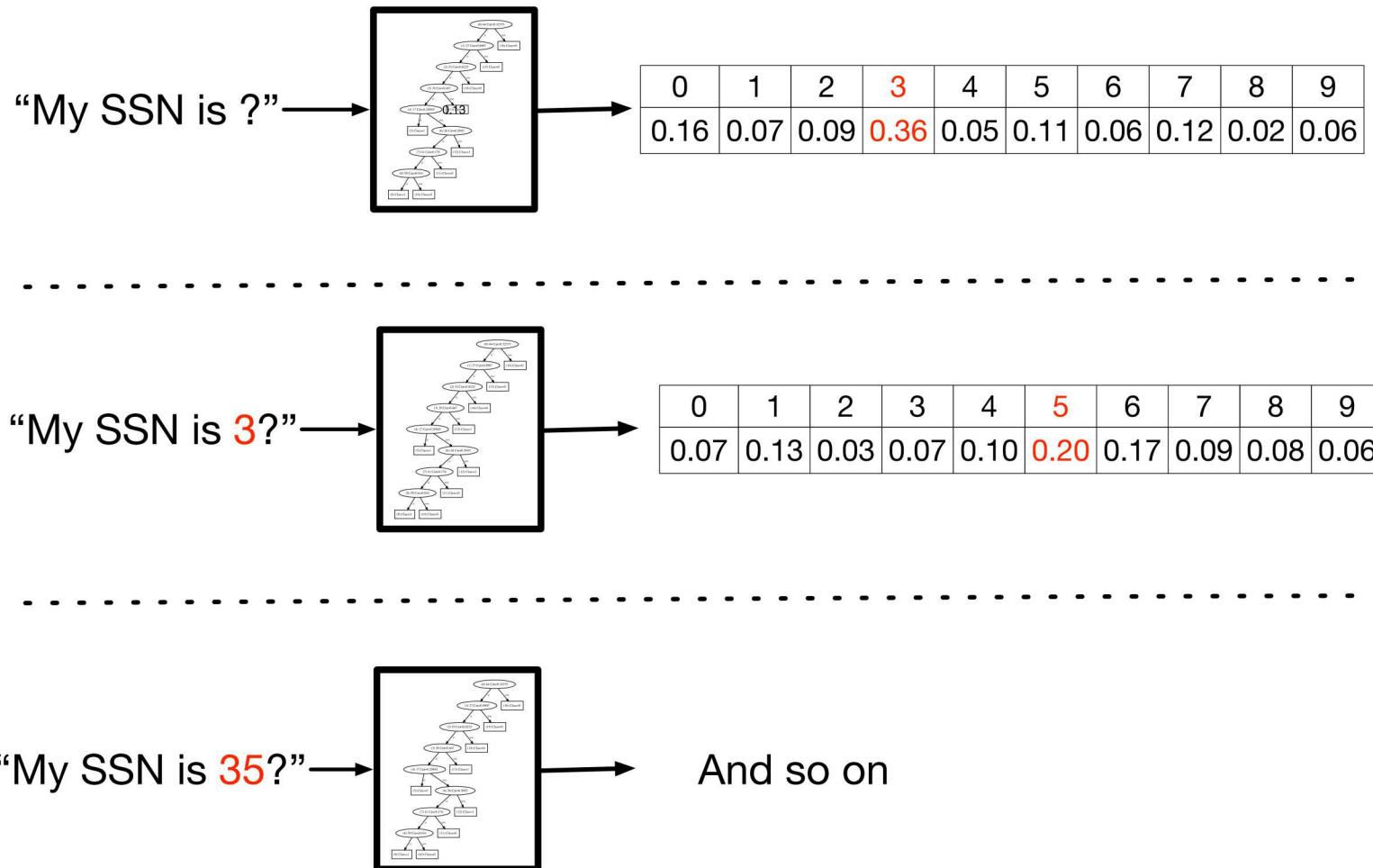


‘Who took my ?’ →



cheese	0.54
money	0.17
money email	0.12
mountain dew	0.05
stapler	0.03

Probe with promising templates

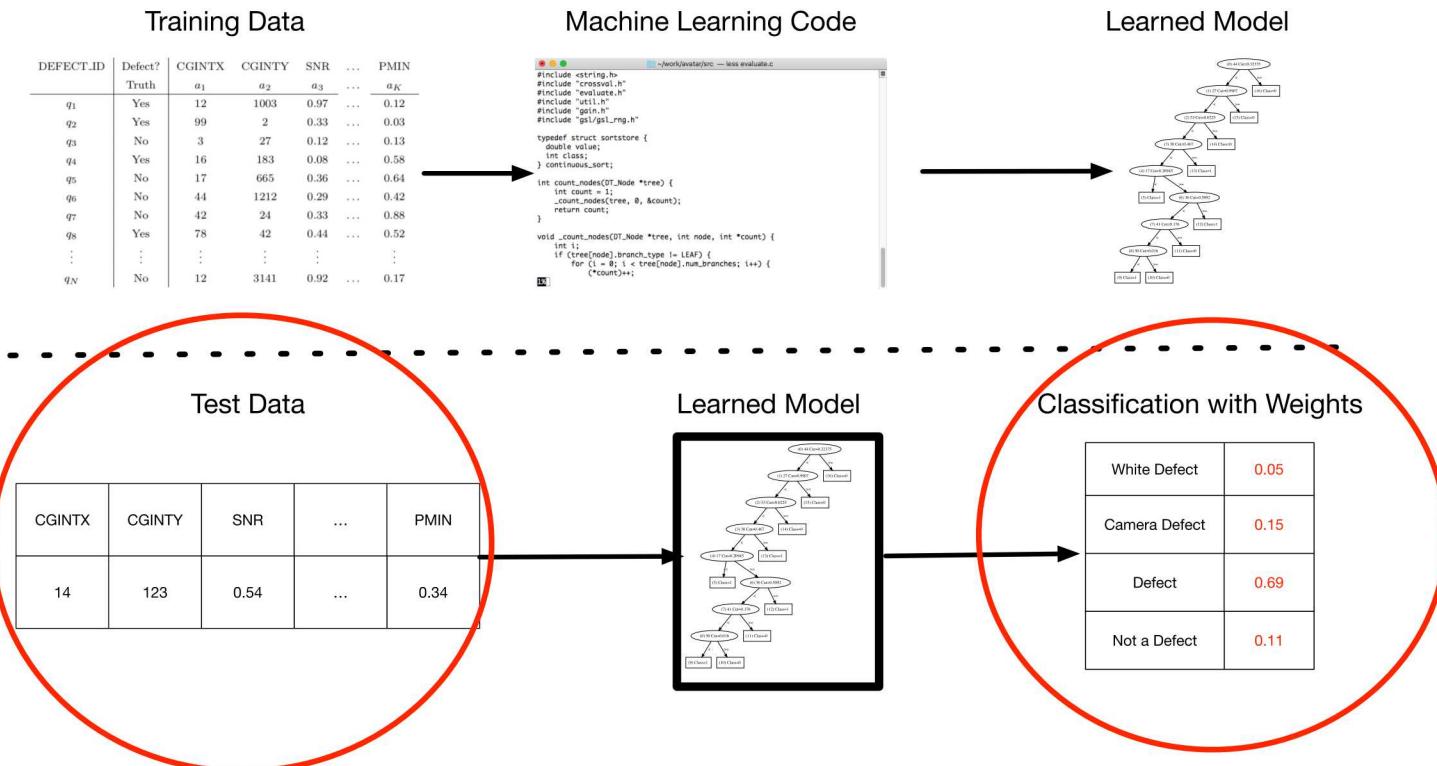


Outline

- Components of a machine learning system
- A variety of training data vulnerabilities
 1. Exfiltration via model parameters
 2. Exfiltration via model labels
 3. Exploit inadvertent memorization
 4. **Attribute inference: recovering training data**
 5. Membership inference: confirming training data
 6. Model stealing: infer the model to better infer the training data
- What to do? A distressingly shallow set of ideas

Attribute inference: recovering training data

Attack: exploit black box class label weights



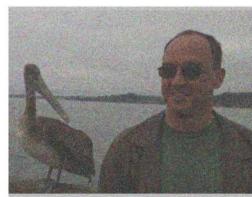
Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures[3]

Recovery of a Training Image

Biometric face recognition; attacker knows name, not face

Tammy	Mike	Jina	Cosmin	Jeremy	Laura	Philip	Katie	Connor	Ali
0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10

Tammy	Mike	Jina	Cosmin	Jeremy	Laura	Philip	Katie	Connor	Ali
0.05	0.10	0.05	0.10	0.10	0.05	0.30	0.05	0.10	0.10



Tammy	Mike	Jina	Cosmin	Jeremy	Laura	Philip	Katie	Connor	Ali
0.00	0.10	0.00	0.10	0.10	0.00	0.60	0.00	0.10	0.10

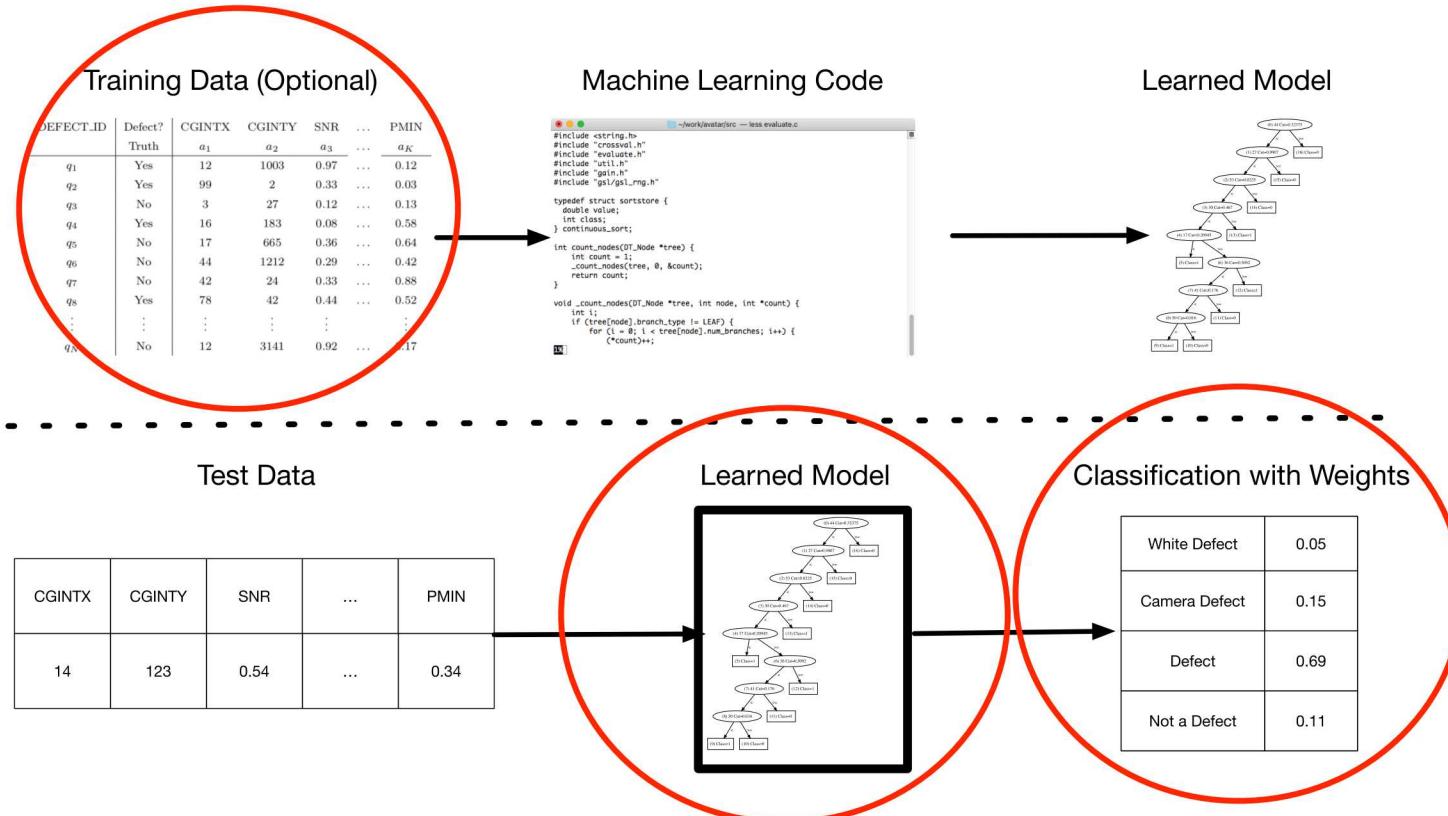
Tammy	Mike	Jina	Cosmin	Jeremy	Laura	Philip	Katie	Connor	Ali
0.00	0.00	0.00	0.05	0.00	0.00	0.85	0.00	0.10	0.00

Outline

- Components of a machine learning system
- A variety of training data vulnerabilities
 1. Exfiltration via model parameters
 2. Exfiltration via model labels
 3. Exploit inadvertent memorization
 4. Attribute inference: recovering training data
 5. **Membership inference: confirming training data**
 6. Model stealing: infer the model to better infer the training data
- What to do? A distressingly shallow set of ideas

Membership inference: confirming training data

Attack: build “shadow models” to *learn* to detect training data



Membership inference Attacks Against Machine Learning Models[6]

Step 1: Adversary builds a surrogate model

Acquire training data, split in two, use both to build a surrogate model

Training Data: D_OTHER

DEFECT_ID	Defect?	CGINTX	CGINTY	SNR	...	PMIN
		a_1	a_2	a_3	...	a_K
q_1	Yes	12	1003	0.97	...	0.12
q_2	Yes	99	2	0.33	...	0.03
q_3	No	3	27	0.12	...	0.13
q_4	Yes	16	183	0.08	...	0.58
q_5	No	17	665	0.36	...	0.64
q_6	No	44	1212	0.29	...	0.42
q_7	No	42	24	0.33	...	0.88
q_8	Yes	78	42	0.44	...	0.52
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
q_N	No	12	3141	0.92	...	0.17

Training Data: D_IN

DEFECT.ID	Defect?	CGINTX	CGINTY	SNR	...	PMIN
	Truth	a_1	a_2	a_3	...	a_K
q_1	Yes	12	1003	0.97	...	0.12
q_2	Yes	99	2	0.33	...	0.03
q_3	No	3	27	0.12	...	0.13
q_4	Yes	16	183	0.08	...	0.58
q_5	No	17	665	0.36	...	0.64
q_6	No	44	1212	0.29	...	0.42
q_7	No	42	24	0.33	...	0.88
q_8	Yes	78	42	0.44	...	0.52
\vdots	\vdots	\vdots	\vdots	\vdots	...	\vdots
q_N	No	12	3141	0.92	...	0.17

Machine Learning Code

```

#include <string.h>
#include <crossval.h>
#include <evaluate.h>
#include <util.h>
#include <gain.h>
#include <gs1/gsl_rng.h>

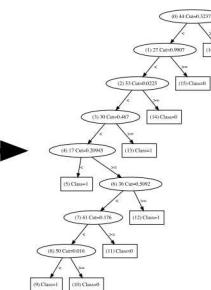
typedef struct sortstore {
    double value;
    int class;
} continuous_sort;

int count_nodes(DT_Node *tree) {
    int count = 1;
    _count_nodes(tree, 0, &count);
    return count;
}

void count_nodes(DT_Node *tree, int node, int *count) {
    if (tree[node].branch_type != LEAF) {
        for (int i = 0; i < tree[node].num_branches; i++) {
            (*count)++;
    }
}

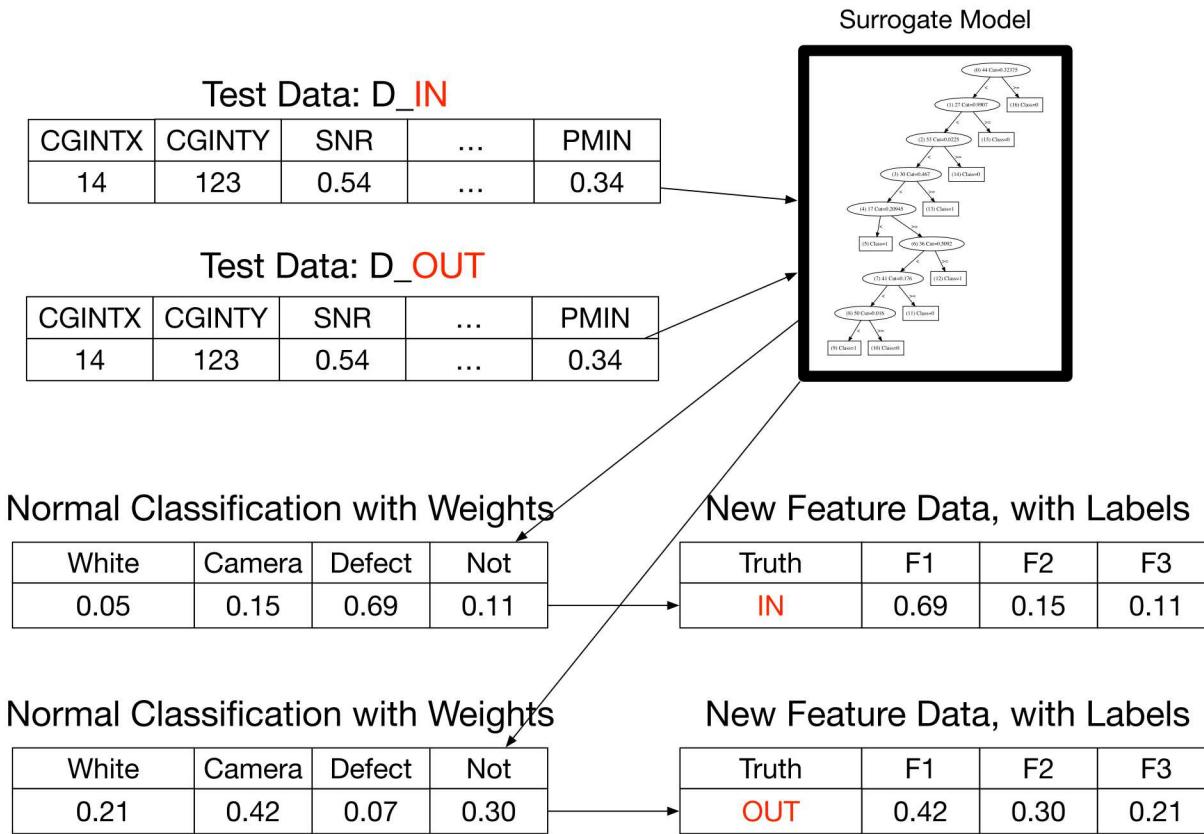
```

Surrogate Model

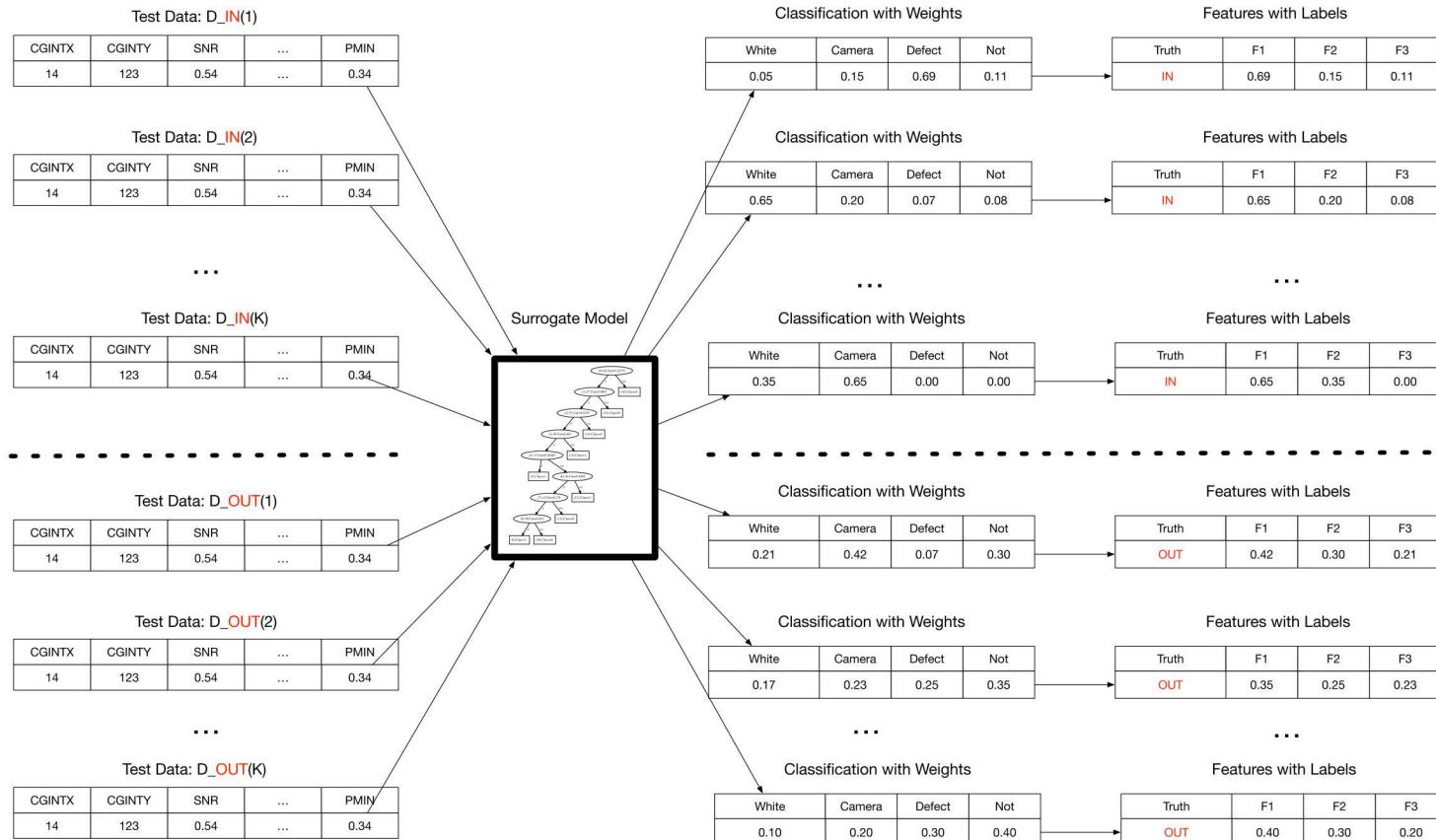


Step 2: Use surrogate model as a feature generator

Newly created labeled data has bizarre features and “IN/OUT” labels



Step 3: Generate *lots* of IN/OUT training data



Step 4: Use IN/OUT date to build *membership* model

Membership Features and Labels

Truth	F1	F2	F3
IN	0.69	0.15	0.11
IN	0.65	0.20	0.08
IN	0.65	0.35	0.00
IN
OUT	0.42	0.30	0.21
OUT	0.35	0.25	0.23
OUT	0.40	0.30	0.20
OUT

Machine Learning Code

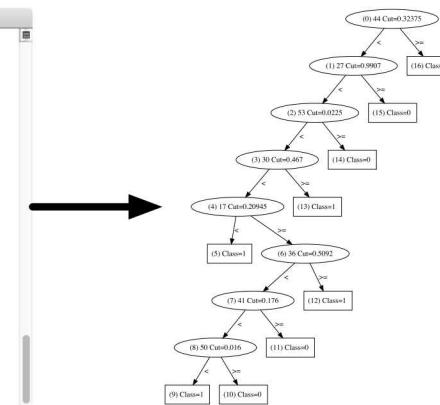
```
#include <string.h>
#include "crossval.h"
#include "evaluate.h"
#include "util.h"
#include "gain.h"
#include "gsl/gsl_rng.h"

typedef struct sortstore {
    double value;
    int class;
} continuous_sort;

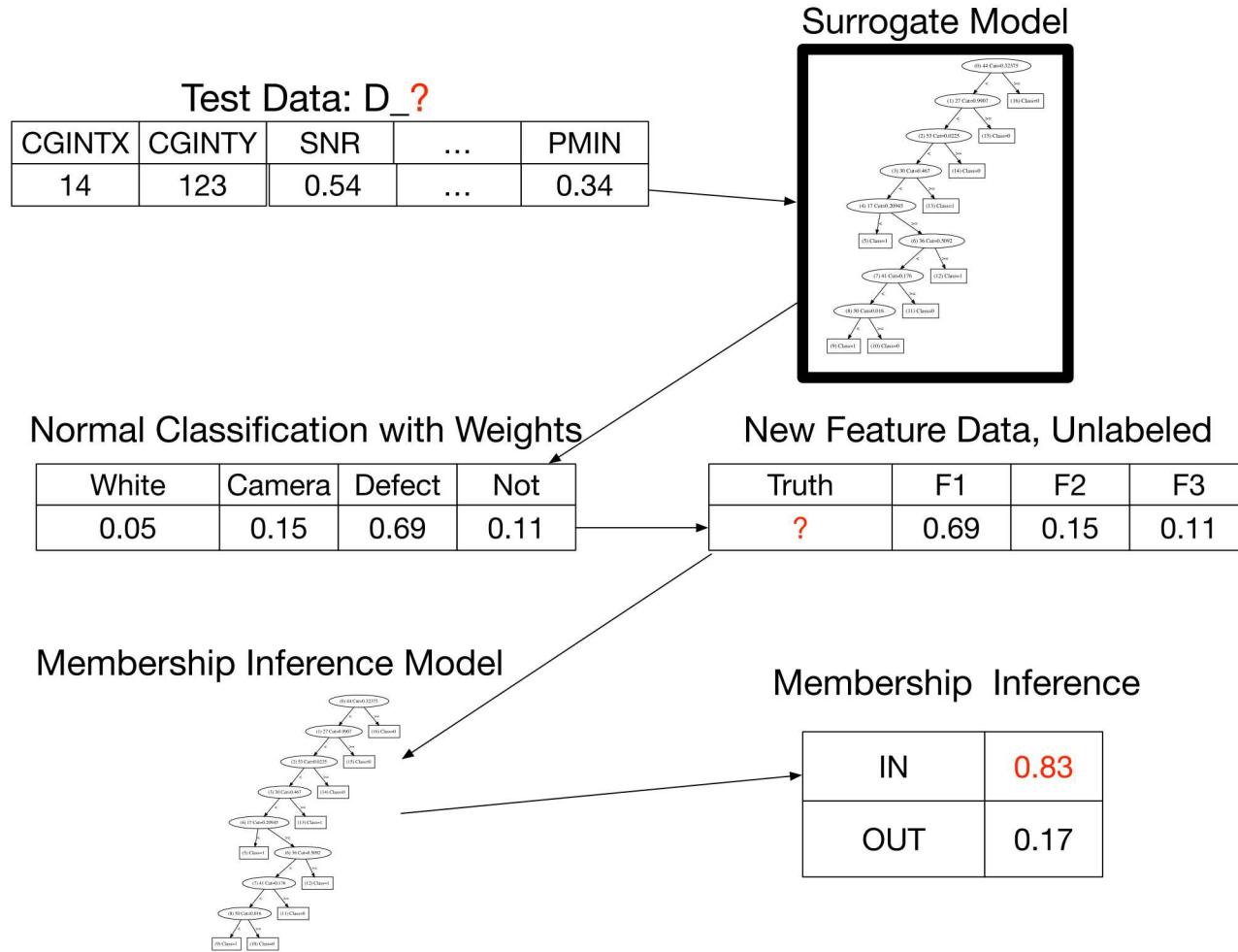
int count_nodes(DT_Node *tree) {
    int count = 1;
    _count_nodes(tree, 0, &count);
    return count;
}

void _count_nodes(DT_Node *tree, int node, int *count) {
    int i;
    if (tree[node].branch_type != LEAF) {
        for (i = 0; i < tree[node].num_branches; i++) {
            (*count)++;
    }
}
```

Membership Inference Model



Step 5: Use membership model

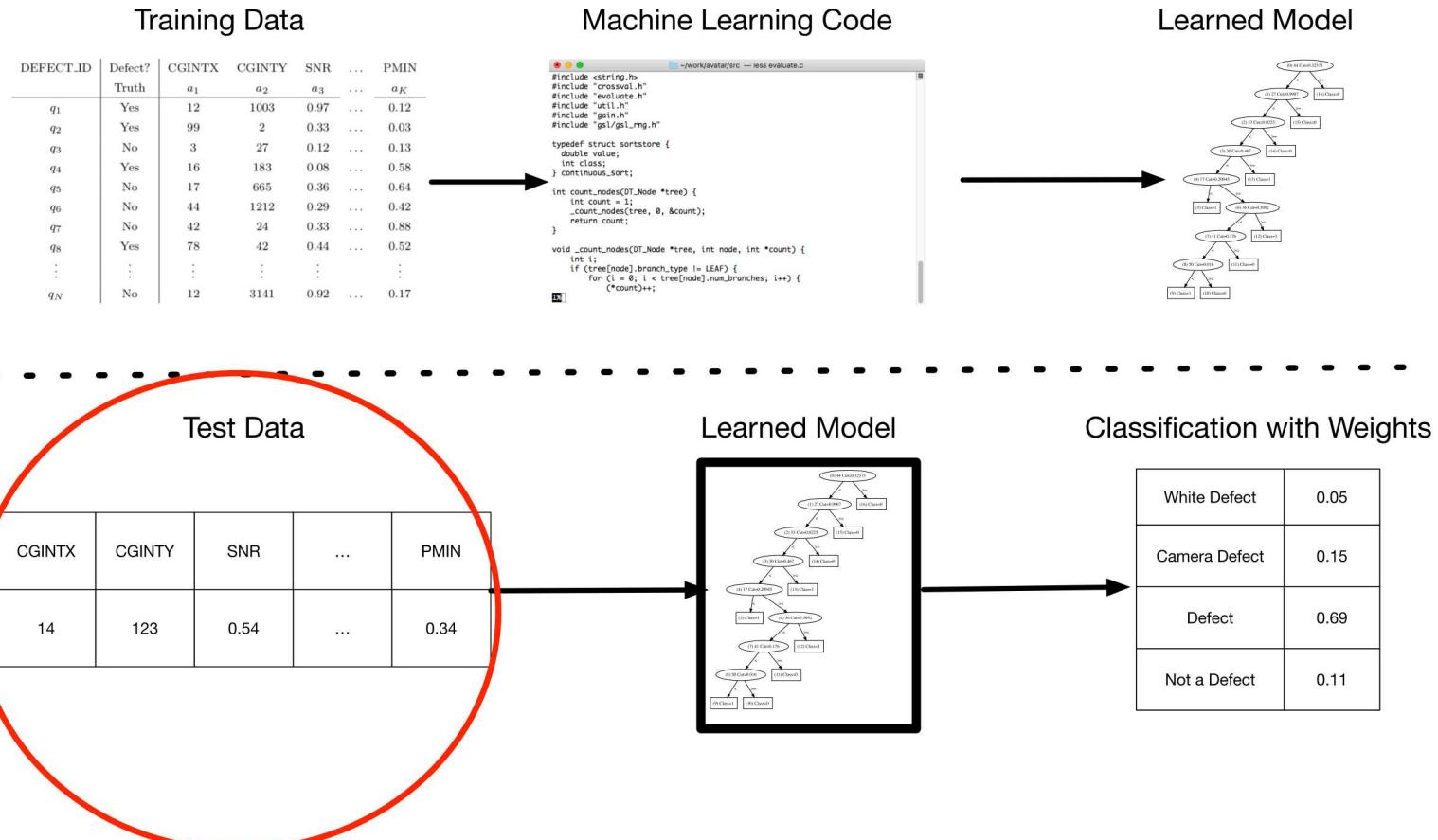


Outline

- Components of a machine learning system
- A variety of training data vulnerabilities
 1. Exfiltration via model parameters
 2. Exfiltration via model labels
 3. Exploit inadvertent memorization
 4. Attribute inference: recovering training data
 5. Membership inference: confirming training data
 6. **Model stealing: infer the model to better infer the training data**
- What to do? A distressingly shallow set of ideas

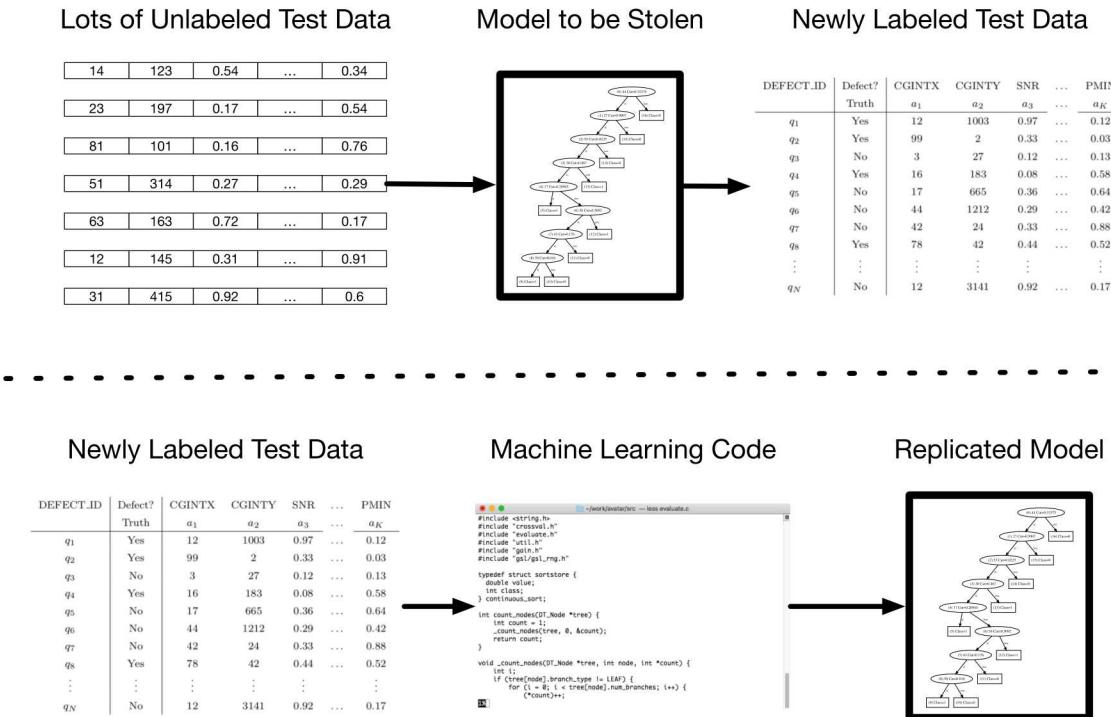
Model stealing

Attack: probe the model with test data, deduce its structure



Replicating a black box model

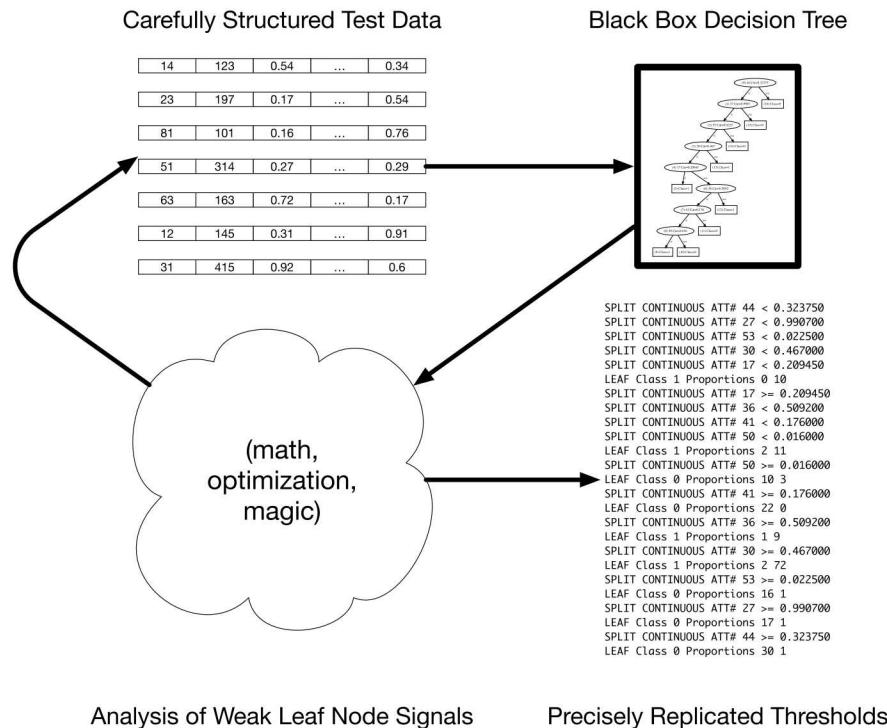
Attack: use the model as a cheap labeler, build a new model



Practical Black-Box Attacks Against Machine Learning[4], Stealing Machine Learning Models via Prediction APIs[8]

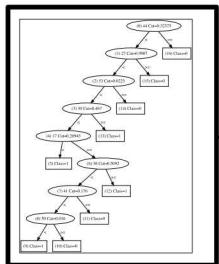
Precisely reproducing a model's parameters

Attack: use black box response discontinuities to detect thresholds



(Work in progress at Sandia)

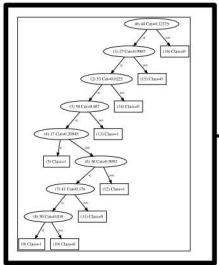
Therefore: can't block exfiltration with a black box



????, ????, ????, ????,
 ????, ????, ????, ????,
 ????, ????, ????, ????,
 ????, ????, ????, ????, ...

Concatenate,
 Deserialize,
 Decrypt,
 Uncompress

DEFECT_ID	Defect?	CGINTX	CGINTY	SNR	...	PMIN
		Truth	a_1	a_2	a_3	...
q_1	Yes	12	1003	0.97	...	0.12
q_2	Yes	99	2	0.33	...	0.03
q_3	No	3	27	0.12	...	0.13
q_4	Yes	16	183	0.08	...	0.58
q_5	No	17	665	0.36	...	0.64
q_6	No	44	1212	0.29	...	0.42
q_7	No	42	24	0.33	...	0.88
q_8	Yes	78	42	0.44	...	0.52
...
q_N	No	12	3141	0.92	...	0.17



9833, 6299, 3495, 4946,
 3470, 0158, 2537, 2076,
 1277, 3644, 9284, 4085,
 4201, 4159, 8444, 7234, ...

Concatenate,
 Deserialize,
 Decrypt,
 Uncompress

DEFECT_ID	Defect?	CGINTX	CGINTY	SNR	...	PMIN
		Truth	a_1	a_2	a_3	...
q_1	Yes	12	1003	0.97	...	0.12
q_2	Yes	99	2	0.33	...	0.03
q_3	No	3	27	0.12	...	0.13
q_4	Yes	16	183	0.08	...	0.58
q_5	No	17	665	0.36	...	0.64
q_6	No	44	1212	0.29	...	0.42
q_7	No	42	24	0.33	...	0.88
q_8	Yes	78	42	0.44	...	0.52
...
q_N	No	12	3141	0.92	...	0.17

Outline

- Components of a machine learning system
- A variety of training data vulnerabilities
 1. Exfiltration via model parameters
 2. Exfiltration via model labels
 3. Exploit inadvertent memorization
 4. Attribute inference: recovering training data
 5. Membership inference: confirming training data
 6. Model stealing: infer the model to better infer the training data
- **What to do? A distressingly shallow set of ideas**

What To Do? Some Basic Hygiene

- Know about differential privacy[1].
- Know about PATE[5] and DP-SGD[1].
- Be wary of code *you* didn't write.
- Don't use pre-trained NN architectures that *you* didn't train.
- Use only the parameters, and parameter precision, that you must.
Don't use generic NN architectures as is, even untrained: adjust the architecture carefully.
- Expose no more model information than you have to.
Think carefully about emitting anything more than a classification.

References

- [1] ABADI, M., CHU, A., GOODFELLOW, I., McMAHAN, H. B., MIRONOV, I., TALWAR, K., AND ZHANG, L. Deep learning with differential privacy. In *Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security* (New York, NY, USA, 2016), CCS '16, ACM, pp. 308–318.
- [2] CARLINI, N., LIU, C., KOS, J., ERLINGSSON, U., AND SONG, D. The Secret Sharer: Measuring unintended neural network memorization and extracting secrets. *Tech. Rep. arXiv:1802.08232, arXiv*, 2018.
- [3] FREDRIKSON, M., JHA, S., AND RISTENPART, T. Model inversion attacks that exploit confidence information and basic countermeasures. In *Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security* (2015), pp. 1322–1333.
- [4] PAPERNOT, N., McDANIEL, P., GOODFELLOW, I., JHA, S., CELIK, Z. B., AND SWAMI, A. Practical black-box attacks against machine learning. In *Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security* (New York, NY, USA, 2017), ASIA CCS '17, ACM, pp. 506–519.
- [5] PAPERNOT, N., SONG, S., MIRONOV, I., RAGHUNATHAN, A., TALWAR, K., AND LFAR ERLINGSSON. Scalable private learning with PATE. In *International Conference on Learning Representations (ICLR)* (2018).
- [6] SHOKRI, R., STRONATI, M., SONG, C., AND SHMATIKOV, V. Membership inference attacks against machine learning models. In *IEEE Symposium on Security and Privacy* (2017).
- [7] SONG, C., RISTENPART, T., AND SHMATIKOV, V. Machine learning models that remember too much. In *ACM SIGSAC Conference on Computer and Communications Security* (2017), pp. 587–601.
- [8] TRAMÈR, F., ZHANG, F., JUELS, A., REITER, M. K., AND RISTENPART, T. Stealing machine learning models via prediction apis. *CoRR abs/1609.02943* (2016).