This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 1638C
An Overview of Training Data Security Vulnerabilities:

Machine Learning is a Leaky Black Box

Philip Kegelmeyer, Jeremy Wendt, Cosmin Safta

Sandia National Laboratories, Livermore, CA

- Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology —
LA m‘, and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for @{“:g{e,gg‘,,ies
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Al Forum, February 21-22, 2019

Outline I

e Components of a machine learning system
e A variety of training data vulnerabilities
1. Exfiltration via model parameters
. Exfiltration via model labels
. Exploit inadvertent memorization
. Attribute inference: recovering training data

. Membership inference: confirming training data

2

3

4

5

6. Model stealing: infer the model to better infer the training data
o W

hat to do? A distressingly shallow set of ideas

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 2 of 35

Training and Testing a Machine Learning Model

Training Data Machine Learning Code Learned Model

DEFECT.ID | Defect? | CGINTX CGINTY SNR s PMIN eee Asfwockimata/ars Slessayaluatag
#include <string.h>
Truth ay as az . ag #include "crossval.h”
#include "evaluate.h"
Yes 12 1003 0.97 . 0.12 #include "util.h"
#include "gain.h"
Yes 99 [0.33 . 0.03 #include "gsl/gsl_rng.h"

No 3 27 0.12 0.13 typedef struct sortstore {
) ’ - e o double value;

Yes 16 0.08 ... 0.58 InE class;

} continuous_sort;
17 0.36 0.64 .

int count_nodes(DT_Node *tree) {
int count = 1;
_count_nodes(tree, @, &count);
return count;

14 0.29 3 0.42

42 p 033 .. 0.88

78 Y 0.44 — 0.52 void _count_nodes(DT_Node *tree, int node, int *count) {
if (;;ee[node]mmnch,type 1= LEAF) {

for (i = 0; i < tree[node].num_branches; i++) {
(*count)++;

Test Data Classification with Weights

White Defect

CGINTX - = Camera Defect

Defect

Not a Defect

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 3 of 35

Outline I

e Components of a machine learning system
e A variety of training data vulnerabilities
1. Exfiltration via model parameters
. Exfiltration via model labels
. Exploit inadvertent memorization
. Attribute inference: recovering training data

. Membership inference: confirming training data

2

3

4

5

6. Model stealing: infer the model to better infer the training data
o W

hat to do? A distressingly shallow set of ideas

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 4 of 35

Exfiltration via model parameters

Attack: a code backdoor encoding training data in model parameters

Training Data Machine Learning Code Learned Model

DEFECT.D | Defect? | CGINTX CGINTY ~iworkjavatarfssc — less evaluate.c

12 1003
99
3
16
17
14
12

2223525 §F|2

1
Z
i
1
s
q
7
i

Z

Test Data Classification with Weights

White Defect

CGINTX .- Camera Defect

Defect

Not a Defect

Machine Learning Models That Remember Too Much[7]

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 5 of 35

A decision tree is a series of thresholds'

< >=
<

< =1
<

< >=

‘ (9) Class=1 ‘ ‘ (10) Class=0 ‘

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019

SPLIT CONTINUOUS ATT# 44
SPLIT CONTINUOUS ATT# 27
SPLIT CONTINUOUS ATT# 53
SPLIT CONTINUOUS ATT# 30
SPLIT CONTINUOUS ATT# 17
LEAF Class 1 Proportions
SPLIT CONTINUOUS ATT# 17
SPLIT CONTINUOUS ATT# 36
SPLIT CONTINUOUS ATT# 41
SPLIT CONTINUOUS ATT# 50
LEAF Class 1 Proportions
SPLIT CONTINUOUS ATT# 50
LEAF Class @ Proportions
SPLIT CONTINUOUS ATT# 41
LEAF Class @ Proportions
SPLIT CONTINUOUS ATT# 36
LEAF Class 1 Proportions
SPLIT CONTINUOUS ATT# 30
LEAF Class 1 Proportions
SPLIT CONTINUOUS ATT# 53
LEAF Class @ Proportions
SPLIT CONTINUOUS ATT# 27
LEAF Class @ Proportions
SPLIT CONTINUOUS ATT# 44
LEAF Class @ Proportions

0.323750
0.990700
0.022500
0.467000
0.209450
10

>= 0.209450
< 0.509200
< 0.176000
< 0.016000
2 11

>= 0.016000
10 3

>= 0.176000
22 0

>= 0.509200
19

>= 0.467000
2 72

>= 0.022500
lo 1

>= 0.990700
17 1

>= 0.323750
30 1

Page 6 of 35

‘Encode the training data as digits'

DEFECT.ID | Defect? | CGINTX CGINTY SNR
Truth a as as
Yes 12 1003 0.97
Yes 99 2 0.33
3 27 0.12
16 183 0.08
17 665 0.36
44 1212 0.29
42 24 0.33
78 42 0.44

9833, 6299, 3495, 4946,
3470, 0158, 2537, 2076,
1277, 3644, 9284, 4085,
4201, 4159, 8444, 7234, ...

Compress,
Encrypt,
Serialize to Digits

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 7 of 35

Hide the data in insignificant digits

9833, 6299, 3495, 4946, 3470, 0158, 2537, 2076, 1277, 3644, 9284, 4085, 4201, 4159, 8444, 7234, ...

SPLIT CONTINUOUS ATT# 44
SPLIT CONTINUOUS ATT# 27
SPLIT CONTINUOUS ATT# 53
SPLIT CONTINUOUS ATT# 30
SPLIT CONTINUOUS ATT# 17
LEAF Class 1 Proportions
SPLIT CONTINUOUS ATT# 17
SPLIT CONTINUOUS ATT# 36
SPLIT CONTINUOUS ATT# 41
SPLIT CONTINUOUS ATT# 50
LEAF Class 1 Proportions
SPLIT CONTINUOUS ATT# 50
LEAF Class @ Proportions
SPLIT CONTINUOUS ATT# 41
LEAF Class @ Proportions
SPLIT CONTINUOUS ATT# 36
LEAF Class 1 Proportions
SPLIT CONTINUOUS ATT# 30
LEAF Class 1 Proportions
SPLIT CONTINUOUS ATT# 53
LEAF Class @ Proportions
SPLIT CONTINUOUS ATT# 27
LEAF Class @ Proportions
SPLIT CONTINUOUS ATT# 44
LEAF Class @ Proportions

.323750
.990700
.022500
.467000
.209450
0
>= 0.209450
< 0.509200
< 0.176000
< 0.016000
2 11
>= 0.016000
10 3
>= 0.176000
22 0
>= 0.509200
19
>= 0.467000
2 72
>= 0.022500
16 1
0.990700
17 1
0.323750
30 1

0
0
0
0
0
1

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019

SPLIT CONTINUOUS ATT# 44 < 0.329833
SPLIT CONTINUOUS ATT# 27 < ©0.996299
SPLIT CONTINUOUS ATT# 53 < 0.023495
SPLIT CONTINUOUS ATT# 30 < 0.464946
SPLIT CONTINUOUS ATT# 17 < 0.203470
LEAF Class 1 Proportions @ 10
SPLIT CONTINUOUS ATT# 17 >= 0.200158
SPLIT CONTINUOUS ATT# 36 < 0.502537
SPLIT CONTINUOUS ATT# 41 < 0.172076
SPLIT CONTINUOUS ATT# 50 < 0.011277
LEAF Class 1 Proportions 2 11
SPLIT CONTINUOUS ATT# 50 >= 0.013644
LEAF Class @ Proportions 10 3
SPLIT CONTINUOUS ATT# 41 >= 0.179284
LEAF Class @ Proportions 22 0
SPLIT CONTINUOUS ATT# 36 >= 0.504085
LEAF Class 1 Proportions 1 9
SPLIT CONTINUOUS ATT# 30 >= 0.464201
LEAF Class 1 Proportions 2 72
SPLIT CONTINUOUS ATT# 53 >= 0.024159
LEAF Class @ Proportions 16 1
SPLIT CONTINUOUS ATT# 27 >= 0.998444
LEAF Class @ Proportions 17 1
SPLIT CONTINUOUS ATT# 44 >= 0.327234
LEAF Class @ Proportions 30 1

Page 8 of 35

‘Recover the data by white box inspection'

9833, 6299, 3495, 4946,
, 3470, 0158, 2537, 2076,

Concatenate,
Deserialize,
Decrypt,
Uncompress

Kegelmeyer (wpk@sandia.gov), AIF, February,

2019

1277, 3644, 9284, 4085,
4201, 4159, 8444, 7234, ...

DEFECT.D | Defect? | CGINTX CGINTY SNR

Truth ai as as

Yes 12 1003 0.97
Yes 99 2 0.33
No 3 27 0.12
Yes 16 0.08
No 17 0.36
No 44 0.29
No 42 2 0.33
Yes 78 4: 0.44

Page 9 of 35

Block exfiltration by providing only a black bOX?I

79797, 7007°, 7977, 7777,

79797, 7707°, 7977, 7777,
>????, ?9797, 7777, 7777,

997,770, 7977,7777, ...

DEFECT.ID | Defect? | CGINTX CGINTY SNR

Truth ay as as
Yes 12 1003 0.97
Yes 99 2 0.33

Concatenate, | . \ v o
Deserialize, Yf‘s 16 183 0.08

17 665 0.36

Decrypt’ 44 1212 0.29
Uncompress d Yo | a2 u 033

78 42 0.44

0.92

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 10 of 35

Outline I

e Components of a machine learning system
e A variety of training data vulnerabilities
1. Exfiltration via model parameters
. Exfiltration via model labels
. Exploit inadvertent memorization
. Attribute inference: recovering training data

. Membership inference: confirming training data

2

3

4

5

6. Model stealing: infer the model to better infer the training data
o W

hat to do? A distressingly shallow set of ideas

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 11 of 35

‘Exﬁltration via model labels'

Attack: a code backdoor adding carefully designed synthetic training data

Training Data Machine Learning Code

Test Data

CGINTX CGINTY

Learned Model

Classification with Weights

White Defect

0.05

Camera Defect

0.15

14 123

Machine Learning Models That Remember

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019

Defect

0.69

0.1

Too Much|[7]

Page 12 of 35

‘Exﬁltration of a training image'

Choose an image to exfiltrate.

Encode image pixel values as bits, say 1,1,1,0,1,0,1,1,0,....
Create pseudo-random training images to encode those bits as labels.

Label = 1 Label = 1 Label = 1 Label =0 Label = 1

Label =0 Label =1 Label = 1 Label =0

And soon ...

Model learns the labels, dutifully emits them later when probed.

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 13 of 35

Outline I

e Components of a machine learning system
e A variety of training data vulnerabilities
1. Exfiltration via model parameters
. Exfiltration via model labels
. Exploit inadvertent memorization
. Attribute inference: recovering training data

. Membership inference: confirming training data

2

3

4

5

6. Model stealing: infer the model to better infer the training data
o W

hat to do? A distressingly shallow set of ideas

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 14 of 35

Exploit inadvertent memorization

Attack: exploit rare string memorization in text prediction

Training Data Machine Learning Code Learned Model

°

DEFECT.ID | Defect? | CGINTX CGINTY

Truth a a
12 1003

an

g2 99
a 3
m 16
a 17

96
a7
7

4N

Test Data Classification with Weights

White Defect 0.05

CGINTX CGINTY Camera Defect

Defect

Not a Defect

The Secret Sharer: Measuring unintended neural network memorization and extracting secrets|2]

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 15 of 35

ML to predict the next word in a string

Who took my

who took my cheese

who took my money

who took my money email
who took my mountain dew
who took my stapler

who took my spaghet

who took my hat

who took my hat vine

who took my hairy toe

who took my tax refund

Google Search I'm Feeling Lucky

cheese

money

‘Who took my 2" — =~ money emai

mountain dew

stapler

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 16 of 35

‘Probe with promising templates'

“My SSN is ?"—

“My SSN is 37" —

“My SSN is 35?”—] === }—> And soon

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 17 of 35

Outline I

e Components of a machine learning system
e A variety of training data vulnerabilities
1. Exfiltration via model parameters
. Exfiltration via model labels
. Exploit inadvertent memorization
. Attribute inference: recovering training data

. Membership inference: confirming training data

2

3

4

5

6. Model stealing: infer the model to better infer the training data
o W

hat to do? A distressingly shallow set of ideas

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 18 of 35

Attribute inference: recovering training data

Attack: exploit black box class label weights

Training Data Machine Learning Code Learned Model

DEFECT.D | Defect? | CGINTX CGINTY §

Truth

“zzzZz2%

q
q
T
94
T
/
T
q

Test Data Learned Model Classification with Weights

White Defect

CGINTX Camera Defect

Not a Defect

Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures|3]

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 19 of 35

Recovery of a Training Image

Biometric face recognition; attacker knows name, not face

Tammy

Mike

Jina

Cosmin

Jeremy

Laura

Philip

Katie

Connor

Ali

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

Cosmin

Connor

0.10

0.10

Cosmin

0.05

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019

Connor

0.10

Page 20 of 35

Outline I

e Components of a machine learning system
e A variety of training data vulnerabilities
1. Exfiltration via model parameters
. Exfiltration via model labels
. Exploit inadvertent memorization
. Attribute inference: recovering training data

. Membership inference: confirming training data

2

3

4

5

6. Model stealing: infer the model to better infer the training data
o W

hat to do? A distressingly shallow set of ideas

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 21 of 35

Membership inference: confirming training data

Attack: build “shadow models” to learn to detect training data

raining Data (Optional) Machine Learning Code Learned Model

Defect? | CGINTX CGINTY SNR
Truth

12 1003

Test Data Classification with Weights

White Defect 0.05

CGINTX . Camera Defect 0.15

Defect 0.69

Not a Defect 0.11

Membership inference Attacks Against Machine Learning Models[6]

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 22 of 35

Step 1: Adversary builds a surrogate model

Acquire training data, split in two, use both to build a surrogate model

Training Data: D_OTHER

Defect? | CGINTX CGINTY SNR

Truth a2 a3

Yes 2 1003 0.97
Yes g 0.33
No R 2 0.12
Yes B 0.08

No i 0.36

o om Machine Learning Code Surrogate Model

No 2 Y 0.33

Ye - ; 0.44 eone ~work/avatar/src —less evaluate.c
b € < B o #include <string.h>

#include "crossval.h"

#include “evaluate.h”

#include "util.h"

#include "gain.h"

#include "gsl/gsl_rng.h"

typedef struct sortstore {
double value;
int class;

} continuous_sort;

int count_nodes(DT_Node *tree) {
int count = 1;

Training Data: D_IN reta camy !

}

void _count_nodes(DT_Node *tree, int node, int *count) {

Defect? | CGINTX CGINTY SNR . PMIN

if (tree[node].branch_type != LEAF
Truth as as

(i=0; i< tree[nnde],num,hfnnches; i) {

ak (*count)++;

Yes p 1003 ” 0.12 i

Yes p . 0.03

No 4 7 0.13

Yes 0.58

No P 0.64

No 212 0.42

No 2 2 4 0.88

Yes 8 g .. 0.52

.52

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 23 of 35

Step 2: Use surrogate model as a feature generator'

Newly created labeled data has bizarre features and “IN/OUT” labels

Surrogate Model

Test Data: D_IN
CGINTX | CGINTY | SNR
14 123 0.54

Test Data: D OUT

CGINTX | CGINTY | SNR
14 123 0.54

Normal Classification with Weights ew Feature Data, with Labels

Camera| Defect Truth F1 F2 F3
0.15 0.69 IN 0.69 0.15 0.11

Normal Classification with Weights New Feature Data, with Labels

White Camera| Defect Not Truth F1 F2 F3
0.21 0.42 0.07 0.30 ouT 0.42 0.30 0.21

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 24 of 35

Step 3: Generate lots of IN/OUT training data

Test Data: D_IN(1) Classification with Weights Features with Labels

CGINTX CGINTY SNR PMIN

White Camera Defect F1 F2

14 123 0.34

0.05 0.15 0.69 0.15

Test Data: D_IN(2) Classification with Weights Features with Labels

CGINTX CGINTY SNR PMIN

White Camera Defect F1 F2
14 123 0.34

0.65 0.20 0.07

Test Data: D_IN(K) Surrogate Model / Classification with Weights Features with Labels
CGINTX CGINTY SNR PMIN Whits

Camera Defect F1 F2
14 123 034 0.35 0.65 0.00

Test Data: D_OUT(1) Classification with Weights Features with Labels

CGINTX CGINTY SNR White Camera Defect F1 F2

14 123 0.21 0.42 0.07

Test Data: D_OUT(2) Classification with Weights Features with Labels

CGINTX CGINTY SNR

White Camera Defect F1

14 123

0.17 0.23 0.25

Test Data: D_OUT(K) Classification with Weights Features with Labels

CGINTX CGINTY SNR

White Camera Defect F1 F2
14 123

0.10 0.20 0.30

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 25 of 35

Step 4: Use IN/OUT date to build membership model

Membership Features and Labels Machine Learning Code Membership Inference Model
Truth F1 F2 FS :ﬁncl :;e e ~Jwork/avatar/src — less evaluate.c

#include "crossval.h"

0.69 0.1 5 0.1 1 #include “"evaluate,h"

#include "util.h"
#include "gain.h"

0'65 0'20 0.08 #include "gsl/gsl_rng.h"

typedef struct sortstore {

0.65 0.35 0.00 double value;

int class;
} continuous_sort;

U tt tt int count_nodes(DT_Node *tree) {
0.42 0.30 0.21 i:;u;:f:;d:saree, 9, &count);
return count;
0.35 0.25 0.23 g

void _count_nodes(DT_Node *tree, int node, int *count) {
int i;
0'40 0'30 0'20 if (tree[node].branch_type != LEAF) {
for (i = @; i < tree[node].num_branches; i++) {
(*count)++;

E

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 26 of 35

Step 5: Use membership model'

Surrogate Model

Test Data: D_7?
CGINTY| SNR |
123 | 054 |

Normal Classification with Weights New Feature Data, Unlabeled

Camera Truth F1 F2 F3
0.15 ? 0.69 0.15 0.11

Membership Inference Model Membership Inference

IN 0.83

0.17

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 27 of 35

Outline I

e Components of a machine learning system
e A variety of training data vulnerabilities
1. Exfiltration via model parameters
. Exfiltration via model labels

. Exploit inadvertent memorization

. Attribute inference: recovering training data

. Membership inference: confirming training data

. Model stealing: infer the model to better infer the training
data

e What to do? A distressingly shallow set of ideas

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 28 of 35

Attack: probe

Training Data

DEFECT.D | Defect? | CGINTX CGINTY SNR

Truth a a2 a3

the

PMIN

ak

Yes 12 1003 0.97
Yes 99 2 0.33
No 3 27 0.12
Yes 16 8: 0.08
No 0.36
No 0.29
No 2 0.33
Yes 78 y 0.44

Test Data

0.12
0.03
0.13
0.58
0.64
0.42
0.88

0.52

Model stealing

model with test data, deduce its structure

Machine Learning Code Learned Model

ece ~Iwork/avatar/sic — less evaluate.c
#include <string.h>

#include "crossval.h"

#include “evaluate.h"

#include "util.h"

#include “gain.h

#include "gsl/gsl_rng.h"

typedef struct sortstore {
double value
int class;
. } continuous_sort;
int count_nodes(OT_Node *tree) {
int count = 1;
_count_nodes(tree, 0, &count);
return count;

}
void _count_nodes(0T_Node *tree, int node, int *count) {
1
if (tree[node].branch_type = LEAF) {
for (i = 0; 1 < tree[node].num_branches; is+) {
Crcount)ss;

Classification with Weights

White Defect

CGINTX

Camera Defect

Defect

Not a Defect

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 29 of 35

Replicating a black box model

Attack: use the model as a cheap labeler, build a new model

Lots of Unlabeled Test Data

123

0.34

197

0.54

]

101

0.76

314

0.29

163

0.17

145

0.91

Newly Labeled Test Data

DEFECT.ID | Defect? | CGINTX

FE B E- B

12

@
@
a3
a
@

6

ar
as

z

an

CGINTY

1003

SNR

0.97
0.33
0.12
0.08
0.36
0.29
0.33

PMIN

Model to be Stolen Newly Labeled Test Data

DEFECT.ID | Defect?
Truth

“zzz2z2%

Practical Black-Box Attacks Against Machine Learning[4], Stealing Machine Learning Models via Prediction APIs[8]

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019

Page 30 of 35

Precisely reproducing a model’s parameters

Attack: use black box response discontinuities to detect thresholds

Carefully Structured Test Data Black Box Decision Tree

14 [123 [054 034 |

23 | 197 017 0.54

81 0.16 0.76

51 0.27

0.72

0.31

0.92

SPLIT CONTINUOUS ATT# 44 < @.323750
SPLIT CONTINUOUS ATT# 27 < ©.990700
SPLIT CONTINUOUS ATT# 53 < 0.022500
SPLIT CONTINUOUS ATT# 30 < 0.467000
SPLIT CONTINUOUS ATT# 17 < @.209450
LEAF Class 1 Proportions @ 10
SPLIT CONTINUOUS ATT# 17 >= 0.209450
SPLIT CONTINUOUS ATT# 36 < @.509200
SPLIT CONTINUOUS ATT# 41 < 0.176000
SPLIT CONTINUOUS ATT# 50 < 0.016000
(math’ LEAF Class 1 Proportions 2 11

SPLIT CONTINUOUS ATT# 50 >= 0.016000

Optimization, LEAF Class @ Proportions 10 3

SPLIT CONTINUOUS ATT# 41 >= 0.176000
i LEAF Class @ Proportions 22 @
maglc) SPLIT CONTINUOUS ATT# 36 >= 0.509200
LEAF Class 1 Proportions 1 9
SPLIT CONTINUOUS ATT# 30 >= 0.467000
LEAF Class 1 Proportions 2 72
SPLIT CONTINUOUS ATT# 53 >= 0.022500
LEAF Class @ Proportions 16 1
SPLIT CONTINUOUS ATT# 27 >= 0.990700
LEAF Class @ Proportions 17 1
SPLIT CONTINUOUS ATT# 44 >= 0.323750
LEAF Class @ Proportions 30 1

Analysis of Weak Leaf Node Signals Precisely Replicated Thresholds

(Work in progress at Sandia)

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 31 of 35

Therefore: can’t block exfiltration with a black box

DEFECT.D | Defect? | CGINTX CGINTY SNR

Truth a as as

q1 Yes 12 1003 0.97

9 es 99 2 0.33

2?77, 277°°, 27?77, 2?77, Concatenate, " 2w ox

>< 27779, 7770, 777°, 7777, Deserialize, >< - " oo
1 as No 7 665 0.36
9992, 77, 277, V79T, Decrypt, 0 | u

7
q6
7
1:

12 24 0.33

P97, 0?97, 07,7777, ... Uncompress

78 12 0.44

0.92

CGINTX CGINTY SNR

Truth ay az ag

Yes 12 1003 0.97

9833, 6299, 3495, 4946, Concatenate, - e oo

No 3 27 0.12

__»3470, 0158, 2537, 2076, Deserialize, 1 1o 183 008
1277, 3644, 9284, 4085, Decrypt, A I A A

1 0.29

4201, 4159, 8444, 7234, ... Uncompress :;; 12 : 0.3

78 2 0.44

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 32 of 35

Outline I

e Components of a machine learning system
e A variety of training data vulnerabilities
1. Exfiltration via model parameters
. Exfiltration via model labels
. Exploit inadvertent memorization
. Attribute inference: recovering training data
. Membership inference: confirming training data
. Model stealing: infer the model to better infer the training data

e What to do? A distressingly shallow set of ideas

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 33 of 35

What To Do? Some Basic Hygiene'

Know about differential privacy/[1].

Know about PATE[5] and DP-SGD{1].

Be wary of code you didn’t write.

Don’t use pre-trained NN architectures that you didn’t train.

Use only the parameters, and parameter precision, that you must.
Don’t use generic NN architectures as is, even untrained: adjust the

architecture carefully.

Expose no more model information than you have to.

Think carefully about emitting anything more than a classification.

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 34 of 35

‘ References .

ABADI, M., CHU, A., GOODFELLOW, I., MCMAHAN, H. B., MiroNOV, 1., TALWAR, K., AND ZHANG, L. Deep
learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (New York, NY, USA, 2016), CCS 16, ACM, pp. 308-318.

CARrLINI, N., Liu, C., Kos, J., ERLINGSSON, U., AND SONG, D. The Secret Sharer: Measuring unintended
neural network memorization and extracting secrets. Tech. Rep. arXiv:1802.08232, arXiv, 2018.
FREDRIKSON, M., JHA, S., AND RISTENPART, T. Model inversion attacks that exploit confidence
information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security (2015), pp. 1322—1333.

PaPErRNOT, N., McDANIEL, P., GooDFELLOW, 1., JHA, S., CELIK, Z. B., AND SwaMi, A. Practical black-box
attacks against machine learning. In Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security (New York, NY, USA, 2017), ASIA CCS ’'17, ACM, pp. 506-519.
PAPErRNOT, N., SoNG, S., MIRONOV, 1., RAGHUNATHAN, A., TALWAR, K., AND LFAR ERLINGSSON. Scalable
private learning with PATE. In International Conference on Learning Representations (ICLR)
(2018).

SHOKRI, R., STRONATI, M., SONG, C., AND SHMATIKOV, V. Membership inference attacks against machine

learning models. In IEEE Symposium on Security and Privacy (2017).

SoNaG, C., RISTENPART, T., AND SHMATIKOV, V. Machine learning models that remember too much. In
ACM SIGSAC Conference on Computer and Communications Security (2017), pp. 587—601.

TRAMER, F., ZHANG, F., JUELS, A., REITER, M. K., AND RISTENPART, T. Stealing machine learning models
via prediction apis. CoRR abs/1609.02943 (2016).

Kegelmeyer (wpk@sandia.gov), AIF, February, 2019 Page 35 of 35

