10

11

12

13

14

15

16

17

18

19

20

21

Spectral changes in Si-O-Si stretch band of porous glass network upon ingress of water
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Abstract: Water ingress into porous glass can induce internal stress, resulting in strains in
chemical bonds of the network. For silica and silicate glasses, the position of Si-O-Si stretch mode
in infrared spectroscopy is known to vary with the degree of strain in the Si-O network. Then, one
could hypothesize that this stress due to water ingress could be probed with infrared spectroscopy.
We tested this hypothesis using porous layers formed through aqueous corrosion on a model
nuclear waste glass. The porosity and thickness of the porous layer were determined using
ellipsometry. The humidity-dependent infrared spectra of the samples showed a red-shift of the Si-
O-Si stretch band; however, it was difficult to deconvolute the spectral change due to variation of
effective refractive index of the sample upon water ingress. Thus, it was infeasible to
unambiguously determine the internal stress of porous glass network upon water ingress using the

infrared method alone.
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Introduction

Water ingress into glass can drastically change the chemical and mechanical properties of
glass.[1, 2] The dissociation of the Si-O-Si bridging bonds of the glass network by reactions with
water molecules diffusing into the glass can also induce internal stress to the glass network.[3, 4]
Porous surface layers can be formed through leaching of mobile network modifier ions or
incongruent dissolution of network formers upon aqueous corrosion.[5-7] If the glass surface layer
is porous (Figure 1), then water ingress can occur more readily,[8, 9] which often can be
accompanied by swelling of the porous network due to changes in surface energy.[10-12] Since
the bulk glass would not swell, the water-induced swelling of the porous surface layer could
produce a large stress gradient at/near the interface between the surface layer and the bulk.[8, 9]
Thus, the capability of measuring the internal stress induced by the ingress of water into the glass
surface is necessary for better understanding of how water uptake alters the surface properties of

glass.

Glass network Pore Water molecule

Figure 1. Schematic illustration of water ingress into porous SiO2 glass network.
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The physical swelling of the porous glass network is inevitably associated with strains in
the chemical bonds of the glass network. Such strains can alter the vibrational spectral features of
the glass network. In fact, it is known that for silica and silicate glasses, application of compressive
or tensile stress can induce a red- or blue-shift of the peak position of the stretch band of the Si-O-
Si bridging oxygen (BO), vsi-o-si, in the 1050-1100 cm™ region of the infrared (IR) spectrum of
glass.[13-19] Similarly, creation of compressive stress in the subsurface region of glass through
exchange of network modifier ions with bigger ions also induces the red-shift of the BO stretch
band in the IR spectrum.[20-22] The band position shift has been attributed to the change in the
Si-O-Si dihedral bond angle through the non-central force constant model which was derived by
applying the equation of motion principles to a simple molecular cluster model with certain
assumptions.[23-25] Recently, more realistic and assumption-free interpretation was proposed
through theoretical calculations of the dielectric constant, refractive index, and vibrational
spectrum of silica glass using molecular dynamics (MD) simulations.[26] This new interpretation
correlates the BO stretch band position to the Si-O bond length distribution in the glass network.
Then, a question arises if the same spectral interpretation rule can be employed to measure or
estimate the degree of network strain or the alteration of bond parameter distributions in the porous

glass network upon uptake of water molecules.

Here, it should be noted that variations in the IR spectrum of a porous glass network can
also occur due to a change in the effective refractive index upon ‘space filling’ of internal pores
with water molecules.[27] Without distinguishing or deconvoluting this refractive index effect,
one cannot attribute the observed BO stretch band shift merely to the strain of the glass network
bonds. This study investigates how the refractive index change of a porous glass network upon

water uptake is manifested in specular-reflection infrared (SR-IR) spectrum of the glass. A model
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nuclear waste glass called International Simple Glass (ISG; 60.2 SiO2, 16.0 B203, 12.6 Na20, 5.7
Ca0, 3.8 Al203 and 1.7 ZrOz in mol%) [28] was chosen for this study because adsorption-induced
stress might alter the chemical durability of corroded ISG surfaces which is of interest to the
nuclear waste management community. The porous surface layer was produced through aqueous
corrosion at 90°C in a pH 7 aqueous solution initially saturated with soluble silica species for 7
days and 209 days. The porosity and thickness of this altered surface layer were determined using
a spectroscopic ellipsometry (SE) method.[29] Upon absorption of water into the porous alteration
layer, we observed changes in the spectral shape of the vsi-o-si band in SR-IR; however, it was also
found that the similar changes could originate from the variation of effective refractive index upon
filling the pores with water. This result showed that without taking into account the effective
refractive index of the alteration layer accurately, it would be difficult to confidently assign the
SR-IR spectral change observed upon water uptake in the porous surface layer to the swelling or

internal stress of the layer.

Experimental methods

ISG coupons (2 cm x 2 cm x 0.1 cm) were cut from an 1SG block (MoSci Corp.). One face
of the coupon was polished to an optical finish, and the opposite side was left as-cut and rough to
prevent the interference from the back reflection in SE measurements. The coupons were corroded
in a static mode at pH 7.0£0.5 and 90 °C in aqueous solution initially saturated with soluble silica
species prepared by following the protocol provided by Gin et al[5]. This solution contains ~5
mmol/L of soluble silicon-containing species and ~0.17 mmol/L of K" ions. Under these
conditions, B and Na are leached out leaving behind a nanoporous gel-like layer mostly made of
SiO2, Al203 and ZrO2. A porous Vycor glass coupon with 28% porosity [30], provided by Corning
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Inc., was used as a reference sample for comparison. The Vycor glass has pores throughout the
entire sample in the bulk, and the pore size varies roughly from 3 nm to 4 nm.[31] The Vycor glass
was polished to an optical finish then cleaned by boiling in hydrogen peroxide (EMD Millipore)
and sonicating in copious amounts of acetone (Honeywell Burdick & Jackson) and 200 proof

ethanol (Decon Labs).

A spectroscopic ellipsometer (J.A. Woollam Co. Alpha-SE) with a wavelength range of
381-893 nm and CompleteEASE software package (J.A. Woollam Co.) were used to determine
the alteration layer thickness and porosity and measure the adsorption-desorption isotherm of
water at room temperature. The solid volume fraction and the porosity in the alteration layer of
corroded ISG samples were determined from measurements at 0% relative humidity (RH).
Assuming the solid volume fraction and thickness of the alteration layer do not change with water
absorption into the internal pore, the water fraction in the alteration layer was determined from SE
measured at higher RH conditions. If type-I1V adsorption isotherm behavior is observed which is
characteristic for adsorption in meso-porous materials with pore diameters between 2 and 50

nm,[32] the pore size distribution can be calculated using the Kelvin equation:[33]

P 1 2yV,
In—=-—
P, T RT

cos @ (1)

where Pi is relative humidity level, 1, is the radius of the meniscus, y and V, are the surface tension

(o]

and the molar volume of water, 6 is the water contact angle, R is the gas constant, and T is
temperature. The present study assumes the pores in the alteration layer to be cylindrical and 6 to
be 0°. These assumptions then lead to 1, to be equal to the pore radius, 7, which is half of the pore

diameter, d,. Details of the ellipsometry analysis can be found in a previous work.[29]
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The uptake of molecular water from the ambient air was confirmed through the attenuated
total reflection infrared (ATR-IR) spectroscopy analysis using a Vertex80 FT-IR spectrometer
equipped with an ATR accessory (DiaMaxATR; Harrick Scientific Products) which has a diamond
crystal and an incident angle of 45°. The acquired spectra are average of 100 scans with a resolution

of 4 cm™.

SR-IR measurements were conducted using a Bruker Hyperion 3000 FT-IR spectrometer
equipped with a reflective objective lens. This lens gave an IR incident and reflection angle of 18°
from the surface normal and the analyzed area was 100 um x 100 um. A spectrum of gold surface
was used as a reference. Spectra were obtained by averaging 400 scans with a resolution of 6 cm”
1 The samples were measured in a stainless-steel vessel containing a gas inlet covered with
microscope slides on the top except an opening to permit IR beam. The RH-controlled gas was
continuously flowed through the vessel. The RH level of the sample environment was controlled
by adjusting the flow rates of the dry and water-vapor-saturated nitrogen streams. The RH of the
sample environment was verified with a hygrometer (Omega Engineering Inc., RHXL3SD). The
maximum IR peak positions were determined by fitting the data of the maximum intensity region

(~20 cm™* region near the peak position) with a fourth-order polynomial function.

The refractive index change of the porous glass network upon water uptake can be modeled
with the Bruggeman effective medium approximation (EMA) method.[34] Assuming the second
phase (void) is evenly distributed inside the matrix of the first phase (glass), the EMA

approximation is expressed as:[35]

€5 — € g, — ¢
1-— =
fgeg—2£+( fg)sv—Zs 0 (2
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where g, and ¢, are the dielectric constants of the glass (g) and void (v) components, f, is the
solid volume fraction, and ¢ is the effective dielectric constant of the porous medium. In
theoretically-calculated SR-IR spectra of a medium consisting of 72% silica and 28% pores, &, of
fused silica[36] was used. As water fills up the void space, &, can be replaced from the dielectric
constant of air to that of water. Once the effective dielectric constant of the medium (¢ = & +

ie,) Is determined, the refractive index (n + ik) of the composite system is calculated as following:
1 1/2
n= {[(812 +&2)2 + 81] /2} 3)

1 1/2
k = {[(512 +e2)z — 81] /2} 4
Then, the theoretical SR-IR spectrum can be generated with the Fresnel coefficient equations using

the complex refractive index.[37]

Results and Discussion

The SE data of the 7-day and 209-day corroded ISG samples collected in dry condition (0% RH)
are shown in Figure 2. The SE data were modelled with four sublayers and the total thickness of
the alteration layer was determined to be ~726 nm and ~1614 nm for the 7-day and 209-day
corroded 1SG samples, respectively. These values are in good agreement with the results from
secondary ion mass spectroscopy (SIMS) depth profiling and the mass balance of solution
concentration of the leached species (Figure Sl 4 of Ref. [5]).[5] The main parts (Ls in Figures 2b
and 2d) of the alteration layers are found to contain about 16.6% and 17.8% porosity, respectively.
The interface region between the alteration layer and the bulk glass (L1 and L2) appears to be less

porous than the main part of the alteration layer; this could be due to the roughness of the reactive
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interface between the alteration layer and the bulk. Although the porosity in Figures 2b and 2d
changes stepwise, it must vary gradually from the bulk to the main part of the alteration layer; the
stepwise change is just an artifact in the optical fitting of the data with the minimum number of
parameters. The large porosity of the exterior region (La4) is an outcome of convolution with surface

roughness.[38]
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Figure 2. Analysis of the thickness and porosity of the alteration layer on 1ISG samples corroded
for 7 days (a, b) and 209 days (c, d). (a) and (c) show the variation of ellipsometric angles (¥ and
A) as a function of wavelength at 0% RH. The symbols are the raw data and the solid lines are the

fit results. (b) and (d) schematically illustrate the thickness and porosity of individual layers

determined from fitting of the data shown in (a) and (c) with an optical model.
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Figure 3. Uptake of water by the porous alteration layers formed by aqueous corrosion for 7
days (a, ¢) and 209 days (b, d). (a) and (b) are ATR-IR spectra of hydrous species in the porous
alteration layer. (c) and (d) display the adsorption and desorption isotherms of water in the Ls

region of the alteration layer determined from SE as a function of RH. The 90% confidence

intervals from the ellipsometry data analysis are shown in (c) and (d); but most of them are

smaller than the symbol size. (e) Pore size distributions in the L3 region of the alteration layer

of 209-day corroded ISG sample calculated from (d). The symbols are the raw data and the

smooth solid lines are added to show the overall trends.
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The uptake of water from the surrounding gas phase can be confirmed using ATR-IR
spectroscopy (Figures 3a and 3b). The intensities of the H20 bending (~1650 cm™) mode and the
OH stretching band (~2900-3700 cm™) at room RH (~40 %) are higher than those at 0% RH.
Although the increase in the intensity of OH stretching band could be due to the increase in the
abundance of silanol (SiOH) as well as molecular water, the intensity increase of the H20 bending
mode certainly indicates the amount of molecular water in the alteration layer is higher at room
humidity than 0% RH. Although the elemental depth profile of the alteration layer of corroded
ISG samples were reported by Gin et al. with SIMS under vacuum (Figure 3 of Ref. [5])[5], without
knowing the depth profile of hydrogen species in hydrated state it is difficult to determine the

relative abundance of the SiOH and H20 species from the ATR-IR analysis.[39]

More quantitative information can be obtained by measuring the SE data as a function of
RH. The changes in the ellipsometric angles (¥ and A) measured at various RHs can be fitted
using the same optical model constructed in the 0% RH case and allowing the volume fraction of
pores filled with water. Figures 3c and 3d display the water volume fraction in the porous alteration
layer determined while RH increases stepwise from 0% to 85% (adsorption) and then back to 0%
(desorption). For the 7-day corroded ISG, the water adsorption/desorption isotherm follows the
type-1 behavior (Figure 3c).[29] This implies that the average pore size in the 7-day old alteration
layer is <2 nm. This is in a good agreement with high-resolution transmission electron microscopy
data published previously.[5] In the case of the 209-day corroded ISG, it follows the type-1V
behavior of adsorption isotherm (Figure 3d). From the fact that the knee-shape kink of the type-
IV isotherm occurs around 30-35 %RH, the presence of pores larger than 2 nm in the 209-day

corroded 1SG sample can be confirmed (Figure 3e).[33]
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Figure 4. SR-IR spectra of the alteration layers on (a) 7-day corroded and (b) 209-day corroded

ISG collected at various RH conditions. The SR-IR data of the uncorroded pristine glass is

shown in the Supporting Information for comparison.
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The SR-IR spectra of these samples measured at different RH conditions are displayed in
Figure 4. As the RH increases, the position of the main vsi-o-si band shows a red-shift from 1072
cm™ to 1068 cm™. The red-shift of the main band position is accompanied by a slight increase in
the lower wavenumber shoulder and a slight decrease in the higher wavenumber shoulder. The
detailed RH dependence of the main band position near 1070 cm™, the intensity at the lower
wavenumber shoulder at 900 cm™, and the intensity at the high wavenumber shoulder at 1200 cm-

L are plotted in Figure 5 for the 209-day corroded ISG sample.

An apparent correlation can be seen between the water adsorption isotherms (Figure 3) and
the RH dependence of the SR-IR spectral features (Figures 4 and 5). Based on the previous reports
on swelling of porous Vycor glass[8, 9, 40] and MD simulation results published by Luo et al.,[26]
one could attempt to attribute the 4 cm™ shift in the vsi-o-si band position (Figure 5a) to a strain of
~0.05 % in the average Si-O bond length. However, before such comparison is made, it is critically
necessary to confirm that the observed spectral change with RH is not due to the change in effective
refractive index of the porous medium upon filling of pores with water molecules; or, the change

in effective refractive index effect must be properly subtracted from the observed result.

In order to calculate the spectral variation due to the change in effective refractive index of
the porous alteration layer, the accurate data on its refractive index as a function of wavelength in
the mid-IR region is needed. But, such data is not readily available because the composition and
structure of the network in the alteration layer can vary depending on the initial composition of the
bulk glass, the surface preparation before the corrosion, and the concentration, temperature, and
time of the aqueous solution during the corrosion.[41, 42] Another complication would be the
variation of porosity as a function of depth from the surface within the alteration layer (Figure 2).

Also, the thickness of the alteration layer is smaller than the SR-IR probe depth which is on the

13
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order of a micrometer at the peak of the vsi.o-si band and varies over more than an order of

magnitude even within the same band depending on the wavelength.[39, 43]

In order to check the effect of changes in effective refractive index of the porous layer
without such complications, we have tested the RH dependence of the SR-IR spectral shape of the
Vycor glass. Vycor is a highly-porous silica-rich glass obtained after dissolving the alkali borate-
rich phase in a borosilicate glass.[44] Figure 6a shows the experimentally obtained SR-IR spectra
of the Vycor glass at 0 % and 90 % RH conditions. The overall spectral changes are qualitatively
similar to the trends observed for the porous alteration layers on ISG (Figures 4 and 5). Compared
to the 0% RH data, the 90% RH spectrum shows a red-shift of the main absorption band position

by ~1.4 cm™ and an increase in the intensity at the 900 cm™ and a decrease at the 1200 cm™ regions.
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Figure 6. Comparison of (a) experimentally-observed changes of the SR-IR spectra of Vycor
glass upon increase of RH from 0% to 90% and (b) theoretically-calculated SR-IR spectra of a

medium consisting of 72% silica and 28% pores when pores are empty and filled water.

Although not accurate, the refractive index of silica[36] could be used for the solid part of

the Vycor glass. The refractive index of water absorbed in the internal pores of the Vycor glass
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could be assumed to be the same as that of liquid water. Figure 6b displays the SR-IR spectra
theoretically calculated using the effective refractive index for a composite model consisting of
72% silica and 28% void. When the pores are fully occupied with water, then the real (n) and
imaginary (k) parts of the refractive index of the medium vary accordingly and the peak position
and the shape of the SR-IR spectrum also vary. Although the quantitative magnitude is different,
the qualitative trend in the theoretical spectral features upon filling the pores with water (Figure

6b) is very similar to the experimentally-observed trend (Figure 6a).

The results shown in Figure 6 indicate that in SR-IR analysis of the porous alteration layer,
the ref-shift of the vsi-o-si peak position (Figures 4 and 5a) as well as intensity changes in the lower
and upper region shoulders (Figures 5b and 5c¢) can originate from not only the adsorption-induced
stress to the glass network, but also the change in effective refractive index of the layer upon uptake
of water into the internal pores. It is interesting to note that the RH dependence of the position of
the maximum intensity (Figure 5a) is somewhat different from the water adsorption isotherm
(Figure 2d), while the shoulder intensities at 900 cm™ and 1200 cm™ regions (Figures 5b and 5c)
closely follow the isotherm data (Figure 2d). This may suggest that the peak (maximum intensity)
position of the Si-O-Si stretch band may be a convolution of both effects — adsorption-induced
stress and effective refractive index change. Deconvoluting those two effects would not be possible
without knowing the exact refractive index of the completely-dried alteration layer as a function

of depth from the surface.

15



226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243
244
245
246
247
248
249
250
251

Conclusions

Spectral changes in the Si-O-Si stretch band of the porous alteration layer on glass formed
through aqueous corrosion are observed when the ambient relative humidity is varied. Although
the peak position could be correlated with the theoretically predicted strain in the glass network,
the experimentally observed spectral changes cannot be fully attributed to the adsorption-induced
stress to the glass network. The ingress of water into internal pores of the subsurface region alters
the effective refractive index of the sample, which will also modify the experimentally-observed
IR spectral features. Deconvolution of these two effects is difficult without knowing the exact

refractive index of the alteration layer in the Si-O-Si absorption band region.
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