skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Carbon Monoxide Mediated Hydrogen Release from PtCu Single-Atom Alloys: The Punctured Molecular Cork Effect

Journal Article · · Journal of Physical Chemistry. C

Pt-based materials are used extensively in heterogeneous catalytic processes, yet they are notoriously susceptible to poisoning by CO. In contrast, highly dilute binary alloys formed of isolated Pt atoms in a Cu metal host, known as PtCu single-atom alloys (SAAs), are more resilient to CO poisoning during catalytic hydrogenation reactions. In this article, we describe how CO affects the adsorption and desorption of H2 from a model PtCu(111) SAA surface and gain a microscopic understanding of these species’ interaction at the Pt atom active sites. By combining temperature-programmed desorption and scanning tunneling microscopy with first-principles kinetic Monte Carlo, we identify CO as a Pt site blocker that prevents the low temperature adsorption and desorption of H2, the so-called molecular cork effect, first realized when examining PdCu SAAs. Intriguingly, for the case of PtCu, H2 desorption occurs before CO release is detected. Additionally, desorption experiments show a nonlinear relationship between CO coverage of the Pt sites and H2 desorption peak temperature. When all the Pt atoms are saturated by CO, a very sharp H2 desorption feature is observed 55 K above the regular desorption temperature of H2. Our simulations reveal that the origin of these effects is the fact that desorption of just one CO molecule from a Pt site facilitates the fast release of many molecules of H2. In fact, just 0.7% of the CO adsorbed at Pt sites has desorbed when the H2 desorption peak maximum is reached. The release of H2 from CO-corked PtCu SAA surfaces is analogous to the escape of gas from a pressurized container with a small puncture. Given that small changes in CO surface coverage lead to large changes in H2 evolution energetics, the punctured molecular cork effect must be considered when modeling reaction mechanisms on similar alloy systems.

Research Organization:
Tufts Univ., Medford, MA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES); European Research Council (ERC); ARCHER UK National Supercomputing Service
Grant/Contract Number:
SC0004738; FG02-10ER16170; EP/N509577/1; FP/2007-2013; EP/P020194/1; eCSE01-001; eCSE10-8; RPG-2017-361
OSTI ID:
1599611
Journal Information:
Journal of Physical Chemistry. C, Vol. 123, Issue 16; ISSN 1932-7447
Publisher:
American Chemical SocietyCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Similar Records

Accelerated Cu2O Reduction by Single Pt Atoms at the Metal-Oxide Interface
Journal Article · Mon Mar 09 00:00:00 EDT 2020 · ACS Catalysis · OSTI ID:1599611

Accelerated Cu2O Reduction by Single Pt Atoms at the Metal-Oxide Interface§
Journal Article · Fri Apr 03 00:00:00 EDT 2020 · ACS Catalysis · OSTI ID:1599611

Carbon Monoxide Poisoning Resistance and Structural Stability of Single Atom Alloys
Journal Article · Mon Jan 08 00:00:00 EST 2018 · Topics in Catalysis · OSTI ID:1599611