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Abstract:

So-called "Mixed-Mode" combustion can provide increased engine efficiency. It relies on both flame-propagation
through a lean/dilute mixture, as well as the controlled autoignition of a lean/dilute end-gas. Both of these controlling
processes can be affected by fuel properties, such as the laminar burning velocity, as well as the autoignition
behavior of a fuel. It is desirable to quantify the sensitivity to changes in fuel properties. However, to conduct a
robust investigation, many thousands of operating conditions must be evaluated. Considering the timescale of
rigorous engine experiments, and the timescale for rigorous CFD simulations, neither of these approaches are
practical for the scale of investigation which is desired. Therefore, a methodology to use 1-D engine simulations
coupled with O-D chemical kinetic simulations is presented.

The initial results from this modeling methodology indicate that the fuel requirement synergies between
stoichiometric SI and mixed-mode combustion are surprisingly strong. Both modes require autoignition resistant
fuels to achieve "High Loads." Fuels with high Octane Sensitivity show less sensitivity to intake boosting, thereby
extending load range for mixed-mode combustion.
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CRE

• Designed for spray-guided stratified-charge
/ operation Piston bowl.

• 8-hole injector. Pin = 120 - 170 bar.

• Drop-down single-cylinder engine.

• Automotive size. 0.55 liter swept volume.

• Identical geometry for All-metal and Optical.

Research Engine
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r Mixed-mode Combustion for Multi-mode Operation
( r-f&
•• Lean operation provides efficiency benefits.
• Can be used at low to medium loads where
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the engine spends a majority of the time.

• With current hardware, mixed-mode
combustion is required for sufficiently short
burn duration for Ø< 0.6
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Figure credit:
J. Szybist, ORNL
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Partial Fuel Stratification for Stable Operation

Partial Fuel Stratified Lean 9
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Crank Angle [°CA ATDC]

• Need to stabilize deflagration to facilitate mixed-mode studies.

Use small injection at the time of spark.

• Minimize amount of pilot fuel to minimize NOx penalty.

Yet provide sufficient stability for lowest encountered.

Most recent data were collected
with a relatively small pilot z-',1.5 mg.
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High-Speed Spray Visualization

- 60 kHz — 0.1°CA resolution. Dual cameras.

/ • Requires timings of LED pulses to be offset

to avoid reflections.

Pent-roof

side window

and LED 2

45° Bowditch

Mirror

Focusing lens

for LED 1

11141\ 

ii if/I

• 
"

r

Injector tip

Spark plug
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77f High-Speed Infrared Fuel-Vapor Imaging

ir7 . Mid-infrared thermography. Band-pass filter 3.20µm ± 300 nm
Thermal emission from the C-H stretch band near a wavelength of 3.4µm

(thermal-vibrational radiation)

• Well isolated from most other emitting

species (in particular H20 and CO2)

• FLIR SC6800.

Relatively high frame rate - 2000 Hz.

• 1 image each 3°CA at 1000 rpm.

Phase-shifted repetitions provide

0.5°CA resolution.

-21.5°CA

SOla = -23°CA

-20.5°CA
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High-speed IR and Flame Imaging

• IR fuel vapor imaging reveals extent of fuel stratification relative to
the flame spread. Here, using a large 3.4 mg pilot.

o-

IR Reference

Aic
Spark Timing
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CRE
• Liquid fuel vaporizes quickly.

/ • Flame spread is rapid throughout the
piston-bowl area.

— Consistent with IR imaging showing
large area being enriched.

• Flames fronts propagate outside field
of view by -20°CA.

— End-gas autoignition cannot be
studied in this configuration.
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High-Speed Spray and Flame Imaging
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PFS with 3.4mg pilot (330µs inj. dur.)

• Large pilot offers good CA50 control

down to end-gas = 0'29

• However, NO. penalty can be
reduced with a smaller pilot
injection.
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E30 Spray Visualization at 60 kHz

210p
0.7 mg

I819+: +0.134 ms

220µs
1.4 mg

1819+: -0.150 ms

230µs 330µs
2.1 mg 3.5 mg

1819+: -0.150 ms 1819+: -0.150 ms

Explore the use of shorter injection durations. E30 fuel.

Injection pressure = 170 bar. SOla = -28°CA. pcyl = 7.2 kg/m3. T = 680 K.
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71.11.1„
%*
CRT

/ 
• 0.7 mg pilot (210µs inj. dur.)

Spray and Flame Imaging at 20 kHz

• Liquid fuel vaporizes quickly.

• Flame spread is relatively slow in the
outer parts of the piston-bowl area.

• Highlights importance of flame speed
for advanced SI combustion.
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The Co-Optimization Challenge

• The promise of Co-Optima is to
identify the optimal combination of
fuel and engine combustion.

• For mixed-mode engines, boosted SI
provides high-load capability.

• Stoichiometric combustion is often
knock limited at high loads.

—Appetite for higher RON and S.

• What is the fuels appetite for mixed-
mode SI combustion?
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Figure credit:
J. Szybist, ORNL
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Magnitude of the Challenge

• 

Exp

loring the combined fuel-composition / engine-design space is a high-order

problem.

• Fuel Parameters: RON, MON, HoV, O-PIONA, Carbon Bond Type Distribution.

• Engine Parameters: Fueling rate, Engine speed, Intake Pressure,

Trapped Residuals, Spark Timing, Compression Ratio.

• Result: Greater than 10 independent variables which must be assessed.

Approaches & Throughput:

1. Engine Experiments: —20 Conditions/day

2. CFD: —1 condition per day
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3. Reduced Order Modeling: 100 GT-Power Conditions Per Day; 700 Chemkin

Conditions Per Day on a modern PC.

— Explore this approach here.
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CRE

1. Determine Thermodynamic
Profiles Using Well-Validated GT-

Power Model

Modeling Work Flow

E:2

11, 

2. Impose Thermodynamic Profiles
on Chemkin O-D Reactor Model
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3. Calculate Predicted Autoignition
Phasing for Each Operating
Condition; Screen Infeasible

Conditions
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er

:F i rs it', validate GT-Power model.

• To explore new conditions, impose
new boundary conditions and burn
profiles
— Burn profiles prescribed by multi-Weibe

functions (3)

• Explore a range of plausible operating
conditions parametrically
— CR: 12, 13, 14

— CA50: -10 to 15°CA aTDC

— BDC Temperature: 85 — 130 °C (trapped

residuals)

• [02] covariant

— Om: 0.45, 0.55

— Intake Pressure: 1.0, 1.3 bar

— Engine Speed: 1000, 1400, 2000 rpm

— Focus on 1400 rpm for this presentation.

Calculate Thermodynamic Profiles Using GT-Power
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Calculate Autoignition Phasing in Chemkin
CRE
• Chemkin-Pro Homogeneous Reactor Model

• Pressure history and initial conditions imposed from

GT Power

— Simulates adiabatic compression

• Trapped residuals included

(N2, CO2, 02, H20, NO, Fuel)

• Imposed pressure history reflective of in-cylinder

conditions without autoignition (compression and

deflagration-only)

— Useful for determining onset of autoignition.

— But not for any behavior that occurs after
autoignition (peak rates of heat release, knock).

• Need multi-zone and/or 3D CFD for assessing

fuel effects on peak HRR.
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• LLNL Co-Optima Gasoline

Surrogate Mechanism used.

— Including NO„ chemistry.

• Two Co-Optima Core Fuels:

RON = 98, S: 1, 10

• Toluene Reference Fuels:

RON: 98 - 83, S: 7, 8, 10

• Primary Reference Fuels:

RON: 98 - 81, S = O.

Initial Fuels Matrix

# Name RON S

1 Alkylate 98 1

2 High Cycloalkanes 98 10

3 TRF98S10 98 10

4 TRF98S7 98 7

5 TRF95S7 95 7

6 TRF92S8 92 8

7 TRF87S7 87 7

8 TRF85S7 85 7

9 TRF83S7 83 7

10 PRF98 98 0

11 PRF95 95 0

12 PRF91 91 0

13 PRF89 89 0

14 PRF87 87 0

15 PRF85 85 0

16 PRF83 83 0

17 PRF81 81 0
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1 ,\ Interpret Chemkin Results: Operating Limitations
CR
,i'\_,

• Chemkin results yield time of
autoignition for charge.
— Converted to crank-angle phasing.

• Autoignition phasing compared to
imposed burn profile to determine
autoigniting mass fraction.

• Need to be cognizant of physical limits
and screen conditions which are
inoperable.

— Too much autoigniting mass 4 knocking.

— Too little autoigniting mass 4 slow
combustion, high CoV IMEP.
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Interpret Chemkin Results: Operating Limitations

—Knocking

—Knock Limit

—Low-Knock, Still Autoigniting
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y = 0.9921x + 38.893
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• Operating limits create a space of operability

• Each fuel and operating condition tested for
intersection with this operability space
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with the available engine data, but more intuitive to think
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Managing Charge Reactivity for Operability

r. Hold Constant: CR = 12, Pin = 100 kPa,

= 0.45

• CA50 sweep intersects with range of
operability

— Predicted to not be knocking, not
misfiring

• Increase trapped residual level

— Effects charge temperature and
oxygen concentration

— Shifts autoignition phasing such that
more mass is consumed by autoignition

• Increase Om

— Increases compression heating by
flame and raises end-gas reactivity

• Raise intake pressure

— Raises reactivity such that later spark
and autoignition phasings are required

80
#). 70
„(;;' 60 -
;T3 50 -
40 -

L2 30 -
.1 20 -
13 10  
cz -10

HCA CR = 12 Pin = 100 Phi = 0.55 T90 = 422 0
2 
= 20.1

1 

-5 0 5 10
Autoignition Phasing [CAD aTDC]

HCA CR = 12 Pin = 130 Phi = 0.55 T90 = 422 0
2 
= 20.1

1 1 

15

-5 0 5 10 15
Autoignition Phasing [CAD aTDC]

20

20

COMBUSTION RESEARCH FACILITY 20 n Sandia National laboratmies



*\\

irCRE;• Sweep CA5O, trapped
residuals, Om, and intake
pressure

— Determine intersection
with knock and stability
limits

• Fuel's reactivity and
changes in reactivity with
intake conditions
determine intersection
with operating space

• In this example, the fuel is
too reactive to achieve
high-load conditions

— Only lower intake pressures
and delayed combustion
phasings allow operation
without knock

Assessing Operability of a Fuel

80 

70 -
o
4Z

ij 6 0 —'2

40 -
t/L1

30 -
b.0

20 -
=
< 10 

TRF87S7 CR = 12

1

-10 -5 0 5 10 15
Autoignition Phasing [CAD aTDC]

TRF87S7 CR = 12
1 0

• 0 0
O 0 0

5
8 8 8 8

0 0 0 ° (0,(,), 0 0 0 0 ,c; o

111
8 8 8 8 8 8 8 0

O 0 0 0

O 0 0 00

8888
8 0 0 0

0 0 0 0
0° 0° 0° 0°
0 0 0 0

0 0 0 0

0
0
0
0
0

0
o

o

o
o
o
o
0

o
o
o
o
o

o

o
o
o

-10 0 10

CA50 [CAD aTDC]

2 0

20

COMBUSTION RESEARCH FACILITY 21 n Sandia National laboratmies



Effects of RON and Sensitivity

• Fuel RON sweep illustrates how more reactive fuels can diminish the
operability range

— Load range primarily determined by high-load limit

— Low-load operation tested here achievable with trapped residuals and advanced
spark timing

PRF85 CR = 12

5 0 5 10 15 20
Autoignition Phasing [CAD aTDC]
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Effects of RON and Sensitivity

Higher sensitivity fuels at same RON level show slightly lower reactivity

— Permits higher-load operation

PRF87 CR = 12
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71,\IL Assess Fuel Operability Range and Robustness
r
CRE
• Each fuel and CR assessed for load rangeIr
and robustness

— Range = difference between highest and
lowest IMEP points

— Robustness = # operating points / range

• Robustness considers number of possibilities
for achieving a given load; more possibilities
allow for greater perturbation resistance

• PRF83/85 example highlights importance
of robustness metric.
— PRF 83 and 85 have nearly the same load range (-1 bar), but differ in

PRF85 CR = 12
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PRF & TRF Sweep: Minimum RON?

• Sweeps of reference fuels indicate a
minimum autoignition resistance
required under the chosen
operating conditions

— Shifts in engine speed, CR, or Om range
would shift the minimum fuel

autoignition resistance

• More autoignition-resistant fuels
extend high-load range, but do not
hinder low-load range

• Octane-sensitive fuels more tolerant
of higher compression ratios
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RON and MON as Predictors of Load Range
CRT

Fue1 Properties Correlations1 
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1."1"111 7
I .,,x, Octane Index vs. Autoignition
Cl?F:
• Six fuels have been tested experimentally in this combustion mode.
• For those operating conditions that allow meaningful application of
Octane Index, the correlation has generally been OK.

• Yesterday, Dario Lopez-Pintor examined several factors that can cause
poor correlation between autoignition and 01.
— Engine speed.

— Lower 0.

— Lack of deflagration-based

pressure rise in HCCI mode.

• Another factor may be absence of
residual NOx for pure HCCI mode.
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Role of NO. for Autoignition and 01

• Another factor may be absence of residual NOx for pure HCCI mode.

/ • RON and MON tests are "tainted" by residual NOx.

• Sensitivity to NOx is likely to differ between fuels.

—As well as between combustion modes and operation conditions.
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Future Work: Extending Study to Drive Cycle
CRT
• Range of operating conditions will be
expanded to consider engine speeds
from 1000 — 2000 rpm.

• Results will be used to assess benefit
over drive cycle using a time-weighted
approach.
— Lower-RON fuels may see larger relative

benefit (due to more-severe stoichiometric
knock limits) but offer less load range and
robustness.
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Future Work: Identify Fuel Properties

• The promise of Co-Optima is to
identify the optimal combination of
fuel and engine combustion.

• Need to perform extensive search for
better fuels.

• What fuel property metrics are best
at capturing the observed FE gains of
mixed-mode combustion?

• Large data sets will be available for
"data mining".
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Summary

1. What is lean end-gas autoignition? A 50-50 deflagration-autoignition
combustion mode for efficient, lean, controllable combustion.

2. Can we model fuel effects leading to efficiency benefits? Yes, with
appropriate validation we can construct models which reproduce trends
observed experimentally, and translate this to anticipated efficiency gains.

3. What have the models taught us? The fuel requirement synergies between
stoichiometric SI and mixed-mode combustion are surprisingly strong. Both
modes require autoignition resistant fuels to achieve "High Loads." Fuels
with high Octane Sensitivity show less sensitivity to intake boosting,
thereby extending load range.

4. Future Work: Extend study to broader engine speed range, assess benefit
over drive cycle. Conduct experimental validation on predicted limits.
Make data available for "data mining".
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