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« Well cementing is the process of placing a
cement slurry in the annulus space between the
well casing and the surrounding for zonal
isolation s

Goal Is to eliminate fluids migration in the well

Challenges in oil well cementing operations:
 High temperature, high pressure, weak or porous
formations, corrosive fluids

Cement slurry design for the oil well is a
function of various parameters:
« Well bore geometry, casing hardware, drilling mud
characteristics, filtration and mixing conditions etc.

Rheological behavior of oil well cement slurries
IS significant in well cementing operation Schematic diagram of oil well cementing
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* In general, non-Newtonian (non-linear) fluids exhibit one or all behaviors:
» The ability to shear-thin or shear-thicken o
 The ability to creep ’

 The ability to relax stresses
» The presence of normal stress differences in simple shear flows

« The presence of yield stress

plastic viscosity

Shear stress

» For cement slurry:
* Viscosity depends on the shear rate, volume fraction

* Cement has a yield stress
« Cement shows thixotropic behavior

Rheopectic

Newtonian

Shear rate

Shear stress

Thixotropic

Constant shear velocity

Time

U.S. DEPARTMENT OF




Mathematical Model-Governing Equations

* Conservation of mass
] .
a—': + div(pv) =0
p: density of cement slurry
v: velocity vector, div(v) = 0 for an isochoric motion

» Conservation of linear momentum
d :
P d—’: = divT + pb
d/dt: total time derivative, given by dd—? = % + [grad()]v

b: body force vector
T Cauchy stress tensor given by the constitutive equation

» Conservation of angular momentum
T=T1"

« Convection - diffusion equation
2+ div(p) = f

¢: volume fraction

f: diffusive particle flux that is to be determined by the constitutive theory
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Mathematical Model-Constitutive Relations ¥

I. For thelviscous stress tensor T
T=T,+T,

T, yield stress — future work

il

T, viscous stress, which is dependent on shear rate, particle volume fraction, temperature, pressure, cement hydration, etc.

A modified second grade (Rivlin-Ericksen) fluid model is applied for viscous stress of cement slurry (Massoudi & Tran, 2016)
2

T, = —pl+ uerr(Pp,A1)A; + 14z + @Ay (5)

p: pressure

¢: volume fraction
A,,: n-th order Rivlin-Ericksen tensors

where 4; = Vv + 7vT A, = 221

dr
aq, a,: normal stress coefficients
Uer - effective viscosity, which is dependent on volume fraction (Krieger 1959) and shear rate

_ﬁ m
ey (b AD = po (1= ) [1+ atray?]

Uo: Viscosity of the cement slurry without particles; ¢,,,: maximum volume concentration of solids; 8, m: material parameters

+ A1\7v + VvTAl
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Mathematical Model-Constitutive Relations ¥E %’%é%"%%@
I1. For the diffusive particle flux f
f = —divN (6)
N flux vector, related to the movement of the particles (Philips et al, 1992)
N = +N” +Nb = —az(]bzf/KﬂV(ln,ueff) —DV(p

spatially varying viscosity Brownian diffusive flux

D is the diffusion coefficient (diffusivity), which is the function of y and ¢

D(y,$) = n||A1*|| - Do[Ky + Ko(1 = $)?+K3 (¢ — $)*H(m — )]

(Bridges and Rajagopal 2006; Garboczi and Bentz 1992)

a: particle radus; K. and K,,: empirically coefficients; Dy: the diffusivity parameter

K;,K, and K;: fitting coefficients,H: Heaviside function, H(x) = 1 forx > 0, H(x) =0forx <0
Substitute two constitutive relations (5) (6) into convection-diffusion equation (4)
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Steady Flow of a Cement Slurry
« The motion is steady and fully developed
Surface * The flow is assumed to be one-dimensional

* The velocity and the volume fraction forms:

¢ = o)
-
{v =v(y)e, (")
Non-dimensionalization:
-_ Y. -_V
Y=uw''Tvy

Formation

Boundary conditions:
c ¥(¥y =—-1)=0; v(y =1) = 0 (no-slip)

1 —
* f_l ¢pdy = ¢avg
$avg- average value of ¢ integrated over the cross section

Cement Slurry
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Conservation of mass (Eqn. (1)) is satisfied automatically with the form of ¢ and v in Eqn. (7)
Substitute viscous stress tensor T (Egn. (5)) into conservation of linear momentum (Egn. (2)) with non-dimensionalization

aay {(1 - —) ll + R, (d;) Z;’]} R, — R,sin6 ] (8)

Substitute concentration flux f (Eqgn. (6)) into convection - diffusion equation (Eqgn. (4)) with non-dimensionalization

S ST o) e

fﬁ

av
ay

a0
ay

av
ay

dv d%v

[ dv\?| d¢
1o (2] 2r B8y L1 )

dv

dy [RS + R4(1 ¢)2 + R5(¢m ¢)2H(¢m -

+¢
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Numerical analysis N=
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« The dimensionless differential equations are solved using the MATLAB solver bvp4c

bvp4c

Solve boundary value problem — fourth-order method

Syntax

sol = bvpdc({odefun,bcfun,solinit)
sol = bvpdc(odefun,bcfun,solinit,options)

* The step size is automatically adjusted by the solver
* The tolerance for the maximum residue is 0.001

» The constrain boundary condition for ¢,,,was applied by shooting method
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Parametric study

* The designed values for dimensionless numbers and parameters
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0.45, 0.5, 0.55, 0.6, 0.65
0, 0.02, 0.04, 0.06, 0.08
0°, 30°, 45°, 60°, 90°
-0.3,-0.1,0,0.1,0.3,0.7
0.01,0.1,1, 10
0, =, =2k, =2
0,05,1,15
0.01,0.1,1
0.01,0.1,1
0.01,0.1,1
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Parametric study
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Problem statement

Unsteady Flow of a Cement Slurry

Surface Surface

Earth Earth
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« The motion is unsteady and in transient state

* The flow is assumed to be one-dimensional

 The velocity and the volume fraction forms:

{ ¢ = ¢p(r,t)

v=v(rt)e,
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Studied the steady and unsteady flow of cement slurry with different inclinations
Modeled the cement slurry as a non-Newtonian fluid with viscosity dependent on shear rate and volume fraction
Numerically solved the non-dimensionalized governing equations and boundary conditions

Through parametric study, the velocity and volume fraction profiles are affected by shear rate dependent viscosity, particle flux
parameters, angle of inclination, pressure and gravity term

Future work:

Consider the yield stress portion T, of the stress tensor T from experiment-based models in the non-Newtonian model

Consider viscosity as a function of one or all of the following:
» Shear rate y
* \olume fraction ¢
e Temperature T
* Pressure p
 Thixotropic behavior (structural parameter describing the degree of flocculation/aggregation A(t))
+ Water-to-cement ratio wi/c
» Additives (Superplasticiser)
* Mixing method ...

,Ll(]/, (:b' T' p, A(t)) W/C, )
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