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Abstract

The majority of the current structural optimization software does not accommodate manufacturing
constraints. Therefore, substantial modifications are imposed upon optimized designs to make them
manufacturable and hence nonoptimal. We propose to optimize the design of composite structures that
are amenable to Additive Manufacturing (AM). The printing process chosen in our study is based on
Direct Ink Writing (DIW) in which short carbon fibers in a thermoset resin are extruded through a
moving nozzle to build up a structure. Since the fibers are primarily aligned in the flow direction of
the extrudate, the DIW printing trajectory influences the material properties of the composite structure.
To accommodate this, the extrudate trajectory follows the contours of parameterized level-set functions.
The parametrization allows us to prescribe the material properties and impose many DIW manufacturing
constraints such as no-overlap, no-sag, minimum radius of curvature and continuity of the toolpaths.
Ultimately, we obtain optimal manufacturable toolpaths that start and finish at a boundary. To minimize
the fabrication time, we formulate the linking sequence of the toolpaths as a traveling salesman problem
which we solve to obtain the shortest continuous toolpath per layer. Several examples illustrate the
optimization procedure. Validation is also performed.

1 Introduction

Composite materials are integral in the design of countless structures due to their favorable physical prop-
erties. Indeed, the mechanical properties of these materials are designed to be superior to those of their
individual constituent materials. This is accomplished by optimally placing the constituents within the
composite so as to tailor the material properties [1, 2]. Additive Manufacturing (AM) technology adds the
potential for further control of this placement by depositing materials in precise microstructure patterns.

Structural optimization of laminated composite structures has been studied extensively. Problems have
been solved to find optimal shape, thickness, number of plies, and/or stacking sequence of the laminates
to maximize stiffness, failure load, etc. These challenging design problems are often nonlinear, non-convex,
multi-modal, multi-dimensional and expressed with discrete and/or continuous design variables. To solve
these problems, researchers have used gradient-based, direct search, heuristic, and hybrid optimization tech-
niques. In general, gradient-based methods are the most efficient although they may only find local minima
[3]. For more comprehensive reviews on the design of composite structures, the reader is referred to [4, 5, 1, 3].

Unfortunately, many optimized composite structures are not practical because current structural opti-
mization software does not accommodate manufacturing constraints [2]. Therefore, substantial modifications
are imposed on the optimized designs to make them manufacturable and hence render them nonoptimal. To
make matters worse, Topology Optimized (TO) designs are geometrically complex and difficult to manufac-
ture with traditional manufacturing processes. Fortunately, AM is able to accommodate such complexities,
however, there are still restrictions [6, 7]. To these ends, research in TO for isotropic materials has incor-
porated AM constraints that quantify minimum feature size [8, 9, 10, 11], maximum feature size [12], self
support requirements [6, 13, 7, 14, 15], and build direction. Support structure considerations is an especially
active research topic. This is because support structures serve as building platforms and heat sinks that
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reduce residual stress and deformation (e.g., distortion/curling) [16]. However, supports also increase man-
ufacturing effort and cost [17]. Additional challenges such as the anisotropy induced by the layer-by-layer
fabrication process, and the intrinsic anisotropy of the material warrant additional research [18].

Future research must further integrate TO designs with their manufacturing processes. For instance, TO
designs require conversion to transform them to Stereo Lithography (STL) Computed Aided Design (CAD)
models [6, 19]. Then, another software slices these CAD models into layers and generates the AM printer
commands, e.g., the G-code used in Computer Numerical Control (CNC) machines.

Along with AM, other technologies such as Automated Tape Laying (ATL) and Advanced Fiber Place-
ment (AFP) produce curvilinear fiber paths in composite structures. All these technologies produce struc-
tures with greater potential for mechanical performance improvements versus straight fiber laminates. As
expected, however, curvilinear paths require more manufacturing restrictions than straight fiber laminates.
These restrictions include constraints on path continuity, gaps, overlaps, maximum curvature, minimum cut
length, fiber angle deviation, boundary smoothness and fiber bridging [2]. Despite the extensive study of
structural optimization of variable stiffness composites, the integration of these manufacturing constraints
into the design optimization problem is lacking [2].

Structural composite fiber optimization begins with discretizing the structure by finite elements. In the
most naive approaches, the fiber orientation is optimized in each element. However, rapid changes of the
optimized fiber orientations produce discontinuous fiber paths which cannot be manufactured. To overcome
this, a post-processing step is required to produce continuous and manufacturable fiber paths that best
fit the optimized fiber orientations; this step is nontrivial. To improve fiber path continuity, Abdalla et
al. [20, 21, 22] use classical lamination theory and define the elasticity coefficients in terms of four nodal
lamination parameters. The stiffness of the laminate is continuous, however, post-processing is required
to obtain fiber paths. Setoodeh and Blom [23] retrieve the fiber paths from the stiffness distribution in a
post-processing step using a curve fitting technique that imposes a curvature constraint. Later, Setoodeh et
al. [24] use nodal rather than elemental fiber orientation parameters to obtain a continuous fiber orientation,
however, the spatial derivatives and thus fiber curvature is discontinuous across the element boundaries.
They also propose a heuristic pattern matching technique to improve manufacturability. Again in a post-
processing technique, Blom et al. [25] use a streamline method to generate continuous fiber paths from the
fiber orientation distribution. Kiyono et al. [26] filter the orientation distribution to improve smoothness,
however, the fiber paths are still discontinuous due to the element-based discretization.

To ensure continuous fiber paths, researchers have replaced the finite element based fiber orientation
descriptions with functional representations e.g., NURBS, Lagrangian polynomials, Bezier curves, constant
angle and constant curvature paths [27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. To overcome overlap is-
sues, Tatting et al. [38] use a post-processing tow-dropping method, however, this creates small wedge-like
gap regions. Waldhart et al. [39, 40] define the fiber path by a curve that is parameterized by a single
variable allowing them to satisfy a maximum curvature constraint. Other researchers [41, 42] define a point-
wise curvature constraint via a single maximum curvature measure. However, it is well known that the
non-differentiable max function produces numerical issues which inhibit the effectiveness of gradient-based
optimization algorithms.

Brampton et al. [43] proposed a level-set method to describe continuously varying fiber paths that
can be manufactured with AFP technology. This approach defines a primary fiber path as the zero level-
set. Adjacent fiber paths are obtained from the primary path using the fast marching method [44]. This
extrapolation obtains evenly spaced fiber paths, but discontinuities can appear, reducing manufacturability.
The zero level-set, i.e., design, is updated with a Hamilton-Jacobi formulation using approximate sensitivities
that are obtained using an energy-based method [45]. The inefficiency of the Hamilton-Jacobi formulation,
and the approximated sensitivities, result in an optimization algorithm that convergences slowly and is highly
dependent on the initial design, however, there is much potential offered from the level-set method.

Roberge and Norato [46] use element path spacing and orientation parameters to optimize curvilinear
scaffolds that are fabricated via Direct Ink Writing (DIW). To obtain manufacturable toolpaths, they trans-
form the path spacing and orientation distribution into a scalar field whose level-set contours represent the
toolpaths. This post-processing transformation uses linear least squares and a smoothing filter.

Liu and Yu [47] integrate TO with the level-set description for path planning in the AM process. The
zero level-set is interpreted as the domain boundary, and level-set contours in the domain are interpreted
as toolpaths. A heuristic multi-step algorithm is required to overcome issues related to approximated sensi-
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tivities. Liu and To [48] extended this work to three-dimensional structures subject to support constraints
wherein, a multi-level-set interpolation ensures that the upper layers are supported by the lower layers.
Again due to sensitivity approximations, the optimization algorithm exhibits poor convergence. All of these
post-processes, yield fabricated parts that do not match the original TO designs; optimality is compromised.
In our work, we ensure this does not occur.

Current
layer

Nozzle

Structure

(a)

Resin
matrix

Short
fiber Nozzle

(b)

Figure 1: Schematic representation of the (a) DIW printing process and (b) short fiber alignment.

The enforcement of manufacturing constraints in the optimization should be effective and efficient. For
example, implicit manufacturing constraints enforced with heuristic methods result in algorithms with poor
convergence (e.g., the use of a fast marching method in [43]) and designs that do not necessarily satisfy the
desired manufacturing constraints (e.g., the use of a filter in [26]). Explicit constraints are preferred. Our
work integrates explicit manufacturing constraints into the optimization such that the resulting designs are
readily manufacturable.

We propose to optimize the design of Fiber Reinforced Composite (FRC) structures that are amenable
to AM. The process of our study uses DIW wherein a thermoset resin which contains short carbon fibers
is extruded through a moving nozzle and quickly cured or semi-cured thereby forming the FRC structure
[49], cf. Figure 1. During the extrusion, the fibers orient themselves with the flow direction and, as reported
in [49] an 8 vol.% of carbon fibers in an FRC manufactured using this DIW technique has a directional
Young’s Modulus that is 37% higher than the equivalent FRC with randomly oriented carbon fibers. Thus,
we have the ability to tailor the structural properties by tailoring the toolpath trajectory. However, not
all toolpaths are realizable, e.g., the paths on each layer cannot overlap and for correct alignment of the
fibers the toolpath cannot change direction abruptly. To accommodate these DIW fabrication restrictions,
we define the toolpaths of each printed layer by the contours of a level-set function. The level-set surface
is defined from a B-surface and the heights of the B-surface control points serve as the design variables in
the optimization. This parametrization allows us to explicitly define the DIW constraints and the structural
mass and stiffness. We apply this technique to minimize the compliance of three-dimensional FRC structures
fabricated via DIW. We perform sensitivity analysis with respect to the level-set parametrization, making it
amenable to gradient-based optimization algorithms which exhibit fast convergence and satisfy the optimality
conditions.

The optimal toolpaths for our optimized design start and stop at the domain boundary, cf. Figure 10. To
enable the DIW process, we must link these start and stop boundary points together to form a continuous
path. And to minimize manufacturing time, we want the shortest path. To these ends, we formulate and
solve a Traveling Salesman Problem (TSP). Having the shortest layer toolpaths, we generate the G-code for
the DIW path planning. Optimized designs can then be readily validated via fabrication and testing, we do
such validations.

The remainder of the paper is organized as follows. In Section 2, we describe the toolpath parametrization
using level-sets. Section 3 explains the imposition of the DIW constraints. In Section 4, we present the
material model. We discuss the elastostatic and optimization problems in Sections 5 and 6 respectively.
In Section 7, we explain how to generate the optimized G-code from the level-set function. The numerical
implementation and examples are provided in Section 8. We conclude in Section 9.
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2 Parametrization

Figure 2: Domain Ω divided into nl layer domains Ωi.

The DIW process prints the structural domain Ω layer by layer from bottom to top. Essentially, we slice
Ω into nl layers of thickness h to form the layer domains, Ω1,Ω2, ...,Ωl, that are stacked in the ê3 direction,
cf. Figure 2, such that Ωi = {x ∈ Ω | (i− 1)h < x · ê3 < ih}.

Figure 3: A level-set function φi defined by a rectangular grid of 7× 6 control points.

Pi

ê1

ê2

∇φi

t

α

Figure 4: Cki contours of level-set function φi.

We define the toolpaths for the layer Ωi at its mid-plane Pi = {x ∈ Ωi |x · ê3 = (i − 1)h + h/2}. The
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Figure 5: Spatial view of material deposited.

toolpath centerlines Cki for each layer Ωi are represented implicitly by the contours of a level-set function φi

Cki = { x | φi(x) = k b}, k ∈ Z. (1)

The contour values k b that define the toolpaths are integer multiples of an arbitrary parameter b. In Figure
4, we show a set of contours φi(x) = 1b, 2b,..., 12b, where each color represents a different level. In Figure
5, we see how the deposited material of width w will look if we follow the toolpaths represented by these
contours. For convenience and without loss of generality, we choose b = w.

The level-set function φi : Pi → R for the layer Ωi is defined over the plane Pi by φi(x) = dT
i N̂(x),

where the vector of basis functions is N̂(x) = [N̂1(x), N̂2(x), ..., N̂n(x)]T ∈ Rn and the vector of control point
height parameters is di = [di1, di2, ..., din]T ∈ Rn (cf. Figure 3 and Appendix A). The latter serve as the
design variables in the optimization.

As discussed in Section 3, to accommodate the DIW constraints, we require a C2-continuous level-set
function φi. This smoothness guarantees continuous toolpaths with no jumps in curvature. Cubic B-splines
are C2-continuous curves defined with piecewise cubic polynomials. For this reason, we represent the level-
set functions using B-surfaces constructed with bi-cubic B-splines. And for convenience, we define the
B-surface over a fixed rectangular grid of control points. In this way, the design description is independent
of the finite element mesh that we use for structural analysis. Designs are not invariant with respect to
the orientation of the rectangular grid of control points, however, this effect can be neglected for a smooth
function and/or a sufficiently refined grid. Moreover, large changes in the curves can be obtained without
the addition or subtraction of control points as opposed to explicit curve definitions [50, 51]. The B-spline
toolpath definition allows for internal loops, however in our method, manufacturing constraints prohibit this
possibility, cf. Section 3. With this parameterization, we drastically reduce the number of design variables
versus finite element based parameterization schemes and we ensure the toolpaths on each layer are smooth
and well spaced.

The toolpath orientation is a function of the level-set function φi. To see this, we define derivatives of
the basis functions as B̂1 = (∂N̂/∂x1)T and B̂2 = (∂N̂/∂x2)T, and calculate the gradient of the level-set
function

∇φi(x) =

[
∂φi(x)
∂x1
∂φi(x)
∂x2

]
=

[
B̂1(x)

B̂2(x)

]
di . (2)

Next, we let rki (t) be any parametrization of the toolpath Cki . By the chain rule dφi(r
k
i (t))/dt = ∇φi(rki (t)) ·

drki (t)/dt = 0, which implies ∇φi(rki ) is perpendicular to the path tangent vector tki (t) = drki (t)/dt (see
Figure 4), where

tki (t) =
1

|∇φi(rki (t))|

[
∂φi(r

k
i (t))

∂x2

−∂φi(r
k
i (t))

∂x1

]
=

1

|∇φi(rki (t))|

[
B̂2(rki (t))

−B̂1(rki (t))

]
di . (3)

The toolpath orientation angle α is given by the inclination of t with respect to the ê1 axis as seen in Figure
4, i.e., αki (t) = atan2

(
−∂φi(rki (t))/∂x1, ∂φi(r

k
i (t))/∂x2

)
. Generalizing this, we define the orientation angle
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at any point x by

αi(x) = atan2

(
−∂φi(x)

∂x1
,
∂φi(x)

∂x2

)
, (4)

cf. Figure 6. In the above, atan2(a1, a2) is the arctangent function of the two arguments a1 and a2 that
returns the angle α such that sin(α) = a1/

√
a2

1 + a2
2 and cos(α) = a2/

√
a2

1 + a2
2.

Ck
i

Ck−1
i

x∗
k

x∗
k−1

x αi

l
k
i

l
k−

1

i
li

li

b

b

ê1

ê2

Figure 6: Distance between toolpaths and representative volume element.

As discussed in Section 3, overlap and sagging constraints are functions of the distance between the
toolpaths. To evaluate the distance between adjacent toolpaths Cki and Ck−1

i at the point x in each layer Ωi
(cf. Figure 6), we must find the closest point x∗k on the path Cki to x; it is the y that solves the minimization
problem

min
y

|y − x|2

subject to φi(y) = k b.
(5)

The solution to the above satisfies the Karush-Kuhn-Tucker (KKT) optimality conditions

2(x∗k − x) + λ∗∇φi(x∗k) = 0 (6)

φi(x
∗
k)− k b = 0 (7)

where λ is the Lagrange multiplier. However, we instead define x∗k = x + ∆xk and assume ∆xk and
λ∗∇2φi(x)∆xk are small. Whence the first order Taylor series expansions give

φi(x
∗
k) ≈ φi(x) +∇φi(x) ·∆xk , (8)

∇φi(x∗k) ≈ ∇φi(x) +∇2φi(x)∆xk . (9)

which when combined with Equations (6) and (7), gives

∆xk ≈
k b− φi(x)

|∇φi(x)|2
∇φi(x). (10)

The closest point on the toolpath Ck−1
i to x is similarly approximated as x∗k−1 = x + ∆xk−1 where

∆xk−1 ≈ −
(k − 1) b− φi(x)

|∇φi(x)|2
∇φi(x). (11)

Finally, the distance between the two toolpaths Cki and Ck−1
i at x, is approximated as

li = |∆xk + ∆xk−1| ≈
b

|∇φi|
. (12)

i.e., the spacing between toolpaths depends on the gradient of the level-set function. We use the spacing
between toolpaths and the toolpath orientation angle in the following sections to define the DIW constraints
and the material model.

6



3 DIW constraints

As mentioned in the previous section, the spacing between toolpaths is related to the gradient of the level-set
function. Even spacing between toolpaths indicates the level-set function has a uniform gradient. Closely
spaced toolpaths are indicative of large |∇φi| values, whereas widely spaced toolpaths are indicative of small
values.

Figure 7: Cross-section of layer i showing overlap and maximum distance between tool-paths to prevent sag
of top layer.

In Figure 7, we show the cross-section of the printed paths of a layer i. Notice that the minimum allowed
distance between toolpaths is b. So, toolpaths do not overlap if li ≥ b. Using Equation (12), we express this
no-overlap constraint by

|∇φi(x)| ≤ 1. (13)

This constraint must be enforced for every point x in each layer Ωi, i.e., it is a local constraint.
To consolidate local constraints into a single global constraint, we mimic Amstutz et al. [52] and express

one overlap global constraint for each layer Ωi as

Gai =

∫
Pi

R(|∇φi|2 − 1) da ≤ 0 , (14)

where R is a ramp function such that

R(θ) =

{
0, if θ ≤ 0

mθ, if θ > 0 ,
(15)

where m > 0. It is easily seen that if, for some region in the domain, |∇φi| > 1, then the constraint is
violated, i.e., Gai > 0. We thus have one overlap constraint per layer. It is also possible to aggregate the
layer-wise constraints into a single constraint Ga =

∑
Gai , similar to the aggregation of stress constraints

for multiple load cases in [53].
To use gradient-based methods to solve the optimization problem, we redefine R as the continuous

differentiable piecewise function

R(θ) =


0, if θ ≤ −δ
m
(
θ3

6δ2 + θ2

2δ + θ
2 + δ

6

)
, if − δ < θ ≤ 0

m
(
− θ3

6δ2 + θ2

2δ + θ
2 + δ

6

)
, if 0 < θ ≤ δ

mθ, if δ < θ

(16)

where a smaller δ corresponds to a sharper transition at θ = 0, cf. Figure 8. The coefficients m and δ must
be chosen such the numerical optimization is stable.

To enforce evenly spaced toolpaths, researchers [43, 47] extrapolate the zero level-set using the fast
marching method [44]. As mentioned in the introduction, this extrapolation does not always guarantee
continuous paths. If required, a no gap constraint can be added to the problem formulation by enforcing the
separation between the toolpaths to be constant (i.e., l = b or |∇φ| = 1). However, the toolpaths do not need
to be evenly spaced in our DIW process. That said, if no volume constraint is imposed, somewhat evenly
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−δ δ0

mδ

θ

R(θ)

Figure 8: Approximate ramp function.

spaced toolpaths naturally appear in the designs produced in the Results Section because the optimizer
wants a stiffer, fully dense, structure.

In DIW processes the extruded material sags if it does not have proper support, cf. Figure 7, especially
if the printed material cures slowly. To prevent sag, we consider the two adjacent toolpaths Cki and Ck−1

i on

layer Ωi illustrated in Figure 9. Line AC, represents a portion of the layer Ωi+1 toolpath Cji+1 immediately

above toolpaths Cki and Ck−1
i . As seen in the figure, points A and C on layer Ωi support Cji+1 on layer Ωi+1.

The distance between these support points at x ∈ Ωi is approximated by

lAC =
li∣∣∣sin(αji+1 − α

k−1
i

)∣∣∣ , (17)

where li is the Equation (12) approximated distance between toolpaths Cki and Ck−1
i , and αji+1 and αk−1

i

are the orientation angles of toolpaths Cji+1 and Ck−1
i at A. We approximate these angles by αji+1 ≈ αi+1(x)

and αk−1
i ≈ αi(x). Sag occurs if lAC is larger than the maximum allowed distance lmax, and thus at each

x ∈ Ωi we require lAC ≤ lmax. These local no-sag constraints are agglomerated for each layer Ωi as

Gbi =

∫
Pi

R

(
1− l2max

b2
|∇φi|2 sin2 (αi+1 − αi)

)
da ≤ 0 , (18)

where R is the smooth ramp function of Equation (16) and we use Equations (4), (12), and (17) to express
αi and αi+1 in terms of φi and φi+1.

Ck
i

Ck−1
i

Cj
i+1

B

A

C

αk−1
i

αj
i+1

li

x

Figure 9: Support points A and C in toolpaths Ck−1
i and Cki for upper toolpath Cji+1.

The Gbi no-sag constraints, forces toolpaths to be closely spaced on each layer, and to form a cross-pattern
with respect of the toolpaths of their adjacent layers. And because 0 ≤ sin2 (αi+1 − αi) ≤ 1, the slope of the
level-set function is bounded from below as |∇φ(x)| ≥ b/lmax. An important consequence of this constraint
is that toolpaths cannot form internal loops, guaranteeing continuous toolpaths across the domain. Using
a similar argument with Equations (12), (13) and (17), we determine that the angle difference between the
toolpaths of the adjacent layers is bounded by

|αi+1 − αi| ≥ sin−1

(
b

lmax

)
> 0, (19)
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i.e., toolpaths on an upper layer should not be parallel to the toolpaths of its supporting layer. This constraint
further enforces a well-supported cross-pattern between adjacent layers.

Manufacturable toolpaths have a minimum allowable radius of curvature rmin because in regions with
small radius of curvature, the fibers do not align with the toolpath. To satisfy this minimum radius of
curvature constraint, we compute the path curvature κi via the divergence of the curve Cki normal vector,
i.e., κi = ∇ · ni, where ni = ∇φi/|∇φi|. For our level-set representation this reduces to

κi = ∇. ∇φi
|∇φi|

=

∂2φi

∂x2
1

(
∂φi

∂x2

)2

− 2 ∂2φi

∂x1∂x2

(
∂φi

∂x1

)(
∂φi

∂x2

)
+ ∂2φi

∂x2
2

(
∂φi

∂x1

)2

|∇φi|3
, (20)

where the second derivatives are computed by differentiating Equation (2).
The curvature is continuous since we require φi ∈ C2. This is ensured by using bi-cubic B-splines to define

φi. Jumps in curvature are prohibited, but the radius of curvature can adopt any value ri = |κi|−1 > 0
hence we enforce a minimum curvature constraint |κ−1

i | ≥ rmin via the layer Ωi global curvature constraint

Gci =

∫
Pi

R(r2
min κ

2
i − 1) da ≤ 0 . (21)

This constraint also eliminates the rapid changes in the fiber orientations which often appear in finite element
based parameterizations [24].

4 Material modeling

The printed structure is modeled as a variable stiffness composite laminate in which the material volume
fraction and stiffness are homogenized in terms of our level-set function. To approximate the volume fraction
of the material at x ∈ Ωi, we introduce a rectangular parallelepiped as a Representative Volume Element
(RVE) of size li × li × h oriented with the angle α with respect to the ê1 axis, cf. Figure 6. In this RVE, we
assume the toolpaths are parallel. Thus, the minimum radius of curvature constraint also helps to maintain
the integrity of our RVE formulation as we minimally require rmin > lmax. As seen in the Figure 6, x∗k ∈ Cki
and x∗k−1 ∈ C

k−1
i are the closest toolpath points to x, and lki and lk−1

i are their respective distances from x.

The lateral RVE dimension li = lki + lk−1
i is the distance between the toolpaths. Using Equation (12), we

compute the volume fraction of material enclosed in the RVE at x ∈ Ωi as

νi ≈
b li h

l2i h
= |∇φi| . (22)

We compute the total volume fraction of the design as

νT =
1

VΩ

nl∑
i=1

∫
Ωi

νi(x) dv , (23)

where VΩ is the total volume of the domain Ω.
We homogenize the stiffness in the layer Ωi at each point x using the volume fraction, νi, and the fiber

orientation αi, i.e.,
C
∗
i (x) = νi(x)C(αi(x)) , (24)

where
C(α) = (Rz(α) � Rz(α)) C0 (Rz(α) � Rz(α))

T
, (25)

C0 is the stiffness of the full volume fraction material with fibers parallel to ê1, Rz is an α rotation tensor
about the ê3 axis, and � represent the conjugation product with components (A � B)ijkl = AikBjl.
The material properties for each layer Ωi vary in the plane Pi; they are uniform in the ê3 direction. See
Appendices B and C for further details. Adjacent layers, i.e., Ωi+1 and Ωi−1, may have interfacial stiffness
with Ωi, however our analysis assumes full adhesion between layers, cf. Appendix D.
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The sensitivity of the stiffness is given by

∂C∗i
∂di

=
∂νi
∂di

C+ νi
∂C

∂αi

∂αi
∂di

, (26)

where the components of ∂C/∂αi are provided in the Appendix C. The derivative of the orientation angle
with respect to the design variables follows from Equations (2) and (4), i.e.,

∂αi
∂di

=

∂φi

∂x1
B̂2 − ∂φi

∂x2
B̂1

|∇φi|2
. (27)

The derivative of the volume fraction follows from Equations (2) and (22)

∂νi
∂di

=

∂φi

∂x1
B̂1 + ∂φi

∂x2
B̂2

|∇φi|
. (28)

5 Elastostatics

The governing equations for the displacement u of our linear elastic body are

divσ + f b = 0 in Ω ,
σ = C∗i ε in Ωi for i = 1, 2, ..., nl ,
ε = (∇u +∇uT)/2 in Ω ,
u = 0 on Γu ,

σ n = f t on Γt ,
σ n = 0 on Γ0 ,

(29)

where f b is the body force, σ and ε are the stress and strain tensors, n is the normal vector to the domain
boundary ∂Ω. The displacement is fixed on the boundary Γu and the traction f t is prescribed on Γt and
zero over Γ0 = ∂Ω \ (Γu ∪ Γt).

In this study, the cost function is the usual compliance, i.e.,

c =

∫
Ω

u · f b dv +

∫
Γt

u · f t da . (30)

Using the adjoint method, the sensitivities are (cf. [54, 55])

Dc

Ddi
= −

∫
Ωi

εT
∂C∗i
∂di

ε dv. (31)

Note that we compute this integral for each layer Ωi to evaluate the sensitivities with respect to its layer Ωi
design variable vector di.

6 Optimization problem

As mentioned above, our goal is to design an FRC structure that minimizes compliance and satisfies manu-
facturing constraints. To these ends, we solve the optimization problem

min
d

c

subject to νT ≤ νmax,
Gai ≤ 0, i = 1, 2, ..., nl

Gbi ≤ 0, i = 1, 2, ..., nl − 1

Gci ≤ 0. i = 1, 2, ..., nl

(32)

where νmax is the maximum allowable total volume fraction.
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We use the nonlinear programming software IPOPT [56] to solve the optimization problem. Exact sensi-
tivities are provided to this optimizer to solve the problem accurately and efficiently. In the previous section,
we described how to evaluate sensitivities of the compliance cost function. The sensitivity computation of
the constraints is straightforward as they are explicit functions of d.

It is well known that nonlinear programming optimizers usually converge to local minimizers, mak-
ing the initial design very important. We start from a feasible design in which each layer is made of
parallel-straight toolpaths with volume fraction ν = νmax. To do this, we define the layer vectors ai =
νmax [− sin(αi), cos(αi), 0]T and φi = ai · x so that ∇φi = ai is uniform and |∇φi| = |ai| = νmax. We then
solve the optimization problem

min
α1,α2,...,αnl

c

subject to G0
i ≤ 0 i = 1, 2, ..., nl − 1

(33)

where

G0
i = 1− l2max

b2
ν2
max sin2 (αi+1 − αi) ≤ 0. (34)

is the no-sag constraint, cf. Equation (18). The solution of Equation (33) i.e., optimal layer angles αi, is
used to define the initial design variables di such that (di)j = φi(xj) = ai ·xj where xj are the control point
coordinates for layer Ωi.

7 G-code generation

Since |∇φi| > 0, we are assured the level-set contours on each layer Ωi are continuous and contain no loops
(cf. Section 3). As such, the toolpaths start and finish at a boundary and we need to link them to form a
continuous toolpath to generate the layer Ωi G-code. Ideally, we would like the shortest toolpath possible so
as to minimize production time and waste, i.e., amount of trimmed material. Traditional zigzag (cf. Figure
10a) and one-way (cf. Figure 10b) methods to connect the contours generally do not obtain the shortest
continuous toolpath [57] especially if there are holes. To address this path generation problem, we formulate
and solve a TSP. Given a finite number of cities and the cost of travel between each pair of cities, the solution
of the TSP finds the cheapest route of visiting each city once and returning to the starting city. To formulate
the linking sequence of the toolpaths as a TSP, we must define the cities and the cost of travel between them.

(a) (b)

〈m〉

〈3nt + 1〉

〈n〉

(c)

Figure 10: (a) Zigzag linking method, (b) One-way linking method, and (c) TSP solution. First, last and
dummy cities are 〈m〉, 〈n〉 and 〈3nt + 1〉 respectively.

In our TSP formulation the first and last points of each toolpath Cki are the cities 〈k〉 and 〈nt + k〉
respectively. We formulate a symmetric TSP where the cost of travel between the cities 〈k〉 and 〈j〉 is their
distance ck,j = cj,k = d(xk,xj). Additionally, we define a halfway city 〈2nt + k〉 located in between the first
〈k〉 and last 〈nt + k〉 cities of each toolpath Cki . Figure 10c depicts the cities and halfway cities with red
dots and the printing direction with black arrows. To ensure that the toolpath follows each Cki , we define
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the distances such that c2nt+k,j = c2nt+k,nt+j = c2nt+k,2nt+j = Dj
k, where

Dj
k =

{
0, if j = k

d∞, if j 6= k ,
(35)

such that d∞ � 1 is a large number. These distance definitions ensure that we respectively visit the cities
along each toolpath Cki in the order 〈k〉, 〈2nt + k〉, 〈nt + k〉 or visa versa 〈nt + k〉, 〈2nt + k〉, 〈k〉.

The first and last point of each trajectory Cki belongs to the boundary ∂Pi, which may be the external
boundary ∂PEi , or a hole boundary ∂PH1

i , ∂PH2
i , ..., ∂PHnh

i , where nh is the number of holes. To avoid
connecting hole boundary cities to external boundary cities, we impose cj,k = d∞ if xj ∈ ∂PHri and xk ∈
∂PEi . Similarly to avoid connecting cities on different hole boundaries, we define cj,k = d∞ if xj ∈ ∂PHri ,
xk ∈ ∂PHsi for r 6= s.

Since we do not need to start and finish in the same city, we add a dummy city 〈3nt + 1〉 with the
following distance definition

c3nt+1,j =

{
0, if xj ∈ ∂PEi
d∞, otherwise.

(36)

In this way, two ∂PEi boundary cities 〈m〉 and 〈n〉 are connected to the dummy city 〈3nt + 1〉. These cities
〈m〉 and 〈n〉 are the first and last cities visited and the path connecting them is 〈m〉, 〈3nt + 1〉, 〈n〉 (cf.
Figure 10c).

Our TSP has 3nt + 1 cities and the symmetric cost matrix cj,k which is computed using the above
definitions. To solve the TSPs, we use the efficient TSP solver Concorde [58]. Once we have the shortest
toolpaths, we can readily write the G-code that guides the AM printer.

8 Examples

We apply our optimization method to generate five designs using the composite material described in Ap-
pendix B. The thickness of the layers and toolpaths are h = 0.3 mm and b = 0.6 mm. We model the
structures using (8-noded) tri-linear prismatic elements in the NIKE3D finite element software [59]. For
numerical integration, NIKE3D uses a 2× 2× 2 Gauss quadrature for each element. The level-set function
for each layer is modeled using bi-cubic B-splines with patch size 10 mm × 10 mm (cf. Appendix A) unless
otherwise stated. For the numerical integration of the constraints, we use a 16× 16 Gauss quadrature over
each B-surface patch. The parameters of the smooth ramp function R are δ = 0.01 and m = 10, the max-
imum sag distance is lmax = 1.6 mm and the minimum radius of curvature is rmin = 2 mm which is larger
than lmax. We compute the compliance c0 for a design with horizontal minimally spaced parallel toolpaths,
i.e., φi(x) = x · ê2 for i = 1, 2, ..., nl. We use this reference compliance c0 to normalize the objective function.
IPOPT converges successfully if the norm of the KKT optimality condition, is smaller than the tolerance
εtol = 10−4 (cf. Equation (5) and (6) in [56]), unless otherwise stated.

8.1 Short cantilever beam

Our first example is a 2 layer short cantilever beam with dimensions shown in Figure 11a. The beam is
subject to a transverse tip line load f = −1 kN/mm ê2 in the middle of the right face. The left face of the
beam is fixed u(x1 = 0) = 0. The finite element mesh has 400 elements of size 1 mm × 1 mm × 0.3 mm.
We model the level-set functions with 1 × 2 B-surface patches per layer, so the optimization problem has
(1 + 3)(2 + 3) = 20 design parameters per layer, cf. Figure 11b. No volume restriction is imposed, i.e.,
νmax = 1.

To find the optimal solution for this short cantilever beam, we start with the initial angle orientation
of ±45° for each layer and solve Equation 33 to find the optimal layer angles ±51.07° with a compliance
c/c0 = 0.852. These optimal angles define the initial level-set functions using the method described in Section
6, cf. Figures 12a and 12b in which the color indicates the contour values and every contour represents a
toolpath. Starting from this initial design, we solve Equation 32 to obtain the optimal level-set function
contours shown in Figure 13a and 13b. As we expect, since νmax = 1, the toolpaths are relatively parallel
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(a)

(1)

(2)

ê2

ê1

1

2

3

10

10

(b)

Figure 11: (a) Short cantilever beam. Out of plane thickness is 0.6. (b) Rectangular grid of control points
per layer. Dimensions in mm.

and evenly spaced because a fully dense design is stiffer. The compliance for this solution is c/c0 = 0.823,
which is stiffer than the initial design.

We form a continuous toolpath for every layer by solving the TSP described in Section 7, cf. Figure 13b
and 13d. As expected, the toolpaths are zigzags. We also added an extra connection to link the bottom and
top layers. For the bottom layer (cf. Figure 13c), the starting point is the blue triangle and the end point
is the blue circle. For the top layer (cf. Figure 13d), the starting point is the red triangle and the end point
is the red circle. Figure 13e shows the juxtaposed toolpaths. Notice that the start point of the top layer is
above the end point of the bottom layer. This path forms the G-code that controls the AM printer.

(a) (b)

Figure 12: Initial level-set functions for the 2 layer short cantilever problem αi = ±51.07°.

We solve the same problem for different volume fraction constraints. Table 1 and Figures 14-16 summarize
and illustrate our results. As expected, the compliance increases as the total volume fraction decreases. If
the number of active DIW constraints is large, the number of design iterations (It.) increases. This occurs for
large maximum volume fraction designs for which the no-overlap constraint is active and for low maximum
volume fraction designs for which the no-sag constraint is active. The designs have similar patterns but
different spacings between toolpaths. However, in all cases, toolpaths are closer together at the load region.
At the bottom and top of the left edge, the toolpaths tend to be horizontal and closely spaced. At the
neutral axis, the toolpaths form a cross structure to carry the shear load. Again as expected, the toolpaths
are closer where the stress magnitude is higher.
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(a) (b) (c) (d) (e)

Figure 13: (a-b) Optimal contours, (c-d) connected toolpaths, and (e) juxtaposed toolpaths for the short
cantilever problem with νmax = 1.0.

(a) (b) (c) (d) (e)

Figure 14: (a-b) Optimal contours, (c-d) connected toolpaths, and (e) juxtaposed toolpaths for the short
cantilever problem with νmax = 0.8.

(a) (b) (c) (d) (e)

Figure 15: (a-b) Optimal contours, (c-d) connected toolpaths, and (e) juxtaposed toolpaths for the short
cantilever problem with νmax = 0.6.

8.2 Long cantilever beam

In this example we design a 4 layer cantilever beam with dimensions shown in Figure 17 and subject to the
line load f = −1 kN/mm ê2. The finite element mesh has 3200 elements of size 1 mm× 1 mm× 0.3 mm.
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(a) (b) (c) (d) (e)

Figure 16: (a-b) Optimal contours, (c-d) connected toolpaths, and (e) juxtaposed toolpaths for the short
cantilever problem with νmax = 0.4.

Table 1: Optimal short beam

νmax c/c0 It.

1.00 0.82326 86
0.90 0.84727 50
0.80 0.92063 49
0.70 1.07301 30
0.60 1.09130 31
0.50 1.28922 59
0.40 1.80676 84

Figure 17: Long cantilever beam. Out of plane thickness is 1.2. Dimensions in mm.

We find the optimal designs for νmax = 0.7 and 5 different stacking sequences: ABCD, ABCA, ABCB,
ABAC, and ABAB, where each letter represents an independent layer of the stack. Each layer level-set
is defined by a 4 × 2 B-surface patch totalling 7 × 5 = 35 design parameters per layer, so the 5 stacking
sequences respectively have 140, 105, 105, and 70 design parameters. In Table 2, we denote the compliances
and the number of design iterations for each sequence. We solve the problem for two convergence tolerances
εtol = 10−3 and 10−4. Obviously, the optimizer requires more iterations to satisfy the smaller εtol.

The optimizer is not able to find a feasible solution for the sequence ABCA due to the conflict between
the no-sag constraint and the stack pattern. Indeed, the toolpaths of adjacent layers make crossed patterns.
Consequently, the top and bottom layers should make a crossed pattern, which is not possible since they are
both layer A.

The optimal designs for the different stack sequences have similar patterns as we see in Figures 18 and 19.
However, notice that the toolpaths in the uppermost layer of the ABCD design are farther apart compared
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to the other layers because it does not serve as a support layer, i.e., the no-sag constraint is not enforced,
cf. Figure 18d. Nonetheless, the difference of compliance with the other patterns is less than 2 percent.

Table 2: Optimal long cantilever beam νmax = 0.7.

εtol 10−3 10−4

Stack c/c0 It. c/c0 It.

ABCD 1.239509726230 41 1.2371279224296 26
ABCA - - - -
ABCB 1.254951444685 28 1.2450820886532 34
ABAC 1.251251513357 36 1.2444279586987 56
ABAB 1.246374325178 104 1.2403429915313 66

(a) (b)

(c) (d)

Figure 18: Optimal continuous toolpath for layers (a) A, (b) B, (c) C, and (d) D of the long cantilever beam
problem with stack sequence ABCD.

8.3 MBB beam

Our next example is a Messerschmitt-Bölkow-Blohm (MBB) beam with dimensions shown in Figure 20.
The beam is made of nl = 50 layers with an ABAB...AB stacking sequence and is subjected to line load
f = −10 N/mm ê2 located at the top center. We discretize the domain with 15000 finite elements of size
1 mm × 1 mm × 0.3 mm. The level-set functions use a 6 × 1 array of 10 mm × 5 mm B-surface patches for
each layer which yields a total of 72 = 9× 4× 2 design parameters. Optimal designs for three total volume
fraction limits νmax = 1, 0.8 and 0.6 are obtained, cf. Figure 21.

We printed, tested and compared our designs with ±45° designs that have the same volume fractions.
The DIW process deposits material continuously, so some regions adjacent to the beam boundary were
not modeled in the computations, e.g., the toolpath ‘connectors’ which are the magenta lines in Figure 21.
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(a) (b)

(c)

Figure 19: Optimal continuous toolpath for layer (a) A, (b) B, and (c) juxtaposed toolpaths of the cantilever
beam problem with stack sequence ABAB.

Figure 20: MBB beam problem. Out of plane thickness is 15. All dimensions in mm.

Ultimately, these toolpath connectors should be trimmed in a post substractive manufacturing process. We
fabricated three specimens for each sample and performed the three-point bending test according to ASTM
D790 specifications. Figure 22 shows the load-deflection curves of these tests in which the straight lines
correspond to the simulated finite element responses (square markers are the results c in Table 3). We
normalize the load with the mass of each specimen, fit each curve to a cubic polynomial, and then obtain the
average curve by averaging the coefficients. To quatify the error between the numerically predicted c and the
experimentally measured ce compliance, we compute the relative error e = |c− ce|/ce100% under the same
load, cf. Table 3. The experimental specimens are more compliant than the numerical prediction, however as
we see in Figure 22, for large loads they become stiffer. We attribute the discrepancy to the inaccuracy of the
finite element approximation which is known to be too stiff but more so to the material model, cf. Appendix
D. As we predict, the optimal designs have lower compliance and as an added benefit a larger failure load
compared with the ±45° specimens. However, we also observe a counter-intuitive result that the optimized
fabricated designs with limit νmax = 0.8 are stiffer than the ones with limit νmax = 1. Our computations
predict the opposite. We conjecture that the compactness of the material and volumetric changes in the
curing process at large volume fractions, result in higher residual internal stresses which reduce the stiffness
and strength. Errors are also attributed to the toolpath that are not trimmed for the experiment but not
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modeled in the computation. More data and different volume fraction limits are needed to corroborate this
counter-intuitive behavior.

Table 3: Compliance of the MBB beam designs.

Design νmax c ce e
10−2[kN mm] 10−2[kN mm] %

Optimized 1 5.2987 6.087 13.0
Optimized 0.8 5.6182 5.786 2.9
Optimized 0.6 6.7839 7.854 13.6
±45° 1 7.3757 10.879 32.2
±45° 0.8 9.2197 12.980 29.0
±45° 0.6 12.2935 13.362 8.0

(a)

(b)

(c)

Figure 21: Juxtaposed toolpaths for layers A and B of the MBB problem with (a) νmax = 1, (b) νmax = 0.8,
and (c) νmax = 0.6

8.4 Two-hole clevis plate

We next solve the two-hole clevis plate problem illustrated in Figure 23. In the right and left hole, we apply
tractions f = (100−4(15−x2)2)kN/mm2 ê1 and −f . The plate is made of nl = 12 layers with an ABAB...AB
stacking sequence. To model the level-set functions, we use a 6×3 array of 10 mm×10 mm B-surface patches
for each layer which yields a total of 108 = 9 × 6 × 2 design parameters. The finite element mesh contains
17424 elements. The total volume fraction limit is νmax = 0.7. In Figure 24a, we show the contours of
the level-set function for Layer A over the rectangular domain. The total length of the continuous layer
A toolpath generated by the TSP is 1821 mm (cf. Figure 24c), which is 8% shorter than the one obtained
by the zigzag method (cf. Figure 24b). If the parts have larger holes, the TSP solution will have more
significant improvements because the toolpath will avoid the large connections that cross the holes. Also,
in the cases where the DIW process continuously deposits material, the TSP solution does not fill the holes
which conserves material and reduces post subtractive manufacturing operations. We show the continuous
toolpath for layer B in Figure 25a and the continuous juxtaposed toolpaths in Figure 25b. Paths are closer
in the load path regions, i.e., the lower and upper regions between the holes; the toolpaths also tend to be
horizontal to carry the tensile load in these regions.
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Figure 22: Load-deflection curves of the MBB optimal designs fabricated, optimal design finite element
prediction, and ±45° control designs fabricated with νmax = 1, 0.8, and 0.6.

Figure 23: Two holes plate problem. Out of plane thickness is 3.6. All dimensions in mm.

We validate the optimal design by printing the structure shown in Figure 26. There is no overlap of the
toolpaths and the material is well supported by the lower layers so no noticeable sagging is present. The
abrupt directional changes in the toolpath outside the clevis domain do not matter because they should be
removed. What does matter is the fact that the DIW process deposits material continuously and that it
satisfies the fabrication constraints inside the clevis domain. We tested and compared this optimal design
to ±45° and 0°/90° designs. We perform a modified tensile test where two pins are inserted into the holes
and forces are applied to the pins. All samples were measured at ambient temperature at a strain rate
of 0.02 mm/min using a Model 1332 Instron machine. Since the masses of the fabricated specimens differ
(mopt = 7.0939 g, m±45 = 7.9976 g, m0/90 = 8.3547 g), we show the load per unit mass vs. displacement
curves in Figure 27. As we expected, the optimal design has the lowest compliance per unit mass. Addi-
tionally, the optimal design has a higher failure load per unit mass than the other designs. A more detailed
description of this experimental validation can be found in [60].

8.5 Five-hole plate

In this example, we solve a five-hole plate design problem with applied forces and dimensions as shown in
Figure 28. The holes are squares with sides lengths of 6 mm, the boundary of the center hole is fixed, and the
line loads fa = (−ê1 + ê2) kN/mm, fb = (−ê1− ê2) kN/mm, fc = (ê1− ê2) kN/mm and fd = (ê1 + ê2) kN/mm
are applied at the four corners. The plate has 12 layers with an ABAB...AB stacking sequence. To model
the level-set functions, we use a 4 × 4 array of 10 mm × 10 mm B-surface patches for each layer which
yields a total of 98 = 7 × 7 × 2 design parameters. The finite element mesh contains 19200 elements of
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(a)

(b) (c)

Figure 24: Contours of level-set function over (a) rectangular domain. (b) Zigzag linking method, and (c)
TSP continuous toolpath solution for the layer A of the two-hole clevis plate problem.

(a) (b)

Figure 25: (a) TSP continuous toolpath for layer B, and (b) juxtaposed toolpaths for layers A and B for the
two-hole clevis plate problem.

Figure 26: Fabricated optimal design for the two-hole clevis plate problem.
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Figure 27: Load per unit mass vs. displacement curves of the two-hole clevis plate optimal design compared
with ±45° and 0°/90° designs.

Figure 28: Five hole plate problem. Out of plane thickness is 3.6. All dimensions in mm.

size 1 mm × 1 mm × 0.3 mm and the volume fraction limit is νmax = 0.7. In Figure 29b, we show the TSP
generated toolpath for layer A; its length is 1804 mm, which is 8% shorter than the one obtained by the
zigzag method (cf. Figure 29a). In Figure 30, we show the layer B toolpath and the juxtaposed toolpaths.
As we expected, paths are closer in the regions around the central hole which carries the brunt of the load.

If we modify the TSP distance definitions, the toolpaths vary accordingly. For instance, to avoid crossing
the holes, we penalize the distance of non-adjacent cities that are on the hole boundaries. We impose
cj,k = d∞ if xj ∈ ∂PHri , xk ∈ ∂PHri and cities < j > and < k > are not adjacent. In Figure 31, we
show the toolpath of this modified TSP. As expected, the toolpaths avoid crossing the holes, however, extra
connections between non-adjacent cities at the external boundary appear. We fabricate the optimal design
shown in Figure 32.

9 Conclusions

This paper demonstrates a method for optimizing FRC structures fabricated by AM that accommodates
manufacturability constraints of the DIW process, maintains computational efficiency, and guarantees opti-
mality.

The toolpaths of each layer are defined by the contours of a level-set function. With this representation,
the toolpaths are continuous and defined with a small number of design variables over a fixed grid that
is independent of the finite element mesh used for structural analysis. The toolpath spacing, angle, and
curvature are defined from the level-set function. In this way, it is easy to impose DIW manufacturing
constraints related to overlap, sag, radius of curvature, and toolpath continuity. For each layer, these local
constraints are enforced globally, using a ramp function, resulting in a small number of constraints.
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(a) (b)

Figure 29: Continuous toolpath obtained with (a) zigzag method, and (b) TSP solution for layer A of the 5
hole-plate problem.

(a) (b)

Figure 30: (a) TSP continuous toolpath for layer B, and (b) juxtaposed toolpaths for layers A and B for the
five-hole plate problem.

(a) (b)

Figure 31: Modified TSP solution toolpath (a) layer A, and (b) layer B for the five-hole plate problem.
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Figure 32: Fabricated optimal design for the five-hole plate problem.

The toolpaths also determine the orientation of the reinforcement fibers and their volume fraction and
hence the structural response of the composite structure. We use the finite element method to compute
the structure’s mass and compliance and their design sensitivities. These computations are combined with
nonlinear programming to efficiently update the design parameters and find locally optimal designs.

The optimized toolpaths start and finish at the boundary of each layer. To minimize manufacturing cost,
we formulate and solve a TSP to obtain the shortest continuous toolpath for each layer. This continuous
toolpath is subsequently used to generate the G-code for fabrication.

We validate our approach by designing minimum compliance composite structures, some of which we fab-
ricate. We further validate some of the optimized designs by experiment and compare them to nonoptimized
designs.

For future work, the authors will extend this implementation to optimize other structural properties like
strength, buckling, etc. The material model also needs to be fully studied and improved. We also want
to explore the possibility of working on curved rather than plane surfaces and implement this approach for
other AM, ATP, and AFP technologies. Perhaps this approach can be used to design components fabricated
via Selective Laser Melt (SLM) processes. For this we would need a model that relates the laser trajectory
to the material’s anisotropic material properties. Finally, we want to integrate this approach with TO to
simultaneously optimize the toolpaths and the domain.
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[4] Z. Gürdal, R. T. Haftka, P. Hajela, Design and optimization of laminated composite materials, John
Wiley & Sons, 1999.
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Appendices

A B-surface

Figure A.1: Cubic B-spline shape functions.

Figure A.2: B-spline curve (x, φ) with grid of control point coordinates X̄ = [0, 2, 4, 6, 8, 10]> and vector of
height parameters d = [0, 4, 6, 6, 5, 1]>.

27



In one dimension, the uniform cubic B-spline shape functions are defined as

N̄1(ξ) =
1

48
(1− 3ξ + 3ξ2 − ξ3) ,

N̄2(ξ) =
1

48
(23− 15ξ − 3ξ2 + 3ξ3) ,

N̄3(ξ) =
1

48
(23 + 15ξ − 3ξ2 − 3ξ3) ,

N̄4(ξ) =
1

48
(1 + 3ξ + 3ξ2 + ξ3) ,

(A.1)

where ξ ∈ [−1, 1]. A B-spline (x(ξ), φ(ξ)) is composed by segments (or patches) such that x(ξ) = X̄>i N̄(ξ)
and φ(ξ) = d>i N̄(ξ) where X̄i is the 4× 1 local vector of control point coordinates and di is the 4× 1 local
vector of height parameters for the patch i, cf. Figure A.2.

For two-dimensions, the shape functions for uniform bi-cubic B-surface shape functions over the [−1, 1]2

domain are obtained from the outer product of the B-spline functions, i.e.,

N̂(ξ) = [N̄1(ξ1)N̄1(ξ2), N̄1(ξ1)N̄2(ξ2), N̄1(ξ1)N̄3(ξ2), ..., N̄4(ξ1)N̄4(ξ2)]T . (A.2)

For simplicity, we use a rectangular domain with uniform rectangular patches. If we have nx by ny patches,
there is a total of (nx + 3)(ny + 3) control points, e.g., the B-surface in Figure 3 has 4 × 3 patches with a

total of 7×6 control points. Given the physical control grid point coordinates X̂i = [x1 x2 . . . x16]T for the
patch i, and a position x ∈ R2 in the patch, the level-set function φ ∈ R is defined with an iso-parametric
formulation, i.e.,

φ(x)|x=X̂T
i N̂(ξ) = dT

i N̂(ξ) , (A.3)

where di is the 16 × 1 vector of height parameters for the patch i. Since we use a rectangular domain, the
inverse mapping is straight forward

ξ = 2 diag

(
1

hx
,

1

hy

)
(x− xc) , (A.4)

where xc is the center location of the patch and hx and hy are the edge lengths of the patches in the ê1 and
ê2 directions, cf. Figure A.3.
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Figure A.3: Rectangular grid of control points in physical coordinates and mapping with respect to the
reference coordinate system.

B Composite properties

The material properties used for the examples correspond to a short carbon fiber composite with fiber
volume fraction vf = 0.062, fiber length lf = 500µm, and fiber diameter df = 0.7 µm. The short carbon
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fiber composite is modeled as transversely isotropic material where the axis of isotropy is aligned with the
fiber direction. We use the composite material with elastic constants EL = 7.48 GPa, ET = 4.47 GPa,
GLT = 1.7 GPa, GTT = 1.63 GPa, νLT = 0.33, νTT = 0.37, and density ρ = 1.15 g/cm3. For the local
coordinate system, the fiber direction is defined as the ê1 direction. We employ the following Voigt convention
for the stress, strain and stiffness

[σ1, σ2, σ3, σ4, σ5, σ6] = [σxx, σyy, σzz, σxy, σyz, σxz], (B.1)

[ε1, ε2, ε3, ε4, ε5, ε6] = [εxx, εyy, εzz, 2εxy, 2εyz, 2εxz], (B.2)


σ1

σ2

σ3

σ4

σ5

σ6

 = [C0]


ε1
ε2
ε3
ε4
ε5
ε6

 =


c011 c012 c012 0 0 0
c012 c022 c023 0 0 0
c012 c023 c022 0 0 0
0 0 0 c044 0 0
0 0 0 0 c055 0
0 0 0 0 0 c044




ε1
ε2
ε3
ε4
ε5
ε6

 . (B.3)

The relationships between the material constants and the stiffness components for a transversely isotropic
material are given by

νTL = νLT
ET
EL

∆ = 1− 2νLTνTL − νTTνTT − 2νLTνTTνTL

c011 = EL
(1− ν2

TT )

∆

c022 = ET
(1− νLTνTL)

∆

c012 = ETνLT
(1 + νTT )

∆

c023 = ET
νTT + νTLνLT

∆

c044 = GLT

c055 = GTT

. (B.4)

C Transformation of the stiffness

The stiffness in the global system is defined via Equation (25) where the rotation matrix is given by

Rz(α) =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 . (C.1)

Consistent with our Voigt notation, it can be shown that

Rz(α) � Rz(α) =


cos2(α) sin2(α) 0 −2 cos(α) sin(α) 0 0
sin2(α) cos2(α) 0 2 cos(α) sin(α) 0 0

0 0 1 0 0 0
cos(α) sin(α) − cos(α) sin(α) 0 cos2(α)− sin2(α) 0 0

0 0 0 0 cos(α) sin(α)
0 0 0 0 − sin(α) cos(α)

 . (C.2)

We use the trigonometric functions of multiple angles to reduce the numerical error in the computation
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of the rotation tensors and their sensitivities

cs = cos(α) sin(α) = sin(2α)/2 ,

c2 = cos2(α) =(1 + cos(2α))/2 ,

s2 = sin2(α) =(1− cos(2α))/2 ,

c4 = cos4(α) =(3 + 4 cos(2α) + cos(4α))/8 ,

s4 = sin4(α) =(3− 4 cos(2α) + cos(4α))/8 ,

c2s2 = cos2(α) sin2(α) =(1− cos(4α))/8 ,

c3s = cos3(α) sin(α) =(2 sin(2α) + sin(4α))/8 ,

cs3 = cos(α) sin3(α) =(2 sin(2α)− sin(4α)a)/8 .

(C.3)

In this way the components of the rotated elasticity tensor C(α), cf. Equation (25), in Voigt notation are

c11 =c011c
4 + c022s

4 + (2c012 + 4c044)c2s2 ,

c12 =c012(c4 + s4) + (c022 + c011 − 4c044)c2s2 ,

c13 =c012c
2 + c023s

2 ,

c14 =(c011 − c012 − 2c044)c3s+ (c012 − c022 + 2c044)cs3 ,

c22 =c022c
4 + c011s

4 + (2c012 + 4c044)c2s2 ,

c23 =c023c
2 + c012s

2 ,

c24 =(c011 − c012 − 2c044)cs3 + (c012 − c022 + 2c044)c3s ,

c33 =c022 ,

c34 =(c012 − c023)cs ,

c44 =c044(c4 − 2c2s2 + s4) + (c011 − 2c012 + c022)c2s2 ,

c55 =c055c
2 + c044s

2 ,

c56 =(c044 − c055)cs ,

c66 =c044c
2 + c055s

2 .

(C.4)

To evaluate the sensitivity of the stiffness matrix respect to the angle, i.e., dC/dα, we define

dc4 =(−2 sin(2α)− sin(4α))/2 ,

ds4 =(2 sin(2α)− sin(4α))/2 ,

dc3s =(cos(2α) + cos(4α))/2 ,

dcs3 =(cos(2α)− cos(4α))/2 ,

(C.5)

dc11 =c011dc4 + c022ds4 + (c012 + 2c044) sin(4α) ,

dc12 =c012(dc4 + ds4) + (c022 + c011 − 4c044) sin(4α)/2 ,

dc13 =(−c012 + c023) sin(2α) ,

dc14 =(c011 − c012 − 2c044)dc3s+ (c012 − c022 + 2c044)dcs3 ,

dc22 =c022dc4 + c011ds4 + (c012 + 2c044) sin(4α) ,

dc23 =(−c023 + c012) sin(2α) ,

dc24 =(c011 − c012 − 2c044)dcs3 + (c012 − c022 + 2c044)dc3s ,

dc34 =(c012 − c023) cos(2α) ,

dc44 =c044(dc4 − sin(4α) + ds4) + (c011 − 2c012 + c022) sin(2α)/2 ,

dc55 =(−c055 + c044) sin(2α) ,

dc56 =(c044 − c055) cos(2α) ,

dc66 =(−c044 + c055) sin(2α) .

(C.6)
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So that, again using Voigt notation,

d[C]

dα
=


dc11 dc12 dc13 dc14 0 0
dc12 dc22 dc23 dc24 0 0
dc13 dc23 0 dc34 0 0
dc14 dc24 dc34 dc44 0 0

0 0 0 0 dc55 dc56

0 0 0 0 dc56 dc66

 . (C.7)

D Material modeling error

The material model we use, like any material model, is an approximation of physical reality. Notably there is
stiffness in all directions for any point in the body. However, if the adjacent toolpaths Cki and Ck−1

i on layer
Ωi do not abut one another, then the stiffness in that region will only be in the direction of the toolpaths
Cki and Ck−1

i , i.e., there will be no transverse stiffness. Nonetheless, we assume macroscopic stiffness in all
directions due to the volume weighted approximation of Equation (24). And clearly our fabricated specimens
would fail the validation process without this traverse stiffness. In reality, this traverse stiffness comes from
the adjacent layers. To study this layer interaction effect and the accuracy of our material model, we perform
the numerical homogenization of RVEs that include the adjacent layers. This is also an approximation as
there is no periodic space filling unit cell in our optimized designs.

Figure D.1 shows the front and side sections of toolpaths corresponding to the layers Ωi−1, Ωi, and
Ωi+1, where the dashed lines indicate the RVE boundaries. The thickness and height of the toolpaths are
b = 0.6mm and h = 0.3mm respectively. For convenience, the distance between the toolpaths is l for all
three layers. Also, the toolpaths in Ωi are orthogonal to the toolpaths in the adjacent layers. Thus, it can be
shown that l = b/ν where ν is the volume fraction of the material in the RVE. For the layer Ωi, the fibers are
parallel to e1 which stiffness is C(0), cf. Equation (25). For layers Ωi−1 and Ωi+1 the stiffness is C(π/2) since
the fibers are parallel to e2. For the numerical homogenization, we use fitted meshes for different volume
fractions, cf. Figures D.3a, D.3b, and D.3c. We apply unit strains, impose periodic boundary conditions on
the RVE, perform the finite element analyses, and evaluate the homogenized properties.

In order to validate our “effective” material model, we compute the homogenized properties using the
RVE in dashed lines shown in Figure D.2 where each layer’s stiffness is based on the volume fraction and the
fiber orientation, cf. Equation (24). Thus, the stiffness for the material in Ωi is νC(0), and for the adjacent
layers Ωi−1 and Ωi+1 the stiffness is νC(π/2). For the numerical homogenization, we use the rectangular
mesh shown in Figure D.3d.

Figure D.4 compares the homogenized properties of our effective material model versus the fitted mesh
model for different volume fractions. We conjecture that, the homogenized stiffness of our effective model is
higher than the fitted mesh model because the empty space between toolpaths carries load in the effective
model but not in the fitted mesh model. Our future research will develop a more accurate material model.
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ê2

Figure D.1: RVE dimensions for fitted mesh.
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Figure D.2: RVE dimensions.

(a) (b)

(c) (d)

Figure D.3: RVE with adjacent layers using (a) a fitted mesh for ν = 0.4, (b) ν = 0.6, (c) ν = 0.8, and (d)
for our material model.
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(a) (b)

(c) (d)

(e) (f)

Figure D.4: Homogenized constitutive coefficients.
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