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QAOA, first proposed by Farhi ez. al. in 2014, is a quantum algorithm that approximates hard
optimization problems

Given f:{0,1}" - R, find x € {0, 1}" s.t. f(x) is 2 minimum (maximum).

Now let’s change the problem.
min f(x) — min{x|H¢|x)
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Instead of minimizing f(x), we find the ground state of a cost Hamiltonian, H,
where H.|x) = f(x)]x).
QAOA was inspired by Trotterization of Adiabatic Quantum Computing.

Start in the equal super position of all states,
2" -1

1
|s) = 7 z |x) .
x=0

» In AQC, we would evolve under H(t) = s(t)H. + (1 — S(t))HD where s = s(t) is a smooth
functionof t,s(t =0) =0,ands(t =T) =1

» In Trotterization of AQC, we approximate
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» In QAOA, we evolve under

nB.v) = | [(emtpeo)(eiritic).
k=0

We make m small, but B = (B4, B2, .., Bm) and ¥ = (¥4, V2, -, Vim) ate free variables. From

Trotterization, as m — 0 we get the exact solution.

Three ways of approximating Constrained Optimization Problems w QAOA variations
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QAOA++ < CQA

Proof:

(=) Suppose V |f) € F, HD|f2>n:12j Cj |f]> Define
Hp = Z Cye | )(x| where ¢, = {O if |x) €F

1 o.W.
x=0

If (x|HpHEp|y) = (x|HrpHp|y) V basis vectors |x) and |y) of the full space then [Hp, Hr] = 0.

There are three cases:
(Case 1) [x) € F and |y) € F. Hp|x) = Hg|y) = 0 = (x|HpHp|y) = (x|HpHp|y) = 0.

(Case 2) Either |x) or |y) € F, but not both. WLOG let |x) € F. Then Hp|x) € F = Hp|x) =
Hp(Hp|x)) = 0. Thus (x|HpHp|y) = (x|HgHp|y) = 0.

(Case 3) |x) € F and |y) € F. Hp|x) = |x) and Hg|y) = |y) = (x|HpHg|y) = (x|Hp|y) =
(x|HpHp|y).

(&) Suppose |Hp, Hr] = 0, and let the feasible subspace be the ground state of the feasible
Hamiltonian Hg|x) = 0 iff |x) € F. Let |x) € F. Then Hr(Hp|x)) = HpHp|x) = 0. Thus
Hp|x) € F V |x) € F.

Therefore if you have a driving Hamiltonian for QAOA++ you can use it for CQA and if you have a
driving Hamiltonian for CQA you can use it for QAOA++. _

Finding Penalties that Guarantee Feasibility

We choose the penalty Hamiltonian,
25

He = ) peloal,
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to be obtained from a classical oracle. The penalties, p,, are found by,
Px = (x|PTHCP|x) — (x[Hc|x)
where, P, is a classical algorithm that maps an infeasible state to a feasible one

(lx) if |x) € F
R = {|y) EF ow.’

This method can be used for any constrained optimization problem to produce a feasible output.

» MINVERTEXCOVER Example (unweighted case)
Given a graph, G = (V, E), the cost Hamiltonian is

HC= ZVVM

Uev
where W), = [1)(1],. Note, the expectation of H for some basis state, |x), is the number of

vertices in the subset V' € V that is represented by |x). Then we define

Prinve = ) (I =Wy =Wy + W, W)
(LV)EE
This is the operator equivalent of

2 (1 — X, — Xy + xﬂxv),

(u,v)EE
for x,. Itis easy to see that this is a classical oracle for counting the number of edges not covered.

Let’s look at a triangle: Then consider getting the

following state after running
QAOA, |100). The cost of
this solution is land the
penalty of not covering

(2,3) is 1.

Now, we choose the solution that costs
the least. The cost of adding vertex 2
is equal to the penalty of not covering
(2, 3), so we choose the feasible
solution. This classical correction

will take O(|E]). 3
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