

Quantum Approximate Optimization Algorithm (QAOA) on Constrained Optimization Problems

Jaimie S. Stephens^{1, 2, 3}, Ciarán Ryan-Anderson⁴, William Bolden^{1, 5}, and Ojas Parekh¹

¹Advanced Device Technologies, Sandia National Laboratories, Albuquerque, NM, 87185, USA;

²Center for Quantum Information and Control, University of New Mexico, Albuquerque, NM, 87131, USA;

³Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA;

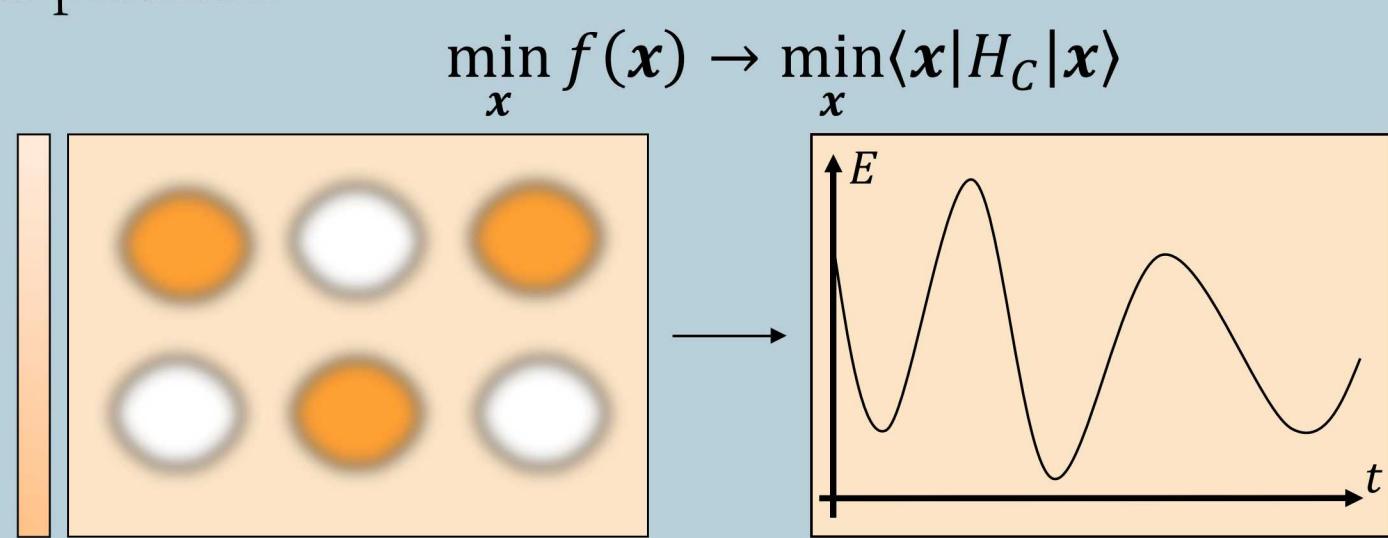
⁴Department of Physics, College of Science, Swansea University, Singleton Park, Swansea - SA2 8PP, United Kingdom;

⁵Department of Computer Science and Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA

QAOA, first proposed by Farhi *et. al.* in 2014, is a quantum algorithm that approximates hard optimization problems

Given $f: \{0, 1\}^n \rightarrow \mathbb{R}$, find $x \in \{0, 1\}^n$ s.t. $f(x)$ is a minimum (maximum).

Now let's change the problem.



Instead of minimizing $f(x)$, we find the ground state of a cost Hamiltonian, H_C ,

where $H_C|x\rangle = f(x)|x\rangle$.

QAOA was inspired by Trotterization of Adiabatic Quantum Computing.

Start in the equal superposition of all states,

$$|s\rangle = \frac{1}{2^{n/2}} \sum_{x=0}^{2^n-1} |x\rangle.$$

➤ **In AQC**, we would evolve under $H(t) = s(t)H_C + (1 - s(t))H_D$ where $s = s(t)$ is a smooth function of t , $s(t=0) = 0$, and $s(t=T) = 1$

➤ **In Trotterization of AQC**, we approximate

$$U(T, 0) = \prod_{k=1}^N U(k\Delta t, (k-1)\Delta t)$$

where $\Delta t = T/N$ and,

$$U(t_2, t_1) = \mathcal{T} \exp \left[-i \int_{t_1}^{t_2} H(t) dt \right]$$

as

$$U(T, 0) \approx \prod_{k=1}^N e^{-i\Delta t H(k\Delta t)} \\ \approx \prod_{k=0}^N \left(e^{-i\Delta t(1-s(k\Delta t))H_D} \right) \left(e^{-i\Delta t s(k\Delta t)H_C} \right),$$

➤ **In QAOA**, we evolve under

$$Q_m(\beta, \gamma) = \prod_{k=0}^m \left(e^{-i\beta_k H_D} \right) \left(e^{-i\gamma_k H_C} \right).$$

We make m small, but $\beta = (\beta_1, \beta_2, \dots, \beta_m)$ and $\gamma = (\gamma_1, \gamma_2, \dots, \gamma_m)$ are free variables. From Trotterization, as $m \rightarrow \infty$ we get the exact solution.

Three ways of approximating Constrained Optimization Problems w QAOA variations

Method	H_C	H_D	Initial State
Original QAOA Farhi <i>et. al.</i> (2014)	$\sum_{x=0}^{2^n-1} f(x) x\rangle\langle x $	$-\sum_{j=0}^{2^n} X_j$	$ +\rangle^{\otimes n}$
QAOA++ Hadfield <i>et. al.</i> (2017)	$\sum_{x=0}^{2^n-1} f(x) x\rangle\langle x $	$H_D x\rangle = \sum_j c_j x_j\rangle \in \mathcal{F} \quad \forall x\rangle \in \mathcal{F}$	$ \psi\rangle \in \mathcal{F}$
Constrained Quantum Annealing Hen and Spedalieri (2016)	$\sum_{x=0}^{2^n-1} f(x) x\rangle\langle x $	$[H_D, H_F] = 0$ where for the computational basis $\{ x_j\rangle\}$, $H_F x_j\rangle = \begin{cases} 0 & \text{if } x_j\rangle \in \mathcal{F} \\ \lambda_j x_j\rangle & \text{s.t. } \lambda_j \gg 0 \text{ if } x_j\rangle \notin \mathcal{F} \end{cases}$	$ \psi\rangle \in \mathcal{F}$
QAOA with Penalties and Guaranteed Feasibility Stephens <i>et. al.</i>	$\sum_{x=0}^{2^n-1} f(x) x\rangle\langle x + H_P$	$-\sum_{j=0}^{2^n} X_j$	$ +\rangle^{\otimes n}$

QAOA++ \Leftrightarrow CQA

Proof:

\Rightarrow Suppose $\forall |f\rangle \in \mathcal{F}, H_D|f\rangle = \sum_j c_j |f_j\rangle$. Define

$$H_F = \sum_{x=0}^{2^n-1} c_x |x\rangle\langle x| \text{ where } c_x = \begin{cases} 0 & \text{if } |x\rangle \in \mathcal{F} \\ 1 & \text{o.w.} \end{cases}$$

If $\langle x|H_D H_F|y\rangle = \langle x|H_F H_D|y\rangle \quad \forall$ basis vectors $|x\rangle$ and $|y\rangle$ of the full space then $[H_D, H_F] = 0$. There are three cases:

(Case 1) $|x\rangle \in \mathcal{F}$ and $|y\rangle \in \mathcal{F}$. $H_F|x\rangle = H_F|y\rangle = 0 \Rightarrow \langle x|H_D H_F|y\rangle = \langle x|H_F H_D|y\rangle = 0$.

(Case 2) Either $|x\rangle$ or $|y\rangle \in \mathcal{F}$, but not both. WLOG let $|x\rangle \in \mathcal{F}$. Then $H_D|x\rangle \in \mathcal{F} \Rightarrow H_F|x\rangle = H_F(H_D|x\rangle) = 0$. Thus $\langle x|H_D H_F|y\rangle = \langle x|H_F H_D|y\rangle = 0$.

(Case 3) $|x\rangle \notin \mathcal{F}$ and $|y\rangle \notin \mathcal{F}$. $H_F|x\rangle = |x\rangle$ and $H_F|y\rangle = |y\rangle \Rightarrow \langle x|H_D H_F|y\rangle = \langle x|H_D|y\rangle = \langle x|H_F H_D|y\rangle$.

\Leftarrow Suppose $[H_D, H_F] = 0$, and let the feasible subspace be the ground state of the feasible Hamiltonian $H_F|x\rangle = 0$ iff $|x\rangle \in \mathcal{F}$. Let $|x\rangle \in \mathcal{F}$. Then $H_F(H_D|x\rangle) = H_D H_F|x\rangle = 0$. Thus $H_D|x\rangle \in \mathcal{F} \quad \forall |x\rangle \in \mathcal{F}$.

Therefore if you have a driving Hamiltonian for QAOA++ you can use it for CQA and if you have a driving Hamiltonian for CQA you can use it for QAOA++.

Finding Penalties that Guarantee Feasibility

We choose the penalty Hamiltonian,

$$H_P = \sum_{x=0}^{2^n-1} p_x |x\rangle\langle x|,$$

to be obtained from a classical oracle. The penalties, p_x , are found by,

$$p_x = \langle x|P^\dagger H_C P|x\rangle - \langle x|H_C|x\rangle$$

where, P , is a classical algorithm that maps an infeasible state to a feasible one

$$P|x\rangle = \begin{cases} |x\rangle & \text{if } |x\rangle \in \mathcal{F} \\ |y\rangle \in \mathcal{F} & \text{o.w.} \end{cases}$$

This method can be used for any constrained optimization problem to produce a feasible output.

➤ MINVERTEXCOVER Example (unweighted case)

Given a graph, $G = (V, E)$, the cost Hamiltonian is

$$H_C = \sum_{\mu \in V} W_\mu$$

where $W_\mu = |1\rangle\langle 1|_\mu$. Note, the expectation of H_C for some basis state, $|x\rangle$, is the number of vertices in the subset $V' \subseteq V$ that is represented by $|x\rangle$. Then we define

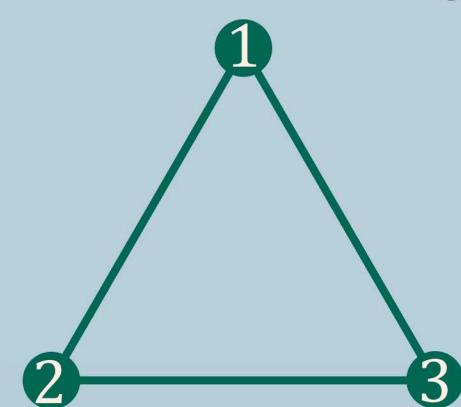
$$P_{minVC} = \sum_{(\mu, v) \in E} (I - W_\mu - W_v + W_\mu W_v).$$

This is the operator equivalent of

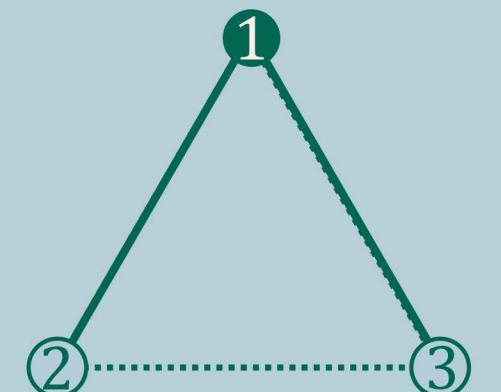
$$\sum_{(\mu, v) \in E} (1 - x_\mu - x_v + x_\mu x_v),$$

for x_μ . It is easy to see that this is a classical oracle for counting the number of edges not covered.

Let's look at a triangle:



Then consider getting the following state after running QAOA, $|100\rangle$. The cost of this solution is 1 and the penalty of not covering $(2, 3)$ is 1.



Now, we choose the solution that costs the least. The cost of adding vertex 2 is equal to the penalty of not covering $(2, 3)$, so we choose the feasible solution. This classical correction will take $O(|E|)$.

