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QAOA, first proposed by Farhi et. al. in 2014, is a quantum algorithm that approximates hard QAOA++ .(=> CQA
optimization problems

Given f: {0,1}n IR, find x E {0, 1}n s.t. f(x) is a minimum (maximum).

Now let's change the problem.

min f (x)

Instead of minimizing f(x), we find the ground state of a cost Hamiltonian, Hc,

where lick) = f (x)lx).

QAOA was inspired by Trotterization of Adiabatic Quantum Computing.

Start in the equal super position of all states,
2n-1
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➢ In AQC, we would evolve under H (t) = s (t) H c (1 — s (0)1 D where s
function of t, s(t = 0) = 0, and s(t = T) = 1

). In Trotterization of AQC, we approximate

U (T , 0) = U (k At , (k — 1) At)

k=1

where At = 77/ N and,

as

t2

U (t2,t1) = Texp —i H(t)dt
tl

N
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➢ In QAOA, we evolve under
m

(e-tAts(kAoHo n

Qm(fl) Y =1-1(e-iflicHD)(e-iYkliC)

k=0

s(t) is a smooth

We make M. small, but # = /32, , tem) and Y = y2, , Ym) are free variables.
Trotterization, as m 00 we get the exact solution.
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Three ways of approximating Constrained Optimization Problems w QAOA variations
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Farhi et. al. (2014)

QAOA++

Hadfield et. al. (2017)

Constrained
Quantum Annealing

Hen and Spedalieri
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QAOA with Penalties

and Guaranteed
Feasibility

Stephens et. al.
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Proof:

() Suppose V In E Fr, HDIf)
n
=
1 

Ifi). Define
2- 

HF =

x=0

lx)(x l where cx fo if Ix) E1 0.w. n

If (XIIIDHFly) = (XIHFHD Iy) v basis vectors Ix) and ly) of the full space then [HD, HF] = O.
There are three cases:

(Case 1) lx) E and ly) E F. 11Flx) = HFIY) = WHDHFIY) = WHFHDIY) = O.

(Case 2) Either Ix) or ly) E F, but not both. WLOG let ix) E F. Then HDIX) E HF1X) =
HF(HDIX)) = O. Thus (x1HDH Fly) = (xIHFHDIY) = O.

(Case 3) Ix) E and ly) Y. HFIx) = Ix) and HFIY) = IY) (x1HDHFIY) = (xIHDIY) =
(xIHFHDly)•

() Suppose [HD, HF] = 0, and let the feasible subspace be the ground state of the feasible
Hamiltonian HF1X) = 0 iff lx) c Y. Let Ix) c Y. Then 11F(HDIX)) = HDHF1X) = O. Thus

HDIx) E Y V Ix) E

Therefore if you have a driving Hamiltonian for QAOA++ you can use it for CQA and if you have a
driving Hamiltonian for CQA you can use it for QA0A++..

Finding Penalties that Guarantee Feasibility

We choose the penalty Hamiltonian,
2n-1

Hp = 13xlx)(xl
x=o

to be obtained from a classical oracle. The penalties, px, are found by,

Px = (xlPt HcPlx) — (Wick)
where, P, is a classic• al algorithm that maps an infeasible state to a feasible one

Pk) = fly) E o.w.n

This method can be used for any constrained optimization problem to produce a feasible output.

lx) if Ix) E

➢ MINVERTEXCOVER Example (unweighted case)

Given a graph, G = (V, E), the cost Hamiltonian is

H c _ WI,

piEV
where VI/it = 11)(11/L. Note, the expectation of Hc for some basis state, lx), is the number of

vertices in the subset V' g V that is represented by lx). Then we define

( — — WV) .

(µ,v)EE

Pmini7C =

This is the operator equivalent of

(1 — xµ — xv + x4xv),

(1,1,v)EE

for xit. It is easy to see that this is a classical oracle for counting the number of edges not covered.

Let's look at a triangle: Then consider getting the

following state after running

QAOA, 11 0 0). The cost of

this solution is land the

penalty of not covering

(2, 3) is 1.

Now, we choose the solution that costs

the least. The cost of adding vertex 2

is equal to the penalty of not covering
(2, 3), so we choose the feasible
solution. This classical correction

will take 0(1E1).
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