
A model with cosmological Bell inequalities

Juan Maldacena

School of Natural Sciences, Institute for Advanced Study,
Princeton, NJ, USA

Abstract

We discuss the possibility of devising cosmological observables which violate Bell’s
inequalities. Such observables could be used to argue that cosmic scale features
were produced by quantum mechanical effects in the very early universe. As a
proof of principle, we propose a somewhat elaborate inflationary model where a Bell
inequality violating observable can be constructed.

Dedicated to Andy Strominger on the occasion of his 60th birthday.
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1 Introduction

According to the theory of inflation, primordial density fluctuations have a quantum me-
chanical origin [1, 2, 3, 4, 5]. An important problem is to find compelling evidence for their
quantum nature. In other words, one would like to rule out alternative scenarios where
the fluctuations originated through classical statistical mechanics during an inflationary
phase. This can happen in models where there is a form of friction converting the inflaton
energy into other forms of energy that then produce the fluctuations as in [6, 7, 8, 9]. In
such theories, the correlations between the fluctuations are classical in origin. One can
compare detailed predictions for higher point correlation functions, or even put bounds on
the two and three point functions, see e.g. [10].

Formally, the wavefunction of the universe produced by inflation is highly entangled.
Therefore one expects that it should be possible to perform a Bell inequality violating ex-
periment [11]. Such an experiment would conclusively demonstrate the quantum origin of
the fluctuations. Here we will ask the conceptual question of whether, and in what sense,
could we ever perform such a cosmological Bell experiment. A Bell experiment involves
making measurements at two distant locations, call them Alice’s and Bob’s location. At
each of these locations one should be able to measure two non-commuting operators. In
cosmology, we can make observations on two spatially separated cosmic patches that have
been causally disconnected since the time of reheating. However, it is not possible to
measure two non-commuting operators for the following reason. The standard observables
involve measuring the values of the cosmological curvature fluctuations (or adiabatic den-
sity fluctuations), ζ(x). However, it is not possible to measure its conjugate momentum,
πζ .
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At this stage one could conclude that it is impossible to perform a Bell type mea-
surement in cosmology. But this would be premature. First notice that any observation
we make consists of commuting observables, once we consider only the final decohered
observables [12]. In order to run the Bell experiment one repeats the experiment many
times, interpreting each run of the experiment as occurring on the same quantum state,
and putting the boundary between classical and quantum just after the measurements.
We can view cosmology in a similar way. We can view separate patches of the sky as
running different cosmological experiments on the same underlying quantum state. We
can further divide these patches into a pair of smaller subregions, which were causaly dis-
connected at some earlier time. By suitably observing properties of these subregions one
could construct an observable subject to a Bell inequality. There is a Bell inequality if
one assumes that the probability distribution that we observe today was generated by an
inflationary process leading to a relation between scale and time. Namely short distance
features were created after the long distance features. In this case, we can translate the
standard causality constraints in the approximately de-Sitter space into constraints on the
spatial structure of the wavefunction.

1 Bell inequalities were discussed previously in [13], but with the assumption that one can indeed
measure the momentum πζ .
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We have been unable to find an observable of this kind using the simplest inflationary
theory consisting of the metric plus a single scalar field. However, we will present a more
baroque inflationary scenario where one can prove the quantum origin of some fluctuations.
This scenario was solely designed to make a Bell inequality violating experiment possible
and it seems unlikely that Nature would choose it. We think it is nevertheless valuable to
have a fairly concrete model where one can clearly understand the various issues involved.
Hopefully, a clever reader (or non-reader) will find a Bell inequality violating observable
in a more realistic model.

This paper is organized as follows. First, in section two, we review the standard
discussion of Bell inequality experiments. In section three we review a few features of
inflation and discuss the conceptual set up for a cosmological Bell experiment. In section
four we present a baroque inflationary model where a Bell inequality violating experiment
is possible. We conclude with a discussion.

2 Review of Bell inequality experiments

In order to set up an experiment with a Bell inequality it is necessary to have the following
elements [11]. See figure 1.

• Two separate spatial locations where measurements are performed. Call them Alice’s
location and Bob’s location.

• An entangled quantum state, with components at these two locations.

• At each location we should be able to perform two possible measurements that are
described by two non-commuting operators. Call them A and A′ for Alice’s location
and B, B′ for Bob’s location, with [A,A′] 6= 0 and [B,B′] 6= 0.

• Alice should have the “free will” to select randomly between the A and A′. The
same holds for Bob for his choice of B and B′ These choices are made locally and
are uncorrelated with each other. These choices are made by physics outside the
quantum system under consideration. In practice this is done by looking at local
random variables that are assumed to be independent of the quantum system in
question.2

• We should have a quantum measurement of these operators with definite answers.

• We classically transmit the results of these measurements to a central location where
we correlate the results.

2 There is a Bell inequality violating measurement involving B B̄ oscillations [14] where the validity of
this assumption has been called into question [15, 16].
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Let us review the simplest and most discussed example. Here the entangled state
corresponds to a pair of spins, one at each location. The operators correspond to measuring
the spin along various axes and have eigenvalues ±1. In other words, we have that A =
~n.~σ = niσi, with σi the Pauli matrices. And A′ = ~n′.~σ. We have similar expressions for B
and B′ acting on the second spin.

In this situation is it useful to consider the quantity introduced in [17]

〈C〉 = 〈AB〉+ 〈AB′〉+ 〈A′B〉 − 〈A′B′〉 (2.1)

This is a particular linear combination of expectation values for different choices of oper-
ators or detector settings.

In a local classical hidden variable theory one can prove the Bell inequality |〈C〉| ≤ 2
as follows. For each value of the hidden variables we have a well defined answer for each
of the two possible measurements at each side. Namely, a unique value for A and also for
A′, similarly for B and B′. Furthermore, causality implies that the answer for B and B′

does not depend on whether we measure A or A′. Therefore, for each value of the hidden
variable we can have either B = B′ or B = −B′. And in each of the two cases either the
first two terms in (2.1) cancel or the last two terms cancel. Therefore the maximum value
of |C| is two.

In quantum mechanics, the expectation value of C can be bigger. In fact, in quantum
mechanics we can view (2.1) as the expectation value of the quantum operator C =
AB + AB′ + A′B − A′B′. It is easy to check that its square is

C2 = 4− [A,A′][B,B′] (2.2)

where we used that the square of each of the measured operators is one, A2 = 1, A′2 = 1,
etc. Now the commutator term can make C2 larger than four. Only when this commutator
is non-zero can we have |〈C〉| larger than two, violating the Bell inequality. Notice also
that |[A,A′]| ≤ 2.3. Therefore it is easy to see that 〈C2〉 ≤ 8 or |〈C〉| ≤ 2

√
2 [18]. Choosing

A = σx , A′ = σy , B = sin θσx + cos θσy , B′ = cos θσx − sin θσy (2.3)

we can check that on a spin singlet state we get C = −2
√

2 cos(θ − π
4
). For θ = π/4 we

get the maximal violation which has the extra
√

2 factor.
There has also been discussion of Bell inequalities for harmonic oscillator degrees of

freedom. For example, [19] considers squeezed states and defines operators that are trans-
lation conjugates of (−1)n where n is the occupation number operator. These operators
are not easy to measure in the cosmological context. They certainly cannot be measured
after reheating [13], due to the impossibility of measuring πζ . For a more realistic infla-
tionary scenario, it will be necessary to consider entangled states and measurements of
the harmonic oscillator degrees of freedom that describe the scalar or tensor fluctuations.
However, for our baroque model this discussion in terms of spins will be enough.

3This inequality is saturated for Pauli matrices. For example, consider A = σx and A′ = σy, which
leads to [σx, σy] = 2iσz.
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Figure 1: Set up for a Bell inequality violating experiment. An entangled state is produced
in the past and its two parts are transmitted to Alice and Bob who perform measurements
on A or A′ or B or B′. The choice of experiment (A vs. A′) is determined by a local
variable, which we can call Alice’s “free will” or decider variable. The results of the
experiments and the values of the decider variables are classically transmitted to a central
observer who computes the statistical averages. All classical communications have been
denoted here by black lines.

3 Set up for a cosmological Bell experiment

3.1 Review of inflation

We can write the metric of a uniform, spatially flat, FLRW space as

ds2 = −dt2 + a(t)2d~x 2 = a2(η)[−dη2 + d~x 2] (3.4)

where t is proper time and η is conformal time. The ~x coordinates are called “comoving
coordinates”. Conformal time is particularly useful to display causal relations. During
the inflationary period the scale factor grows exponentially, ȧ

a
∼ H(t), with H(t) slowly

varying. The variation of H(t) is due to the slow evolution of a scalar field, which in the
classical approximation is a function of time only φ = φ0(t). Inflation ends when η ∼ 0,
see figure 2. For a review, see e.g. [20].

Quantum mechanics produces spatially dependent fluctuations in the values of the
scalar field [1, 2, 3, 4, 5]. These give rise to adiabatic curvature fluctuations in the late
universe. In the leading approximation, we can independently follow the evolution of each
Fourier mode, φ~k(η). Each of these Fourier modes behaves as a harmonic oscillator with
a time dependent mass and fixed frequency. Each mode corresponds to a wave whose
wavelength is fixed in the ~x coordinates of (3.4). Their physical wavelength is very small
at early times and very large towards the end of inflation. When k|η| ∼ 1 the fluctuations
are created and the value of φk, or more properly that of ζk = − H

φ̇0Mpl
φk, is fixed until
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the mode reenters the horizon during the Big Bang phase, see figure 2. The non-constant
part of ζ decays exponentially in proper time after we exit the horizon. Furthermore, the
amplitude of the second independent solution decays as (ηk)3 after horizon exit. This is
also the order of magnitude of the commutator of k3[ζ~k, ζ̇−~k] ∝ i(ηk)3. This goes as e−3Nk

where Nk is the number of e-folds that remain from the time the mode exited the horizon
till the end of inflation4. For cosmological size modes this is a number bigger than about
Nk > 30−40. Therefore, if we wanted to make a measurement of the momentum we would
need a precision greater than 10−90 which, even for a theorist, looks impossible. Moreover,
the measurement of any cosmological observable is limited by cosmic variance which goes
as 1/

√
Nmod where Nmod is the number of modes we observe. Even if we observe all modes

up to the size of a galaxy, this gives us an ultimate precision of about 10−10.
In summary, inflation gives us a probability distribution for ζ(x) at the time of reheating

of the form ρ[ζ(x)] = |Ψ[ζ(x)]|2. Since we cannot measure the decaying mode, we can
view the state of the universe at the reheating surface as characterized by the classical
probability distribution ρ[ζ(x)]. If we consider two well separated points xA and xB then
the operators ζ(xA) and ζ(xB) commute with each other. Therefore it is impossible to
obtain a Bell inequality out of these operators.5

If more than one field is involved, then we can also have isocurvature fluctuations,
but the conclusion is the same. The probability distribution is classical and has the form
ρ[ζ(x), θ(x)] = |Ψ(ζ(x), θ(x))|2, where θ(x) is the second field.

Therefore, if we view Alice and Bob as doing experiments after the end of inflation,
then we will not be able to set up a Bell inequality for primordial perturbations. This is
true if we make the realistic assumption that we cannot measure the conjugate momentum.
This is disappointing! But fortunately this is not the end of the story.

3.2 Setting up a cosmological Bell experiment

Implicit in any discussion of the Bell inequality is the assumption of when we make the
quantum to classical transition. In other words, when the measurement occurs. For
example, even in the standard setup of figure 1 it is important that the quantum to classical
transitions happen in such a way that we can view all black lines as classical. Similarly, in
cosmology, we can avoid the previous conclusion if we imagine an Alice and a Bob who did
their experiments during inflation and “wrote” their results on the classical distribution
ρ[ζ(x), a(x)]. In other words, this classical distribution is viewed as the classical message
which is transmitting to us the result of experiments which happened during inflation, see
figure 3(b).

Now, what are suitable Alices and Bobs?. Of course, they do not need to be actual
people. More important than Alice and Bob are the measurements that they do. A

4 In a general FLRW background this commutator goes as [ζ, ζ̇] ∝ a−3 so that it becomes even smaller
after the end of inflation and subsequent horizon reentry, since the universe continues expanding.

5See [21, 22] for a related discussion.
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Figure 2: Sketch of the evolution of the universe. The vertical direction is conformal
time, η, and the horizontal is space. We have an early period of inflation ending at η ∼ 0
followed by an ordinary radiation/matter dominated universe. A comoving distance x
crosses the horizon during inflation at time η ∼ −|x|. So scales correspond to time. The
vertical green line follows a given wavelength mode as it crosses the apparent horizons
given by the diagonal lines.
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Figure 3: (a) An unsuccessful set up for a cosmological Bell inequality. There are no
non-commuting operators that we can measure after the end of inflation. (b) A diagram
of a more successful set up where the whole process occurs during inflation. We generate
an entangled state. Some time later we generate the variables that will decide whether we
make an A or A′ measurement and similarly for B and B′. These decider variables as well
as the result of the measurement should remain as classical variables for the rest of the
evolution and be visible to us.

measurement is a particular unitary evolution of the combined system plus measuring ap-
paratus, whose state can be viewed as classical. We need to produce all the elements of
the Bell inequality discussion out of fluctuations. The initial entangled state would be a
quantum fluctuation, the measurement apparatus would be another quantum fluctuation
that has already become classical. It should have shorter wavelength than the one corre-
sponding to the entangled state. This shorter wavelength fluctuation should act both as
the decider variable as well as measuring apparatus. The measurement should be some
process which depends on the quantum state of one of the pieces of the entangled sate.
The result of the measurement should be transmitted to us. Therefore the measurement
should be some process which produces a large effect on the fluctuations so that we can see
it today. The state of the shorter wavelength fluctuations that acted as “decider” variables
should also be preserved and transmitted to us. We know one mechanism for transmitting
this information. Namely, through the inflationary evolution of massless (or nearly mass-
less) scalar fields where small fluctuations are amplified and stretched to cosmic scales. In
figure 3(b) we sketch the type of setup that we have in mind.

Unfortunately, we have not been able to produce a suitable observable using the sim-
plest single scalar field model. One difficulty is the following. We mentioned above that the
fluctuations become classical as they exit the horizon. The fluctuations which will serve
as the detector and decider variables are necessarily of shorter wavelength that the ones
in the entangled state. This is in order to ensure that the values of the decider variables
are determined locally, independently for Alice and Bob. Unfortunately this also means
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that the entangled state we are attempting to measure is actually more classical than the
measuring device, which is the opposite of what we want.

4 A baroque model that leads to a Bell inequality

measurement

Instead of giving up, we will imagine that we have a more complicated model of inflation
where we can indeed set up a Bell inequality. Simply as a matter of principle, we would
like to ask whether there is an inflationary model that is Bell-friendly. Namely, one that
spontaneously creates, from the vacuum, all the necessary elements for the Bell-inequality
experiment, performs the measurement and records the results for the post-inflationary
observer. One can imagine several ways of doing this, but we will concentrate on one
particular example in order to display a concrete model.

The model builds the various elements in the Bell experiment as follows

• The entangled state consists of a pair of massive particles that carry an isospin degree
of freedom. The isospin is entangled in the singlet state. These particles are very
massive at the beginning of inflation, then they get lighter at a specific time and
then they become heavier again. Therefore they are created at a specific time during
inflation, the time when they become lighter.

• The decider variables or detector settings correspond to an axion field. The axion
field has a variable decay constant, fa. Again, this is large for most of the time,
but it becomes smaller, comparable to H for a few efolds. This means that the di-
mensionless axion angular variable has larger fluctuations at a particular scale. The
axion field survives beyond the end of inflation and produces isocurvature fluctua-
tions. These isocurvature fluctuations retain the information of the detector settings
for the post-inflationary observer.

• The measurement occurs as follows. We postulate an isospin dependent contribution
to the mass of the particles. This contribution arises from a term that becomes
important a few Hubble times after that pair is created. This coupling depends on
the axion value. The measurement consists in an interaction between the mass of
this particle and the inflaton.

• The result of the measurement is preserved for the post-inflationary observer as fol-
lows. The massive particles classically modifies the evolution of the inflaton so as to
produce a discernible fluctuation, or hot spot, larger than the quantum fluctuations.
These hot spots are centered where the massive particles are located. Their ampli-
tude depends on the projection of the isospin of the massive particle along an axis
whose direction is axion dependent.
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Figure 4: One instance of the particle creation process with the statistics that follows
from a time dependent mass during inflation. The center of mass position of the pair has
a uniform random distribution. The distribution of distances between the pairs peaks at
a distance that is set by the time during inflation where the particles became less massive.
The axes are comoving coordinates. We see that it is reasonably easy to recognize the
members of a particular pair.

The final conclusion is that this baroque universe has produced a very particular pat-
tern of curvature and isocurvature fluctuations. The pattern of curvature fluctuations
is mainly the usual almost scale invariant one with additional hot spots where there is
a significant deviation. These spots come in well separated pairs. Each separated pair
constitutes a particular instance of an entangled pair together with a measurement. The
measurement operation depends on the value of the axion field, which can be read off from
the isocurvature fluctuations.

In order to have a more clear example we now discuss these elements in more detail.

4.1 Creation of well separated pairs of massive particles

We imagine massive particles whose mass depends on the inflaton φ, m(φ). The particles
are generically very massive, m� H. But we also imagine that there is a particular value
of the inflaton, φ0, where the particles become relatively light H ∼ m, but somewhat
bigger than H so that we do not produce too many of them. As the inflaton evolves, there
is a particular time when it passes through φ0. At this time particle pairs are created. We
are interested in a situation where the pair creation is rare enough that particles are well
separated, but strong enough that we produce lots of pairs in the observable universe. It
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is useful to think of the background metric as approximated by

ds2 = H−2
−dη2 + d~x 2

η2
(4.5)

The classical time dependence of the inflaton leads to a time dependent mass m(η). The
equation of motion for the massive field is

h′′ − 2

η
h′ + (k2 +

m2(η)

η2H2
)h = 0 (4.6)

We imagine a situation where the WKB approximation is approximately valid for all times.
If the WKB approximation were exactly valid, there would be no particle creation. We
can consider a small amount of particle creation which is characterized by a Bogoliubov
coefficient β which tells us the mixing between the two WKB solutions. Here β(k) is small
in the region k|η0| < 1 and it is very small for larger values. This leads to a probability
distribution for the relative comoving distance x between the two pairs which peaks at
x ∼ |η0|. Of course, the probability distribution for the center of mass of the pair is
completely uniform. A simulation of such a distribution is given in figure 4. We give a bit
more details in appendix A. The important feature here is that the typical distance x (in
comoving coordinates) is of the order of the time at which the pair is created.

4.2 Axion with time dependent fa

In this subsection we imagine an axion field with an action

S =

∫
f 2
a (∇θ)2 =

∫
dηd3x

f 2
a (η)

H2

[(∂ηθ)
2 − (∂iθ)

2]

η2
(4.7)

where θ is a periodic field, θ = θ + 2π.6 We assume that the axion “decay constant” fa
depends on the inflaton φ. Since φ is time dependent, then fa becomes time dependent.
We assume that fa starts out large, fa � H, and becomes smaller, but larger than H at φ1

and that then it rises and becomes large again. The net effect of this is that the fluctuations
of the angular variable θ are larger at distances corresponding to time η1, x ∼ |η1|, and
then they become much smaller at shorter distances. Simulated axion fluctuations with
these properties can be found in figure 5. It is conceptually cleaner to imagine that φ1

comes at a slightly later time than φ0 discussed in section 4.1, but no great harm is done
if they happen together. But it is important that fa rises for later times. In figure 5 we
show both the axion field and the created particle pairs, zooming on a particular pair.
We see that each member of the pair can be in regions with different values of the axion
field. The evolution of the axion was fine-tuned to generate rather different values of θ at

6 We are using the word “axion” to describe a periodic field, but this field does not have to be the
QCD axion.
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the locations of each member of the pair. The increase of fa has allowed us to suppress
quantum fluctuations at shorter distances so that for the next step we have a well defined
value for the axion field at the location of each particle.

Also, since the axion has fluctuations at distances shorter than the separation between
the massive pairs, we can view the fluctuations around each pair as being produced locally.
In other words, since the axion becomes the decider variable, we want to ensure that it is
chosen locally around each massive particle, in a way that independent from what happens
around the other massive particle of the pair. This happens in this model if we view the
generation of the fluctuations as occurring when the modes cross the horizon.7

We imagine that the axion field survives beyond the end of inflation and that there
is a small potential V ∼ Λ4 cos θ which gives it a mass and causes it to oscillate at late
times. This contributes as a dark matter component. The axion fluctuations give rise
to isocurvature fluctuations in this dark matter component. In our universe we do not
see such fluctuations in the overall dark matter density, but this could be a subdominant
contribution of the dark matter. Here the point is that, in principle, by observing the size
of these isocurvature fluctuations we can determine the initial amplitude of the field θ in
the corresponding regions of the universe. Now in order not to produce domain walls we
want that fa remains always smaller than H so that the axion field is always around the
same minimum of the potential. Indeed, in figure (5) we see that fluctuations are smaller
than π.

4.3 Seeing the massive particles after the end of inflation

The particle pairs that we discussed above will be diluted by the expansion of the universe
and one can wonder how they will ever be observable. First we will discuss a mechanism
that makes them observable. Later we will modify the mechanism to include the isospin
degree of freedom.

We have postulated the existence of massive particles whose mass depends on the
inflaton. This implies that there is a coupling between the inflaton and these massive
particles. We can think of the massive particles as a classical source for the inflaton field.
This produces a perturbation of the inflaton around the location of the particles [25, 26].
In other words, the massive particles “pull” on the inflaton, locally delaying its evolution.
This in turn delays the end of inflation, causing a further expansion in this region. In order
to have an observable “classical” signal, we want the net effect of this pull to be larger than
the quantum fluctuations. In the approximation that H and the slow roll parameter ε are
constant, there is a surprisingly simple expression for the effect of the massive particle.
We find that the late time expectation value of the curvature fluctuations ζ(x) due to the

7 Of course, since the whole region under consideration started out in a subhorizon region, one can call
this independence assumption into question. Of course, this assumption can also be called into question,
for the same reason, in present day Bell experiments (even [23]) since the whole observable universe was
initially contained in a small Hubble region. In other words, we are applying for inflation the same kind
of assumptions we are used to applying for present day experiments.
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Figure 5: Here we see a profile of the generated axion field. It has features on characteristic
scales which are small compared to the separation between the massive particles, so that
each massive particle sees a different value of the axion when the “isospin” of each particle
is measured. The green dots are two members of a particular pair of created particles.
This figure is zoomed relative to figure 4.

presence a particle at ~x = 0 is given by (see appendix C)

〈ζpart(x)〉 =
m(η = −|x|)

2
√

2εMpl

×
(

1

2π
√

2ε

H

Mpl

)
(4.8)

where Mpl is the reduced Planck mass. Notice that the mass is evaluated at a conformal
time equal to the distance in comoving coordinates from the location of the particle. Note
that the time dependence of the mass is translated to the spatial dependence of the profile
of the field. The last factor in (4.8) is the amplitude of the quantum fluctuations. Therefore
we want the first term to be larger than one. This can be achieved if m ∼ Mpl and ε is
small. It would be unreasonable to postulate a mass much larger than Mpl since that would
become a black hole. But if ε is 10−3, then we can have a classical effect which is ten times
larger than the quantum fluctuations and should be visible. See figure 6 for simulations of
this classical solution plus the quantum fluctuations. We call this region which has a value
of the primordial curvature fluctuation ζ(x) larger than the average a “hot spot”, regardless
of how how it will appear in the CMB or other probe of the primordial fluctuations8. We
want a situation where the hot spot is recognizable on an individual basis. This is the
reason we required (4.8) to be larger than the quantum fluctuations.

8 In [26] it was argued that depending on whether their size is larger than the size of the horizon at
recombination they can appears as hot or cold spots in the CMB.
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Figure 6: For these figures we assumed a particular time dependence of the mass where
〈ζpart〉 becomes a factor of about five above the background value of the fluctuations
(see (C.25)). We see the standard gaussian random field plus a hot spot created by the
coupling to a massive particle. (a) A slice of the distribution centered on the center of the
hotspot. The orange line represents an instance of the fluctuating field with no hotspot.
The green line shows the hot spot becoming larger than the mean value of the fluctuations,
represented by the horizontal blue line. (b) Two dimensional plot of the hot spot plus the
quantum fluctuations. We clearly see the hot spot standing out over the background. This
figure is zoomed relative to figure 5.
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4.4 The measurement

Here we want to consider a process whose outcome depends on the isospin of the particle.
Of course, we need to introduce an isospin breaking interaction. We postulate that the
mass of the massive particle has a component that depends on the isospin projection
along an axis that depends on the axion field. More precisely, we imagine that the field h
describing the massive particles has mass terms of the form

m2
1(φ)h†h+ λ2(φ)h†(σx cosnθ + σy sinnθ)h =

= m2
1(φ)

[
|h1|2 + |h2|2

]
+
[
λ2(φ)einθh∗1h2 + c.c.

]
(4.9)

In the first line we view h = (h1, h2) as an isospin doublet bosonic field with the σ matrices
are acting on the isospin indices of h. In the second line we wrote the lagrangian in terms
of the two complex component fields.9 . The number n is an integer and a value of about
n ∼ 10 is reasonable to amplify the fluctuations shown in figure 5. We introduced it with
the sole purpose of amplifying the effects of the fluctuations of the axion so that the the
vector along which we are projecting the spin ranges over all possible orientations.10 The
two eigenvalues of the mass are

m± =
√
m2

1(φ)± |λ2(φ)| (4.10)

We want |λ2| ≤ m2
1 so as not to have an instability. We also want that at late times |λ2|

is similar to m2
1 so that the two eigenvalues of the mass differ by, say, a factor of two. In

addition, we also want that m± are of order Mpl. This is required so that both values
of the mass are observable and distinguishable, as in the discussion in subsection 4.3. In
addition, we would like that λ2 is negligible when the particles are created so that they
are really created in an isosspin singlet. Then, as m1 rises, then λ2 should also rise and
become large.

We recognize that this subsection seems the most contrived part of the model.
Notice that in this model the field h is a complex field and when we produce a particle

pair one member of the pair will be a particle and the other an antiparticle. The complex
conjugate field is, of course, also a doublet (h∗1, h

∗
2) = (h̃1,−h̃2), where the h̃ field transforms

as a standard doublet, in the same way as (h1, h2) under SU(2). This means, in particular,
that the eigenvalues of the masses are given by the projection of −(σ.~n) acting on the h̃
doublet. If we consider the pair of fields h and h̃, we have an ordinary spin singlet state.

9 This is the most general term that we can write down that is consistent with the O(2) symmetry
generated by phase rotations of the doublet, together with the “reflection” h1 → h∗2 , h2 → h∗1. Also
the coupling to the axion preserves a common symmetry under changing h1 and h2 by opposite phases
together with a shift of the axion.

10 We could have set n = 1 and then produced larger fluctuations of the axion than in figure 5, by
decreasing the overall value of fa. This would have the problem of producing domain walls after the end
of inflation. However, we could set the post-inflationary axion potential to zero and imagine that the
axion is observable as a variation of the some of the fundamental constants in the late universe.
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Figure 7: (a) Plot of the type of m± functions that we want for the model.(b) Same plot in
logarithmic scale. We plot times after the particles are created, when the masses are equal
and of order m/H ∼ few, they then rise to large values of order Mpl and, in addition, they
become different from each other due to a non-zero λ2 in (4.9).

If θ was constant in space, then if the particle member of the pair has mass m+, then the
antiparticle member also has mass m+. In other words, the ± of the mass of the particle
is equal to the sign of the σ.~n operator. For the antiparticle the ± of the mass is equal to
the sign of −(σ.~n) acting on h̃. This extra minus sign has trivial consequence, it reverses
the sign of the quantum mechanical expectation value for the C observable defined in (2.1)
relative to what is expected for an ordinary spin singlet state.

4.5 Post inflationary observations

We imagine that we, as late time observers, can measure both the primordial scalar fluc-
tuations as well as the primordial axion fluctuations. Of course, neither an axion, nor its
primordial fluctuations have been seen. If we want to make the model consistent with
present day data we can imagine that the axion we are discussing corresponds to a sub-
leading component of the dark matter. This dark matter density depends on the value of
θ left over from the end of inflation, since this determines the deviation from the mini-
mum of the axion potential. Therefore, fluctuations in θ translate into fluctuation of this
component of the dark matter. This is an isocurvature fluctuation. These have a charac-
teristic scale which is set by the comoving scale corresponding to the time during inflation
where fa was small. This is the scale of the features in figure 10. In summary, by looking
at the fluctuations in the subdominant matter distribution we could make a plot of the
primordial axion position at the end of inflation. The plot would look as in figure 10.

Now let us discuss the scalar fluctuations. In this model, the scalar fluctuations are
given by the usual gaussian random field plus some characteristic hot spots which have
a specific size in comoving coordinates. These hot spots are large enough to stand out
from the gaussian field on an individual basis, as in figure 6. There are two types of
hot spots that differ by their overall amplitude. Let us call them the superhot and the
veryhot spots. These two possibilities correspond to the ± sign in (4.10). Identifying

15



30 40 50 60 70 80 90 100
0

20

40

60

80

100

Figure 8: Performing an observation of the primordial scalar fluctuations, the observer
identifies the superhot and the veryhot spots. Plotting only these hot spots we get the
above map. Here purple is for very hot and blue for superhot. This is the same as the
map for the created particles in figure 4 except that now we can associated a color (or a
plus or minus sign) to each spot.

each hot spot individually and labelling it as a superhot or veryhot spot spot we can end
up with a distribution of hot spots as in figure 8. Each hot spot can be assigned a ±1
depending on whether it is a superhot or veryhot spot. Note that in this model, each
hotspot corresponds to an individual massive particle created during inflation. The final
result of this procedure is a set of pairs. And for each member of the pair we have a plus
or minus one. We interpret this plus or minus one as the measurement of the isospin along
some axis.

Now we look at the map of the axion angle at the location of each spot. This axion
map could look as in figure 5. In this way, we can assign an angle for each spot. So now we
have a collection of pairs of ±1 measurements together with their corresponding angles.
Let us call these pairs (±1θA ,±1θB). These outcomes are similar to the ones obtained in
the idealized Bell experiment discussed in section 2, where θA,B represents the values of
the orientations of the axis along which the projection is made. In other words, we could
define the observable C as in (2.1), as C(θA, θ

′
A; θB, θ

′
B) where θA, and θ′A correspond to

the two choices of detector at Alice’s location and θB, θ′B similarly at Bob’s location. We
could define Alice’s location to be the location of the particle and Bob’s location that of the
antiparticle. However, in this model, the late time observer cannot distinguish between
the particle and the antiparticle. Fortunately, this is not a problem. In the standard
Bell inequality discussion, we still have a Bell inequality if we were to consider the new
observable C̃ = 1

2
(C+CA↔B). And the quantum mechanical prediction for the singlet state

is also invariant under A↔ B, since the expectation value for given choices of orientations
of detectors it is proportional to cos(θA − θB). We can consider the angles in (2.3) with
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θ = π/4, and looking at the observable C̃ we would observe a maximal violation of Bell’s
inequalities.11

5 Discussion

Violations of the Bell inequality are a key signature of quantum entanglement, displaying
the weirdness of the quantum world. Given that the leading theory for the origin of
fluctuations in our universe relies crucially on quantum mechanics, it is reasonable to ask
whether a Bell experiment is possible in cosmology. In tabletop experiments we have the
luxury of varying the initial conditions and manipulating various types of materials. In
cosmology, we have just the one universe we live in. However, in theory, we also have the
“luxury” of imagining alternative universes where other measurements are possible. Here
we have imagined a universe where a cosmological Bell inequality experiment is possible.
Though the model is somewhat contrived, it shows that it is in principle possible. Of
course, it would be much more interesting to find such observables for the model that
describes inflation in the real world (assuming that inflation does indeed describe the real
world).

The exercise of constructing a model where the measurement is possible has exposed
some of the assumptions that are necessary in order to formulate an inequality. In order for
the observable to be subject to a Bell inequality, one needs to make several assumptions.
We need to assume that the fluctuations are generated when modes cross the horizon and
not earlier. In other words, we need to assume that the fluctuations that generated random
values of the axion field at the location of the two particles are not correlated with the
entangled isospin state of the massive particles. This is an assumption we always make
when we perform a Bell inequality experiment. One can question this assumption, both
for today’s experiments as well as for experiments in the early universe, since the whole
observable universe was once in a very small region of space. Nevertheless, the assumptions
that go into the cosmological Bell inequality seem qualitatively similar to the ones that go
into present day Bell inequality experiments.

Notice that a value of |C| > 2 implies a violation of Bell’s inequalities, ruling out local
classical hidden variables, while a value larger than 2

√
2 would be a violation of quantum

mechanics. Therefore one can also view it as a test of quantum mechanics.
In the model described in this paper, all the elements of the Bell experiment are

constructed out of vacuum fluctuations during inflation. We have seen that this can be
done considering several off-the shelf elements. In fact, particles whose mass depend on
the inflaton were discussed in e.g. [24, 27], and they arise naturally in models with moving
branes as open strings stretching between the branes [27]. Models with many fields are
common, as well as models where an axion has quantum fluctuations during inflation, or

11 Of course, in a practical experiment we would also want to average over all configurations of (2.3)
where the quantum mechanical contributions are still the same. For example, we can perform an overall
rotation or reflection of the vectors in (2.3).
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a decay constant that is time dependent, see e.g [28]. Perhaps the most contrived aspect
was the particular coupling assumed in section 4.4.

Independently of the motivation for this paper, it is also interesting that particles
that become very massive can leave a discernible signal on the spectrum of primordial
fluctuations [25, 26]. These are signals which appear on an individual basis. In other
words, each hot spot is produced by an individual massive particle. The mass of the particle
rises with the advance of the inflaton, slowing down the inflaton around the particle . The
expansion of the universe imprints this signal over long distances, distances that are much
larger than the Hubble radius at the end of inflation. The presence of particles whose mass
varies so strongly with the inflaton makes one wonder whether the potential will remain
flat after the quantum effects of this particles are taken into account. Particles that become
light at some point during the evolution are natural in monodromy inflation models [30, 31].
For the purposes of this paper we are content with fine tuning the potential, since we are
not trying to argue that this particular model is the most natural one. It is also tempting
to speculate that this mechanism or some variation could be used to produce primordial
black holes from suitably large hot spots.

Of course, researchers became convinced by quantum mechanics much before Bell in-
equality experiments were performed [32]. Similarly, there are many other features of the
cosmological fluctuations that could be observed in the not so distant future which would
give great evidence for a quantum origin of the cosmological fluctuations. These are quan-
tities which we compute using the quantum theory such as the scalar three point function
[33] (see [34] for a review), which could perhaps be observable using 21 cm observations
[35] or other yet to be discovered way to measure a large number of primordial fluctua-
tions. Other possibilities include seeing oscillations in the three point function with the
patterns produced by the creation of massive particles [36, 37, 38, 39, 40]. Of course, it
would be interesting to find other observables that harder to reproduce using non-quantum
evolution.

Finally, note that nature has indeed produced a universe where Bell experiments are
possible: they are certainly possible in the current era of accelerated expansion, though
we do not know if our results will be seen by any “post-inflationary” observers!.
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A Creation of massive particles with time dependent

masses

We start from the equation for a massive particle (4.6). We then define u = h/η to find
the equation

u′′ + p2(η)u = 0 , p2(u) = k2 +
m2(η)/H2 − 2

η2
(A.11)

In the standard WKB approximation the solutions are

u =
1√
2p

exp

[
i

∫ η

dη′p(η′)

]
, ū =

1√
2p

exp

[
−i
∫ η

dη′p(η′)

]
(A.12)

If the field is expanded with respect to these solutions we do not find any particle creation.
The WKB approximation is correct a very early and very late times. The particle creation
is described by finding the Bogoliubov β coefficient which gives the amount of ū solution at
late times if we start purely with u at early times. We will consider a situation where the
WKB approximation is correct to leading order throughout the evolution. This happens
when p′/p2 � 1 at all times. In this situation the particle creation will be small and it
can be computed approximately using the formula

β(k) =

∫ 0

−∞
dη

p′2

4p3
exp

[
2i

∫ η

−∞
dη′p(η′)

]
(A.13)

In the situation described in section 4.1 we find that β is small. But for large k|η0| it
is even smaller because the WKB approximation is very valid for all times. While for
k|η0| < 1 the WKB approximation is less strongly valid near η ∼ η0. But at this time
we can neglect the k dependence. This means that we will get a β(k) which is small and
k independent for k < |η0| and which will become even smaller for larger values of k. A
toy model for this is the function β = εe−k

2η20 , with a small ε. Here ε will characterize
the distance between the pairs of created particles while |η0| characterizes their relative
separation.

A.1 An explicit example

Now let us work out an explicitly solvable example. Let us assume that we have a mass
that varies as

m2

H2
= γ

(
η

η0
− 1

)2

+ δ (A.14)

We can write down the massive wave equation (4.6) and solve for the correctly normalized
solutions with definite frequency in the far past

h = (−η)
3
2x−iµe−ixe

π
2
(ν+µ)U(

1

2
− iν − iµ, 1− 2iµ; 2ix)
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with x ≡ η

η0

√
k2η20 + γ , µ2 ≡ γ + δ − 9

4
, ν ≡ γ√

γ + k2η20
(A.15)

where U is the function defined as HypergeometricU in mathematica. It behaves as
U(a, b; z) ∼ z−a for large z. For small values of x, (A.15) goes as

h ∼ (−η)3/2
[
xiµe−πµ22iµ Γ(−2iµ)

Γ(1
2
− iν − iµ)

+ x−iµ
Γ(2iµ)

Γ(1
2
− iν + iµ)

]
e
π
2
(ν+µ) (A.16)

For large µ and ν we get (up to irrelevant phase factors in each term)

1√
2µ
e−

3
2
t
[
e−iµte−π(µ−ν) + eiµte−π/2(µ−ν−|µ−ν|)

]
(A.17)

with η = −e−t. The first term reflects the possibility of particle creation so that the β
Bogoliubov coefficient is β ∼ e−π(µ−ν). We are interested in the case where µ > ν so that
the first term is small. Notice that the only term that depends on k is in ν. And ν is
maximal for k = 0 and it then decreases rather quickly as kη0 ∼ √γ. We can easily take
γ and δ to be of order one. In this way we can ensure that we produce well separated
pairs. However, in this case, the mass does not grow enough to be visible to the late
time observer. Therefore, after the particles are created we need another term in the mass
that makes them grow more quickly so that they grow to values of order Mpl. This would
require a modification of the time dependence of the mass, relative to (A.14) for times
which are a few efolds after η0. This new time dependence should make the mass rise to
values of order Mpl and be isospin dependent, as it is shown in figure 7.

B Axion with varying decay constant

In this section we consider the fluctuations produced by an axion with varying fa. We
consider the action (4.7). Its equations of motion are

∂η

[
f̃ 2
a

η2
∂ηθ

]
+
k2f̃ 2

a

η2
θ = 0 (B.18)

where f̃a = fa/H. As a simple example, consider the following

f̃ 2
a = 100− 80

1 + (log η
η1

)2
(B.19)

For very early or very late times this is constant and equal to f̃a ∼ 10, but f̃a dips to
smaller values for time η ∼ η1. We can now compute the axion fluctuations as usual.
Namely, we numerically solve (B.18) with boundary conditions at large η corresponding
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Figure 9: (a) We plot of 1/f̃a(η). We are plotting the inverse rather than the function
itself since we expect that the axion fluctuations scale roughly as this value. (b) Numeric
computation of the axion spectrum. We plot the function c(k) defined in (B.20).

to the vacuum of a harmonic oscillator and then look at the value of the solution for very
small η. Squaring it we obtain the the value of the axion fluctuations c(k) defined by

〈θ(~k)θ(~k′)〉η→0 = (2π)3δ3(~k + ~k′)
c(k)2

2k3
(B.20)

In figure 9 we see a plot of c(k) for a few values of k. We also show in figure 10 the type
of position space profile for the axion generated by this probability distribution. We see
that it has features at characteristics scales but it is smooth at shorter distances.

C Effect of massive particles on the scalar curvature

fluctuations

Here we consider the Lagrangian

S =
1

2

∫
dηd3x

2εM2
pl

H2

[
(∂ηζ)2 − (∂iζ)2

η2

]
−
∫
dη

H
m(η)∂ηζ(η, ~x = 0) (C.21)

This is the lagrangian corresponding to the curvature fluctuations. The coupling to the the
massive particle at rest is obtained from the coupling to g00 which is through δg00

g00
= ζ̇/H

(see equation (2.10) in [33]). We view the coupling to the mass as a perturbation, then
we can apply the in-in formalism to compute the expectation value of ζ which is given in
Fourier space by

〈ζ~k(η = 0)〉 = −i
∫ 0

−∞
dη
m(η)

H
〈ζ~k(0)∂ηζ−~k(η)〉+ c.c.
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instance of a distribution with statistics given by (B.20), with c(k) as in figure 9.

=
H

2εM2
pl

∫ 0

−∞
dηm(η)

η

k
sin kη (C.22)

where we assumed that H and ε were constant for simplicity. Then going to position space
we find that the inverse fourier transform produces a δ(η + |~x|) so that the final answer is

〈ζ(~x)〉 =
1

4π
m(η = −|~x|)

(
H

2εM2
pl

)
(C.23)

The standard gaussian two point function in position space is

〈ζ(~x)ζ(0)〉 =

(
H2

2εM2
pl

)∫
d3k

(2π)3
ei
~k.~x 1

2k3
=

1

(2π)2

(
H2

2εM2
pl

)
log(L/|~x|) (C.24)

where L is an IR cutoff. Which naturally inspires us to write (C.23) as in (4.8).
Figure 6 is based on choosing a classical profile

〈ζ(x)〉 =
1

2π

5

(1 + (50η)2
(C.25)

This does not quite correspond to the time dependence of the mass discussed in (A.1), or
figure 7. It is just an example.
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