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Genomic datasets are growing dramatically as the
cost of sequencing continues to decline and small
sequencing devices become available. Enormous
community databases store and share these data
with the research community, but some of these
genomic data analysis problems require large-
scale computational platforms to meet both the
memory and computational requirements. These
applications differ from scientific simulations
that dominate the workload on high-end parallel
systems today and place different requirements
on programming support, software libraries and
parallel architectural design. For example, they
involve irregular communication patterns such as
asynchronous updates to shared data structures.
We consider several problems in high-performance
genomics analysis, including alignment, profiling,
clustering and assembly for both single genomes
and metagenomes. We identify some of the common
computational patterns or ‘motifs’ that help inform
parallelization strategies and compare our motifs to
some of the established lists, arguing that at least
two key patterns, sorting and hashing, are missing.
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This article is part of a discussion meeting issue ‘Numerical algorithms for high-performance
computational science’.

1. Introduction
The future of scientific computing will be increasingly data intensive due to the growth of
data from sequencers, telescopes, microscopes, light sources, particle detectors and embedded
environmental sensors. Open data policies for scientific research are leading to large community
datasets of both raw and derived data. Some of resulting data analysis problems involve massive
numbers of independent computations, while others require irregular computations in which
the objective of the analysis is to discover the underlying structure of the data. Many genomics
problems fall into this latter category, where the structure and relationship between different
sequences or entire genomes is unknown. These problems require data structures like hash tables,
histograms, graphs and very sparse unstructured matrices. They have dynamic sources of load
imbalance and little locality, leading to unpredictable communication that is both irregular in
space, with arbitrary connections between processors, and irregular in time, where one process
may need data on another at any point in time.

In this paper, we describe parallelization challenges and approaches for high-performance
genomic data analysis using a series of examples drawn in large part from the ExaBiome
project, including k-mer counting, alignment, genome assembly, protein clustering and machine
learning. We consider analysis of both DNA and proteins expanding beyond the strict domain
of genomics into proteomics. Shared memory programming is a natural fit for these problems,
and indeed the most popular genome assemblers and clustering algorithms have typically run on
shared memory computers. In developing high-performance computing (HPC) implementations
of these applications, we use distributed versions of shared data structures that are updated
asynchronously by individual processors with minimal global synchronization.

By contrast, the applications that dominate HPC workloads are scientific simulations that
have a natural degree of locality from the underlying physical laws. These simulations often
lend themselves to domain decomposition, where the physical domain is partitioned across
processors, and while communication may be both global and to nearest neighbours, the presence
of timesteps and iterative methods lead to natural phases of communication and computation
separated by global synchronization. Figure 1 shows a notional spectrum of simulation and
analysis problems and the level of irregularity which tends to correlate with the difficulty of
parallelization. On the left are independent parallel jobs, whether from simulation or analysis.
These are easily parallelized on a cluster or cloud platform using programming systems like
Spark [1], or even geographically distributed computing as in the grid [2]. Simulation problems
with physical structure fall in the middle two categories, depending on whether they have
global patterns of communication and synchronization, which often stress the global network
bandwidth but are simpler to reason about, or involve pairwise exchange of data using
synchronous or asynchronous two-sided message passing. These boundaries are neither strict
nor precise, with many applications having a mixture of styles, and deep learning landing with
simulation. However, the spectrum highlights that the genomics applications will provide an
interesting perspective for the design of parallel hardware and software systems.

In addition to summarizing parallelization techniques for genomics analysis, we identify
a relatively small set of computational motifs that appear multiple times across applications,
illustrated in figure 2. While we do not presume that these motifs are sufficient for all such
applications, we believe they can substantively inform the design of libraries, programming
systems, benchmarks and hardware. Following a brief overview of the ExaBiome project in §§2
and 3 gives an overview of several genomics data analysis problems and the computational motifs
that will lead to a particular parallelization strategy. Section 4 summarizes our genomics motifs
and compares them to other lists of motifs, showing strong similarity to another list for data
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Figure 2. Seven parallelismmotifs in genomic data analysis.

analysis problems more broadly, although we argue that two key motifs, sorting and hashing, are
missing. Section 5 describes how the motifs lead to different types of programming support and
hardware requirements, and §6 makes some concluding remarks on the value and limitations of
our motifs.

2. ExaBiome overview
The ExaBiome project is developing scalable parallel tools to analyse microbial species, such
as bacteria, fungi or viruses, which typically live in communities with hundreds of different
species mixed together. The genome-level analysis of these communities, metagenomics, is key to
understanding the makeup of these communities, how they change based on external factors like
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temperature, moisture or chemicals, to understand their functional behaviour, and to compare
them across communities. An estimated 99% of microbial species are not culturable in isolation,
making metagenome analysis the preferred technique for understanding these communities. The
human microbiome has been linked to a wide range of health issues including diabetes, cancer
and mental health, while environmental microbiomes can have both positive or negative impacts
on everything from oxygen production and remediation of chemical spills to formation of toxic
algal blooms.

ExaBiome, which is part of the Exascale Computing Project [3], is developing HPC solutions for
problems that were predominantly computed on shared memory or serial machines, and taking
advantage of the processor accelerators such as Graphics Processing Units (GPUs) that are key
to future exascale system designs. The project is developing assemblers for both short and long
read sequencing data (MetaHipMer and diBELLA), taking the fragmented output of sequencers
and constructing long sequences from which genes, corresponding proteins, and taxonomic
information can be derived. Working across large protein datasets, PISA and HipMCL extract
clusters of related proteins that are useful in understanding ancestry and functional behaviour.
The team is also exploring deep learning techniques to relate proteins to three-dimensional
structure and function, and a set of methods to compute signatures for metagenomes that can
be used for comparisons across microbial samples in space or time and database search.

The project has already demonstrated unprecedented scales in terms of dataset size and
performance with the goal of growing the dataset capability by more than an order of magnitude.
The largest metagenome assembly to date used wetland soil samples that were a time-series
dataset across several physical sites from the Twitchell Wetland in the San Francisco Bay-Delta.
These samples consisted of 2.6 terabytes of 7.5 billion reads, which are the DNA fragments
output from the sequencers, and the assembly computation required 5.1 h on 1024 nodes of
the Cori supercomputer at NERSC. We believe it is the largest assembly of any kind done
as a single co-assembled computation, i.e. rather than pre-filtering the data in some way or
assembling pieces of the data separately. Separate analysis shows the value of such co-assemblies,
especially in extracting information about the low abundance species in a sample. The largest
protein clustering computation used assembled metagenomes and metatranscriptomes from two
community datasets (IMG and NCBI). This unprecedentedly large dataset contained 383 million
proteins and 37 billion connections, requiring about 1 h on 729 nodes of the Summit system at
OLCF.

3. A sampling of genomic analyses
We describe at a high level some of the algorithms and parallelization approaches used in genomic
data analysis, selecting a set of problems that represent a diverse set of computational patterns
and are prevalent across multiple applications. Our primary focus is on distributed memory
parallelization techniques, so we describe the data distribution and communication approaches
as well as any load balancing issues, or limitations to scaling when they exist.

(a) K-mer analysis
Given a set of variable-length strings, a common approach to analysing those strings is to break
them into fixed-length substrings called k-mers. For example, the string on the left has the list of
4-mers on the right.

CCTAAAGCCTA CCTA CTAA TAAA AAAG AAGC AGCC GCCT CCTA

Several bioinformatics analyses involve counting the number of occurrences of each distinct
k-mer, e.g. to filter low-frequency k-mers that are likely errors, to find high-frequency k-mers that
indicate repetitive regions of the genome, or by using the k-mer histogram as a signature for a
set of genomics data. K-mers also serve as seeds in determining whether two DNA fragments are
likely to align with one another and may also be used on protein data with its 21-character amino
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acid alphabet in addition to DNA. The most common approach to k-mer counting is to build
a hash table of k-mers, possibly using a Bloom filter, an approximate and space efficient data
structure that answers queries about set membership, to eliminate singletons. If the k-mer length
is small, a direct map may be practical, and sorting is also possible, although to keep memory use
in check, k-mers are generated incrementally and identical ones merged while they are sorted to
avoid having all of them in memory at once. Manekar and Sathe give an overview of the various
approaches and benchmark some of the popular shared memory tools [4].

Distributed memory parallelism for k-mer counting becomes increasingly important to
address large sets of environmental microbial genomes and to handle cross-genome comparisons.
Raw sequencing data may be several times larger than the final genome, e.g. the dataset may
be sequenced repeatedly giving it a sequence depth of 10–50× to ensure that every location
is sequenced multiple times so that sequencing errors can be eliminated. Large environmental
datasets may therefore run to multiple terabytes resulting in input data that does not fit on a
single large-memory compute node. The list of k-mers—prior to removing duplicates—requires
storage nearly k times larger than the input, and given that typical k-mer lengths may run from
10 to 50 characters, the raw k-mers may not fit even in the aggregate memory of a multi-node
system. The ExaBiome project uses a hash-based approach to k-mer counting with a Bloom filter
used to avoid storing most of the singleton k-mers. The resulting hash table stores the count of
each unique k-mer that occurs more than once in the original data.

In general, there is no communication locality when building the distributed hash table, so on
p processing nodes, each k-mer will be communicated remotely with probability (p-1)/p. This
creates an irregular many-to-many communication pattern without any predetermined patterns
and without natural points for bulk-synchronous communication. A Bloom filter is useful to
avoid storing singleton k-mers, but requires the same irregular many-to-many communication
as the hash table: all k-mers are communicated, but the Bloom filter requires only a few bits for
each unique k-mer. A good hash function can ensure even load balance of the unique k-mers, but
significant communication load imbalance still results when the frequency distribution is skewed,
as is often the case in real datasets where there are some very high-frequency k-mers. Local
aggregation of such ‘heavy hitters’ can reduce communication bottlenecks for high-frequency
k-mers, but the effectiveness depends on having a small number of such k-mers so that a local
table can collect and combine them.

Within the ExaBiome project, we have multiple instances of k-mer analysis, which include a
basic count/histogram operation and indexing to collect the information about the position of
each k-mer in the set of input sequences (reads). Memory utilization is a key factor in design, and
to avoid having the full list of k-mers (with duplicates) in memory at any given point in time,
one version of the code performs all-to-all exchanges in phases [5–8] and counts k-mers for use
in the short read assembly, and another version keeps indexing information for use in computing
long read overlaps [9]. Other distributed memory k-mer analysis tools include Bloomfish, which
uses a similar MPI all-to-all collective approach but has only a single phase [10] thus limiting
dataset size due to memory constraints, and Kmerind, which has demonstrated scaling to over
20 TB datasets by using multiple phases and various memory saving optimizations [11]. The
most recent ExaBiome k-mer counting tool is entirely without global synchronization and uses
one-sided communication to continually send k-mers while combining and storing local ones.
Not only does it avoid global synchronization, but it also hides latency by using non-blocking
communication.

(b) Pairwise alignment
Alignment is performed on both DNA and proteins to find approximate matches between strings,
allowing for a limited number of insertions, deletions and substitutions. Pairwise alignment
is typically done with some form of dynamic programming, i.e. Needleman–Wunsch [12] for
the best overall alignment or Smith–Waterman [13] for the best local substring alignment. Both
algorithms find an optimal match based on a given scoring scheme that rewards matches and
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penalizes mismatches, insertions and deletions. The algorithms operate by filling in an n × m
scoring matrix based on strings of length n and m and compute the optimal score at each position
with an overall sequential cost of O(nm). The resulting dependence pattern leads to parallelism
along an anti-diagonal wavefront. A popular heuristic algorithm, called X-drop [14], searches
only for high-quality alignments by tracking the running highest score and not exploring cell
neighbourhoods in the matrix whose score drops by a given threshold below the maximum. It
gets its performance benefits from dynamically resizing the anti-diagonal wavefront (i.e. its band),
therefore reducing the search space, and may stop early when there is no high-quality match.

Pairwise alignment appears throughout genomic data analysis, because both errors in data
from sequencers and variations in genomes across individuals lead to imperfect string matches.
The ExaBiome project has multiple instances of alignment, which include aligning short reads to
partially assembled sequence data (called contigs), aligning long reads to each other, or aligning
proteins to each other. Typical lengths of DNA from sequencers run from 100 to 250 characters
for short reads to over 10 000 for long-read technology reads, while proteins are typically a few
thousand characters long. Even if one is aligning against a full genome, e.g. the 3-billion-character
reference human genome or a large database of genomes, it will be done by starting from a
predetermined location or seed as described in the next section. At the scale of a few hundred to
a few thousand characters, pairwise alignment is amenable to SIMD [15–17], multicore, GPU [18]
and even FPGA [19,20] parallelism, and can take advantage of narrow data types to represent
the four nucleotides in DNA, the 21 amino acids in proteins, or the limited range of values in the
scoring matrix. Recent work also shows how dynamic programming problems exhibit essentially
linear speedups using the concept of rank convergence [21], in which the pairwise alignment
is computed via a series of dense matrix multiplications on the tropical semiring where the
scalar addition is replaced with the maximum operator and scalar multiplication becomes integer
addition.

Alignment dominates the local on-node computation in ExaBiome applications, as well as
other genome analysis tools across scales. However, there is not sufficient work for distributed
memory parallelism within pairwise alignment, and even GPU offload requires batch alignment,
where a set of pairs are aligned as a single operation, to amortize the startup and data movement
overhead.

(c) All-to-all alignment
Alignment is often done across a set of strings, such as alignment against a database of reference
genomes or proteins, a set of patient genomes against a single (large) reference, or a set of reads
from a sequencer against each other or against partially constructed genomes fragments as part
of genome assembly. The ExaBiome project performs all-to-all alignments as part of short read
assembly (merAligner within MetaHipMer), in which case the input reads are aligned against
all partially assembled contigs [22], and as the first step in long-read assembly where reads are
aligned against each other in BELLA and diBELLA [9,23].

The all-to-all computational pattern is familiar from n-body simulations and, as in that case,
computation on all O(n2) pairs of strings/particles is prohibitively expensive. To tackle this,
particle simulations rely on hierarchical tree-based approaches that exploit the physical layout
of particles in space, which is not applicable in alignment. Instead, in aligning a set of sequences,
one can pre-filter the pairs to find ones that are likely to have a good alignment. Our approach
therefore looks for sequences that share at least one short identical string, e.g. a k-mer, which can
also be used to seed the alignment. For example, to align a set S against another T, store all k-mers
from strings in set T in a hash table and lookup all the k-mers from strings in S to find matching
pairs, starting each pairwise alignment from the position of the common k-mer.

In distributed memory, the k-mer hash table has an irregular many-to-many communication
pattern that is familiar from the k-mer counting, but each k-mer now retains the list of sequences
containing that k-mer. The hash table may be viewed as a sparse k-mer×sequence matrix with
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sequences from set T. To compute the set of sequences from S that have a matching k-mer, we can
take either a linear algebra or database ‘hash-join’ view of the problem.

In the former case, we construct a k-mer×sequence matrix for each set, transpose one and
multiply them to obtain a sparse sequence×sequence where each nonzero at position i,j represents
a pair Si, Tj that share a common k-mer. The sparse matrix primitive that performs this operation
is known as SpGEMM, for Sparse GEneralized Matrix–Matrix multiplication [24]. It is generalized
in the sense that the multiplication can operate on any arbitrary algebraic structure, also known
as a semiring, and not just the real field. The single-node shared memory BELLA code uses this
approach [23] to align a set of long reads to itself, so S = T. Both input and output matrices in
BELLA’s case are sparse.

The second approach constructs the same k-mer×sequence table for T but does not explicitly
compute the sequence×sequence matrix. Instead, as it computes the set of k-mers in S, it
looks them up in T′s table to find sequences in T with a common k-mer. The distributed
memory diBELLA uses this approach in a bulk-synchronous series of many-to-many exchanges,
while merAligner performs alignments on-the-fly as the read sequences are processed (typically
fetching the contig from a remote processor) that contains a matching k-mer. merAligner also
caches these contigs as there is enough likely reuse that can be leveraged to save repeated
communication of contigs.

All of these distributed memory alignment algorithms involved irregular many-to-many
communication either done asynchronously as 1-sided remote look-ups or in batches. The
asynchronous approach has more messages, each of which is small, so communication software
overhead and latency can limit performance. It has the advantage of overlapping computation
and communication together, which makes good use of both networking and computing
resources. The bulk-synchronous approach leads to better message aggregation between pairs
of processors, but it can suffer from high load imbalance costs due to the implied barriers at each
exchange. However, separating communication from computation prevents overlap and is more
likely to trigger bisection bandwidth limits in the network. The pairwise alignments that follow
communication can either be done one pair at a time or in batches, with the bulk-synchronous
version likely having larger batches to do.

K-mer-based matching is not the only method that is used to index large genomic datasets. In
particular, suffix trees and their more practical sibling suffix arrays provide an alternative way
of indexing large datasets. Rather than hashing, these methods using sorting and search on a
compact representation of the suffix substrings and then build a hierarchical index representation
of the data. Suffix arrays are significantly more flexible than direct k-mer-based approaches
because they effectively index all possible k-mer lengths at once. However, they are harder to
implement and they often come with increased computational costs. Recent work on distributed
suffix array construction [25] as well as querying [26] has shown scaling to eight nodes but with
the potential to make these data structures more popular in HPC approaches.

There are other applications that arise in comparing which genomes or metagenomes align
to each other. In this scenario, one is often interested in some sort of ‘distance’ metric between
pairs of genomes or metagenomes, as opposed to merely identifying the candidate pairs that
might align. The output is often dense because almost all pairs of (meta)genomes will contain
conserved regions that will provide a match using shared k-mers. Using an approach similar to
BELLA, Besta et al. [27] use parallel sparse matrix computations to compute the Jaccard similarity
between all pairs of genomes. They also use the aforementioned SpGEMM primitive, with one
difference that the software is optimized for the case where the output genomes×genomes matrix
is dense, because it holds the Jaccard similarity.

The Bioinformatics community have been developing alternative space-efficient data
structures in order to compute (meta)genome-to-(meta)genome distances for the scenario where
a distributed-memory computer is unavailable. MASH [28], perhaps the most popular of such
tools, uses the MinHash sketch technique [29] for each (meta)genome and only computes the
Jaccard similarity on those sketches, as opposed to finding explicit shared k-mers. Recently,
Baker & Langmead [30] took the sketching approach one step further and used the HyperLogLog
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(HLL) algorithm for further compression. While we are not aware of any distributed-memory
approaches to sketch-based genomic distance calculations, the HLL data structure itself is trivially
mergeable. HLL has been used in distributed genome assembly for efficient k-mer counting in
the past [5]. We therefore expect forthcoming developments in distributed-memory sketch-based
genome comparison.

(d) Graph traversal for genome assembly
Genome assembly involves the analysis of reads from sequencers to produce longer contiguous
sequences of the genome with errors corrected. For short reads with their low error rate (less
than 0.1%), the MetaHipMer software performs k-mer analysis and eliminates low-frequency
k-mers which are presumably errors. Along with each k-mer in the final hash table, it stores left
and right high-quality extensions, i.e. the character that frequently appeared to the left and right
of the k-mer in the original input. This table is then viewed as a De Bruijn [31] graph in which
a k-mer vertex is connected to another if their k-mers overlap in k−1 contiguous positions. The
left and right extensions with each k-mer make it straightforward to find neighbouring vertices.
A depth-first traversal starting from arbitrary k-mers compute the connected components of the
graph which are linear sequences called contigs. For metagenomes, the same basic method is used
but with increasing values of k, with contigs from the earlier steps added as reads to the later ones.
This iterative process helps to improve coverage of low-depth, highly fragmented genomes in the
earlier phases and resolve repeated regions and obtain longer contigs in the later phases. Once
the contigs are formed, the assembler builds a graph with contig vertices and uses alignment to
find reads that align to multiple contigs and thus form an edge in the contig graph. There are
several other graphs traversals performed on both the k-mer and contig graph, which are omitted
here. We focus on parallelization of contig construction on the k-mer hash table. More detailed
descriptions of contig generation and other graph traversals during assembly are available in the
HipMer and MetaHipMer papers [5–8,32].

MetaHipMer takes advantage of the memory and computing performance of distributed
memory supercomputers to support large-scale assemblies. The hash tables involved in our
algorithms can be up to tens of terabytes and do not fit in a typical shared memory node, and
contig generation is written in UPC [33,34] so that hash table buckets are directly accessed by any
processor using one-sided communication. During construction, we aggregate multiple insert
operations intended for the same remote processor to amortize communication overhead. This
is done dynamically and asynchronously: once a particular buffer for a remote node is full, it is
sent using one-sided memory operations with atomics to the memory of a remote processor. Hash
table inserts and lookups are done in two separate phases, so the delayed inserts from aggregation
are not semantically visible—all of the inserts are complete at the end of the phase and the order
is not important.

During graph traversal the hash table remains fixed, although multiple traversals happen in
parallel from different starting vertices and individual k-mer vertices are marked as visited to
avoid duplicate traversals. This is done with fine-grained remote atomics rather than locking to
minimize the number of communication round trips, although this stage is latency-limited since
each processor is performing a single-threaded traversal of the graph and needs to wait for a
remote vertex before continuing. In later stages of assembly, the hash table of contigs is truly
read-only and each contig may be used multiple times by a single processor, so caching remote
contigs is efficient and preserves correctness. Caching is not performed during contig generation
because there is limited reuse.

(e) Sparse matrix operations for protein clustering
Proteins of the same evolutionary origin are said to be homologous. Homologous proteins
often perform similar functions; hence homology finding facilitates protein annotation and the
discovery of novel protein families. One often infers homology from excess sequence similarity;
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with ‘excess’ referring to higher similarity than can be encountered by chance. Even then, a
simple pairwise similarity metric is just a proxy for homology and can lead to both false positives
and false negatives, depending on the parameters used in sequence similarity calculations. A
clustering step that takes the similarity matrix as input and exploits topology information (i.e. the
transitivity of neighbouring proteins) to find more robust and accurate protein families. This helps
eliminate a significant portion of spurious homology connections and recovers many missing
links while computing a globally consistent view of the clusters.

A typical pipeline for protein clustering therefore involves first finding highly similar
sequences using many-to-many alignments among proteins, using one of the popular tools such
as MMseqs2 [35] or LAST [36]. K-mer-based indexing that is similar in spirit to those described in
§3c is often used to reduce the number of comparisons. The ExaBiome project is currently working
on a novel many-to-many protein similarity search tool called Protein Sequence Aligner (PISA)
that is scalable to Exascale architectures. The result of the similarity matrix/graph computation
is then fed into a clustering algorithm that discovers the ultimate protein families. Since this
two-step process is often very expensive, single-step clustering algorithms [37] have gained in
popularity among those who do not have access to high-end computing equipment, despite often
resulting in fragmented clusters. We will not be focusing on those methods here because one of
the goals of the ExaBiome project is to improve accuracy by using Exascale computers.

The Markov Cluster (MCL) algorithm [38] is arguably the canonical graph-based algorithm
for clustering protein similarity matrices. The MCL algorithm treats this similarity matrix as
an adjacency matrix of the graph where vertices are proteins and edges are similarities. The
graph is sparse because only those similarities that are above a certain similarity threshold are
retained. MCL performs random walks from every vertex (protein) in the graph. It exploits the
fact that most of these walks will be trapped within tightly connected clusters, hence driving up
the probability mass that is accumulated within each cluster. In order to avoid densifying the
intermediate matrices and making the computation infeasible, MCL performs various pruning
strategies that are shown to not hurt the quality of the final clusters [39].

The simultaneous random walks directly map to a sparse matrix primitive that is commonly
known as SpGEMM, which computes the product of two sparse matrices. The high-performance
distributed re-implementation of the Markov Cluster algorithm, known as HipMCL [40], uses
some of the most general and scalable sparse matrix algorithms implemented within the
Combinatorial BLAS [41]. These algorithms include a two-dimensional SpGEMM algorithm
known as Sparse SUMMA [24], several different shared memory SpGEMM algorithms [42] that
are optimized for different iterations of HipMCL, a fast memory estimator based on sparse
matrix dense matrix multiplication for memory-efficient SpGEMM [43], as well as a very fast
distributed memory connected components algorithm [44] that is used for extracting the final
clusters from the result of the HipMCL iterations. The integration of GPU support as well as
faster communication-avoiding SpGEMM algorithms [45] is ongoing work.

(f) Machine learning for genomics and proteomics
A comprehensive coverage of machine learning (ML) applications in genomics and proteomics is
both too large and too fast growing to address here. Instead, we touch on the computational
building blocks for the machine learning algorithms that are commonly applied to genomic
and proteomic data. A large class of machine learning methods are built on top of basic linear
algebraic subroutines that are found in the modern dense BLAS [46], Sparse BLAS [47], or the
GraphBLAS [48]. This relationship is illustrated in figure 3.

Machine learning has been applied to metagenome assembly in various contexts. For example,
MetaVelvet-SL [49] uses Support Vector Machines (SVMs) to identify the potentially chimaeric
nodes on a metagenomic De Bruijn graph. A chimaeric node is shared by the genomes of
two closely related species and needs to be split into multiple nodes for an accurate assembly.
A popular application of ML to proteomics data is to discover ancestral relationships (i.e.
homology) between proteins. Kernel-based methods, such as SVMs, have been traditionally
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Figure 3. Dependencies of various machine learning methods upon linear algebraic primitives. The three grey boxes on the
top are unsupervised methods while the two white boxes include supervised methods. Examples of algorithms in each group
are in parentheses: non-negativematrix factorization (NMF), principal component analysis (PCA), andMarkov cluster algorithm
(MCL), convex correlation selection method (CONCORD), a low-rank matrix factorization (CX).

applied to this problem [50]. Other fundamental problems in this domain are protein folding [51],
especially the prediction of the three-dimensional structure of the protein [52], and protein
function prediction. The function of a protein can be predicted using either the sequence, the
three-dimensional structure of the protein, or both [53].

4. Comparison with other parallelismmotifs
Several computational patterns arise in the ExaBiome application and are common to other
genomics applications and data analysis problems more broadly. These are displayed in figure 2
and include:

(i) Hash tables. These are used throughout the genome assembly applications, MetaHipMer
and diBELLA, to store k-mers for the purposes of counting (histogramming), and for
quickly finding pairs of sequences with a common substring.

(ii) Sorting. While used less frequently than hashing in our examples, it is another technique
for counting k-mers and is used in suffix arrays and to prioritize graph operations, e.g.
finding the longest contig as a starting point for a graph traversal.

(iii) Graph traversals. Used to connect k-mers into contigs and in other analyses on the contig
graph to resolve ambiguities and increase assembly length.

(iv) Alignment. The problem of finding the minimum edits required to make two strings match
is used on raw read data, assembled genomes, genes and proteins.

(v) Generalized n-body. The problem of comparing or aligning all sequences in one set to
another set (or the same set), but using a method such as limiting to pairs with a common
k-mer to avoid all O(n2) comparisons.

(vi) Sparse matrices. Sparse matrix products used within the generalized n-body problem to
find pairs, for protein clustering, etc.

(vii) Dense matrices. There is ongoing work by ourselves and others to use machine learning
methods in genomic data, which often make use of dense matrix multiplication as
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Table 1. A comparison of motifs for parallel computing, including our own set for genomic data analysis.

Colella 7 Dwarfs Berkeley ViewMotifs NRC 7 Giants Genomics Motifs
dense matrix dense matrix dense and dense matrix

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sparse matrix sparse matrix . . .sparse matrix sparse matrix
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

structured grid structured grid
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

unstructured grid unstructured grid
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

spectral methods spectral methods
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

particle methods N-body Gen. N-body Gen. N-body
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Monte Carlo MapReduce basic statistics basic operationsa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

finite-state machine
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

graph traversal graph theoretic graph traversal
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dynamic Prog. alignment alignment
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

backtracking search
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

graphical models
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

combinatorial
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

optimization
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

integration
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hash tables
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sorting
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aBasic operations include string parsing, string identity and 2-bit encoding of DNA sequences.

described in §3f. Further, pairwise alignment can in theory also be computed using dense
matrix computations on semirings.

In addition to these seven motifs of genomic data, local computations such as parsing reads
into k-mers and other basic string operations, arithmetic operations, logical operations and
more occur in all of our applications. When these can be performed independently on separate
data, they can be invaluable in obtaining high-performance parallel implementations, but if the
operations are each performed serially they are not instrumental in understanding parallelization.
In comparing to other lists of motifs, we include these as ‘Basic Operations’ in table 1 although
they tend to be linear time operations on the input which can be almost trivial to parallelize, and
thus less useful as a parallelism motif.

While our selection of problems informing our genomics motifs is naturally biased, we
note that independent HPC researchers have been focusing on similar problems. For example,
Darwin [54] is a co-processor specifically designed to perform fast all-to-all long read overlapping
and alignment in the context of assembly. The body of work from Aluru’s group at Georgia
Tech similarly encompasses k-mer analysis, alignment, assembly and clustering and uses some
of the same patterns albeit pushing in the direction of bulk-synchronous computation [55].
SARVAVID [56] provides a Domain-Specific Language (DSL) with language constructs for k-mer
extraction, index generation and look-up, clustering, all-to-all similarity computation, graph
construction and traversal for genome assembly, and filtering error-prone reads. Mahadik et al.
identify this list of ‘kernels’ as common to a broad variety of genomics applications. We remark
that these kernels, with the possible exclusion of read filtering, can be mapped to our own list of
motifs.

There are other proposals for the parallelism motifs that cover many applications of scientific
simulations, data analysis and more. The original set of ‘Seven Dwarfs’ due to Phil Colella [57]
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was meant to capture the most important computational patterns in scientific simulations and are
shown in the first column in table 1. The Berkeley View report [58] on multicore parallelism, in
the second column, generalized these patterns to capture a broader set of applications including
some data analysis problems. A report by the National Academies [59] then defined a set of ‘Seven
Giants’ of Big Data, shown in the third column, which combined sparse and dense matrices
into a single motif. Ogres [60] is another similar, yet multidimensional classification of both
HPC and Big Data applications based on 51 well-studied NIST applications. Our own genomics
motifs in the last column are quite similar to those in the ‘Seven Giants’ set, but in our view
the ideas of hashing and sorting are so essential to understanding data analysis for genomic
data and for other large-scale database analyses involving joins that they deserve to be separate
categories. They are also standard in other large-scale database operations. On the other hand,
optimization and integration are very general techniques that can lead to a variety of parallelism
patterns depending on the data and method being used, e.g. they may be dominated by dense or
sparse matrix operations, as well as other independent computations. Each list takes a somewhat
different approach to characterizing independent operations, which in our view is such a general
notion that it does not belong as an algorithmic motif. Colella’s Monte Carlo class is a more
specific class of problems that do lead to a style of parallelism, albeit dominated by independent
calculations.

5. Hardware and software support for parallel genome analysis
Although some analysis problems can be done independently or with traditional bulk-
synchronous parallelism, we argue that the irregular and asynchronous nature of some of
these problems [7,61,62] places different requirements on the programming systems, libraries
and network than most simulation problems. In addition, communication optimizations have
a somewhat different characteristic than in more structured and regular computations.

Roughly speaking, there are four programming styles for distributed memory communication:

— Bulk-synchronous collectives, such as broadcast, reductions and all-to-all exchanges. For
example, MPI collectives have a rich set of collective operations [63].

— Two-sided point-to-point communication, i.e. send and receive, which need not be
synchronous, but requires two-sided coordination and is, therefore, often done in bulk-
synchronous phases. MPI is again the standard here with various forms of send and
receive.

— One-sided shared memory or Remote Data Memory Access, including put, get and
atomic memory operations. There are several examples languages that support this style,
including UPC used in the original MetaHipMer assembler [33].

— Remote Procedure Call (RPC), which invoke remote computation while communicating
input and output arguments between processors. The most recent version of UPC++
provides a set of RPC features with asynchrony-by-default to encourage communication
overlap [64].

The majority of simulation codes are written in some combination of the first two styles, while
data analytics problems written in a map-reduce framework use collectives. But for analytics
problems involving hash tables with random-in-time and random-in-location access, we argue
that the latter two are a better fit. Sparse matrix computations such as iterative methods can be
programmed elegantly using bulk-synchronous parallelism, as can sorting and generalized all-to-
all problems, although the data exchanges are often irregular and unbalanced, with the volume
of data between processors varying considerably. Communication imbalance issues can affect
sparse matrix multiplication when the distribution of non-zeros is non-uniform, e.g. when a k-mer
appears in many of the input sequences, or in parallel sorting when the distribution of values
being sorted is nonuniform, e.g. a single value appears with very high frequency. These imbalance
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factors may encourage designs that avoid global communication and synchronization in favour
of overlapped point-to-point or one-sided communication.

While numerical libraries form the basis of many computational simulations, we see
distributed data abstractions for hash tables, Bloom filters, histograms and various types of
queues for rebalancing data and computational load as keys to our analysis problems. For
example, the Berkeley Container Library [65] provides the data structures and CombBLAS
provides the distributed memory sparse matrix primitives designed for graph algorithms [41].
These libraries can capture some of the more important communication optimizations, which are
familiar ideas but have somewhat different usage.

— Asynchronous communication avoids both global and pairwise synchronization,
allowing each thread to progress without waiting to resolve load imbalance from
communication or computation that may vary over time.

— Non-blocking communication provides overlap for both computation and other
communication events, and is especially important for fine-grained communication to
avoid paying full latency costs for each message. In a one-sided model, this means
non-blocking put and get operations or fire-and-forget in an RPC model.

— Communication aggregation is a standard technique in bulk-synchronous applications,
but in asynchronous ones this involved dynamic buffering of data destined for a single
core or node and shipping it when the individual buffer is full or based on some
other trigger. In practice, the management of the message buffers creates a critical
trade-off between memory footprint and number of messages, but the uncertainty of
communication volume and destination makes this particularly challenging.

— Improving spatial locality is not always possible for irregular data, e.g. hash table
construction on unknown data, but when insight into the data is possible, a carefully
constructed hash function can provide significant benefit in reducing the percentage of
remote accesses [22].

— Caching remote data are useful when there is sufficient temporal locality, e.g. in looking
up contigs during alignment of reads to contigs during assembly.

— Iteration space tiling used in communication-avoiding algorithms for dense matrix
multiplication [66,67] and n-body calculations [68,69] provide provable advantages in
reducing communication volume and number of messages at the cost of additional
memory. These methods do not simply partition the result matrix or particles/sequences
over processors, but instead replicate them to the extent allowed by available memory.
For sparse matrices and sparse interactions, the benefits depend more on the sparsity
patterns [24,42,43,70], but are useful in clustering [40] and possibly alignment.

From an architectural perspective, these highly irregular applications stress message injection
rate, communication latency, and in some cases bisection bandwidth [7,61]. They may never
saturate link bandwidth if a multi-core node cannot inject small messages into the network fast
enough to saturate bandwidth. While message aggregation is used in our implementations to
maximize bandwidth utilization, this tends to put significant pressure on the memory per node
due to the nearly random pattern of remote processors with which a single node communicates.
Communication overlap can also be critical in these applications, including overlapping multiple
communication events with each other. Perhaps the most obvious difference between genome
analysis and simulation is that floating point numbers are essentially non-existent in the
lower level analyses and only arise in machine learning such as clustering and deep learning
application.

6. Summary
This papers provides an overview of some of the computational patterns that arise in genomics
data analysis using examples from the ExaBiome project. These represent problems like genome
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assembly and protein clustering that until recently were done only on shared memory machines.
These can now be performed orders of magnitude faster and on datasets that were previously
intractable, revealing new species and species families. We see a growing number of multi-
terabyte datasets but also recognize that many biologists feel constrained in their experimental
design by the daunting task of computational analysis. As the demand for better performance and
larger datasets continues to grow, a distributed memory approach will be increasingly important.

Our goal in writing this paper is to summarize the work in high-performance data analysis for
genomics to help experts outside biology understand the stress placed on parallel hardware and
software systems from these applications. These patterns are captured in a set of motifs, closely
related to the previous ‘Seven Giants’ of data analysis, but with the critical additions of hashing
and sorting. We believe this list and the overview of application examples and parallelization
techniques will help in designing benchmark suites, ensuring they capture some of the most
important characteristics of this application space. The described methods can drive requirements
analysis for hardware and software, representing problems with fine-grained, asynchronous, non-
blocking, one-sided communication, irregular memory accesses and narrow data types for both
integers and characters. Our experience also makes the case for reusable software libraries that go
beyond algorithms to data structures that are distributed across processors but can be updated by
a single process with limited synchronization.
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