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Power exhaust is among fusion’s major issues. High heat loads on leading edges, ELM heat loads
on PFCs and requirements for aligning and shaping PFC elements are some specific concerns.

The 2016 DIII-D DiMES tungsten (W) leading edge H-LELM clusters ;. ividual ELMs

experiment in support of ITER studied heat loads from ’ ‘//\\ |

ELMs in helium (He) plasmas. The regime, with He

plasmas close to the threshold for L mode to H mode 1.5

transitions and high particle and heat exhaust, may have

relevance for He plasmas in ITER’s start-up phase. <

Compound ELMs (C-ELMS) associated with L-H back- é

transitions dominated the transient particle exhaust in - 0.5

shots with ECRH, These reduced the plasma density JUU N + 3

—. significantly, and some triggered automated gas puffing. chot 166843 -
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We cannot measure T, .. directly and
accurately. Nor do we need to do this.
“LE is leading edge. T is temperature. We get q, from IRTV data. (IR60) on an ATJ

T,. surges during ELMs, then relaxes as the  graphite tile away from DIMES processed
heat diffuses between ELMs. using THEODOR. From q, and B we calculate

q, and the angle of incidence. We compare

A key is the temperature pattern on the top q, with values from the new model’s best fit.

of the W block, specifically the shape of T vs.

distance from the LE. This T-shape remains 3400

() |
quite constant. It is not sensitive to whether 1 OB | e
an IR is during or after an ELM age —=— 942 ms (+20)
Model: 2600 = ~ ——984 ms (+62)
Our approach sharp peaks 960° || A M =o= 2378 ms (+0)
at leading , 2200 —e—2385ms (+ 2) ‘

= Calibrate a thermal model; match T-shape.

edge
= Compute T,; with the thermal model. ’

IR data:;

The resolution (~0.4 mm) smears broader peaks, lower £ ’

: k t { L e
the IR image at sharp features, @ P IEMPEIEIIES 7 1000 =
e.qg., the LE. So the peak in IR '
temperature at LE is broader and Thermal ratcheting
lower than the true temperature. This depends on the thermal diffusion

Vibration of the optic system during relaxation between ELMs. The temperature profiles
causes phasing of the frame-to- Leading edgeJatchetmg is less aé higher have a similar shape from
frame images, i.e., displacement temperature due to greater conduction 1 to 10 mm (90% of the top).
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. . (larger dT/dz) and radiation losses. The overall temperature rises
in the locations of the peaks incrementally.
900 An early analysis with spatial averaging ime-d. ndent h load
broa}gg%i peak A sharp peak (poor focus) produced broadening like curve e
800 spans 2-3 pixels  2553.917 ms. It's broadening (~4mm) is 2.5 average track the
(good focus). similar to the estimate below for ripples. during peaks  relaxation
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S I‘P ' The ripples correspond to motion of ~4 mm 2 166843
® 600 PRk e Ye, e, . in the field of view based on their amplitude - -
7] A7 PA o, R, o % and the slope of the curve. This implies a y c a1
= 'y oy e, Bttty much higher sweep frequency (~60 kHz). - |
2 o0 ' PR RE Sweeping of the filaments that occur during £ ,
2mm ¥ %~ ELMs may7 be a more likely cause the a = 1 | | |
00 £ shift mechanical vibration at the high frequency. = :' 1 '&
300 e e RroTRes The optical system has two mirrors each %1 . J N | N
4 2 0o 2 4 6 8 10 12 articulated with a clamped rod and post. a0 e T ~ M
distance, mm Torsional vibration of the 2" mirror would 0
Frame-to-frame phasing (peak shift) indicates cause an apparent toroidal sweep in the 2300 2340 2380 2420 2460
vibration with a base frequency of ~ 60 Hz. field of view. time (ms)
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= For gL of 0.54 MW/m?, Bincident at 1.12 g is 28 MW/mZ.

= The 1-mm leading edge block’s forward slope is 0.12.

Interval analysis

= The top intercepts 7X q.. Gy, is 3.9 MW/m?. of Compound ELM
= During the LHBTEs, the IR data shows rapidly rising OSP heat loads

peak that bifurcates. The true q. is difficult to determine. W S
Ay & Qg OF 50 & ~12 MW /m? best fit the DIMES IR data. € Can estimate the power

absorbed by the W block from
the change in the IR images,

Heat from the W block goes into the mounting structure. and get independent estimate
Our experience favors the adiabatic model (below). Of Qegge AN Qrgp-

When we withdraw DIMES to change samples rapidly
between shots, the head is too hot to handle.

Comparison with Wblk2018ellipse long head with BC 25C :
ODB: Wblk2018ellipseHdBottNoBC-ELMiab-rad.odb Aba
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Material properties
depend on T.

The heat flow is complex. ELM
heating is ~¥15% of the total.
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We use the same approach for ELMs in NB shot 166858,
but the power is less and the resolution poorer. A series
of similar ELMs still gives a measurable temperature rise
that we can track in the IR data.
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