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Power exhaust is among fusion's major issues. High heat loads on leading edges, ELM heat loads
on PFCs and requirements for aligning and shaping PFC elements are some specific concerns.

The 2016 DIII-D DiMES tungsten (W) leading edge
experiment in support of ITER studied heat loads from
ELMs in helium (He) plasmas. The regime, with He
plasmas close to the threshold for L mode to H mode
transitions and high particle and heat exhaust, may have
relevance for He plasmas in ITER's start-up phase.

Compound ELMs (C-ELMS) associated with L-H back-
transitions dominated the transient particle exhaust in
shots with ECRH, These reduced the plasma density
significantly, and some triggered automated gas puffing.

Thermal Modeli
We cannot measure TLE* directly and
accurately. Nor do we need to do this.

*LE is leading edge. T is temperature.

Tirsuraes during ELMs, then relaxes as the
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heat diffuses between ELMs.

A key is the temperature pattern on the top
of the W block, specifically the shape of T vs.
distance from the LE..This T-shape remains
quite constant. It is not sensitive  to whether
an IR is during or after an ELM

Model:
Our approach sharp peaks

ading leCalibrate a thermal model; match T-shape. at
edge 2--

Compute TLE with the thermal model.
IR data: '1,2i

The resolution C broader peaks, lower 2-w0.4 mm) smears peak temperatures
the IR image at sharp features,
e.g., the LE. So the peak in IR
temperature at LE is broader and
lower than the true temperature

Vibration of the optic system
causes phasing of the frame-to-
frame images, i.e., displacement
in the locations of the peaks

900

400

300

d peak A sharp peak
spans 2-3 pixels
(good focus).

Slope 
osc

illations111 shift s hat 166843

IR1b5 temperature 7P--

-4 2 0 2 4

distanco

Frame-to-frame phasing (peak shift) indicates
vibration with a base frequency of ~ 60 Hz.
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using THEODOR. From q and B we calculate

cill and the angle of incidence. We compare
qi with values from the new model's best fit.
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Thermal ratcheting n

This depends on the thermal diffusion
during relaxation between ELMs.
Leading edge ratcheting is less at higher
temperature due to greater conduction
(larger dT/dz) and radiation losses.

774

An early analysis with spatial averaging
(poor focus) produced broadening like curve
2553.917 ms. It's broadening (~4mm) is
similar to the estimate below for ripples.

The ripples correspond to motion of ~4 mm
in the field of view based on their amplitude
and the slope of the curve. This implies a
much higher sweep frequency (~60 kHz).
Sweeping of the filaments that occur during
ELMs may7 be a more likely cause the a
mechanical vibration at the high frequency.

The optical system has two mirrors each
articulated with a clamped rod and post.
Torsional vibration of the 2nd mirror would
cause an apparent toroidal sweep in the
field of view.
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The temperature profiles
have a similar shape from
1 to 10 mm (90% of the top).
The overall temperature rises
incrementally.
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Leading Edge in a Dill CI He Plasma
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Top Not Flat: 00 
For qi of 0.54 MW/mz, B incident at 1.12 cill is 28 MW/m2.
The 1-mm leading edge block's forward slope  is 0.12.
The top intercepts 7X c1-1 CI Top is i MW/111`.
During the LHBTEs, the IR data shows rapidly rising OSP
peak that bifurcates. The true is difficult to determine.

clibp of a0 & 12 MW/m4 best fit the DiMES IR data.
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Heat from the W block goes into the mounting structure.

Our experience favors the adiabatic model (below).

When we withdraw DiMES to change samples rapidly
between shots, the head is too hot to handle.
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Material properties
depend on T.
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Interval analysis
- *tnm pound ELM
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We can estimate the power
absorbed by the W block from
the change in the IR images,
and get independent estimate
of q Edge and Ch-op.

The heat flow is complex. ELM
heating is r"15% of the total.
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100 ms intervals
L LHBTEs and regular ELMS.

Trise-top is ~180C.
-iTrise-edae is P`'220 C from IR curves
but acfually much higher.
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We use the same approach for ELMs in NB shot 166858,
but the power is less and the resolution poorer. A series
of similar ELMs still gives a measurable temperature rise
that we can track in the IR data.
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