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Abstract. We study a multigrid method for solving large linear systems of equations with
tensor product structure. Such systems are obtained from stochastic finite element discretization
of stochastic partial differential equations such as the steady-state diffusion problem with random
coefficients. When the variance in the problem is not too large, the solution can be well approximated
by a low-rank object. In the proposed multigrid algorithm, the matrix iterates are truncated to low
rank to reduce memory requirements and computational effort. The method is proved convergent
with an analytic error bound. Numerical experiments show its effectiveness in solving the Galerkin
systems compared to the original multigrid solver, especially when the number of degrees of freedom
associated with the spatial discretization is large.
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1. Introduction. Stochastic partial differential equations (SPDEs) arise from
physical applications where the parameters of the problem are subject to uncertainty.
Discretization of SPDEs gives rise to large linear systems of equations which are com-
putationally expensive to solve. These systems are in general sparse and structured.
In particular, the coefficient matrix can often be expressed as a sum of tensor products
of smaller matrices [6, 16, 17]. For such systems it is natural to use an iterative solver
where the coefficient matrix is never explicitly formed and matrix-vector products
are computed efficiently. One way to further reduce costs is to construct low-rank
approximations to the desired solution. The iterates are truncated so that the so-
lution method handles only low-rank objects in each iteration. This idea has been
used to reduce the costs of iterative solution algorithms based on Krylov subspaces.
For example, a low-rank conjugate gradient method was given in [12], and low-rank
generalized minimal residual methods have been studied in [2, 13]. Also, a geometric
multigrid method for tensor structured linear systems in high spatial dimensions was
briefly discussed in [10].

In this study, we propose a low-rank multigrid method for solving the Galerkin
systems. We consider a steady-state diffusion equation with random diffusion coef-
ficient as model problem, and we use the stochastic finite element method (SFEM,
see [1, 7, 8]) for the discretization of the problem. The resulting Galerkin system
has tensor product structure and moreover, quantities used in the computation, such
as the solution sought, can be expressed in matrix format. It has been shown that
such systems admit low-rank approximate solutions [3, 12]. In our proposed multi-
grid solver, the matrix iterates are truncated to have low rank in each iteration. We
derive an analytic bound for the error of the solution and show the convergence of the
algorithm. We note that a convergence analysis for an iterative fixed-point like pro-
cess with truncation was studied in [11]. We demonstrate using benchmark problems
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that the low-rank multigrid solver is often more efficient than a solver that does not
use truncation, and that it is especially advantageous in reducing computing time for
large-scale problems.

An outline of the paper is as follows. In section 2 we state the problem and
briefly review the stochastic finite element method and the multigrid solver for the
stochastic Galerkin system from which the new technique is derived. In section 3 we
discuss the idea of low-rank approximation and introduce the multigrid solver with
low-rank truncation. A convergence analysis of the low-rank multigrid solver is also
given in this section. The results of numerical experiments are shown in section 4 to
test the performance of the algorithm, and some conclusions are drawn in the last
section.

2. Model problem. Consider the stochastic steady-state diffusion equation
with homogeneous Dirichlet boundary conditions

(2.1)

{
−∇ · (c(x, ω)∇u(x, ω)) = f(x) in D × Ω,

u(x, ω) = 0 on ∂D × Ω.

Here D is a spatial domain and Ω is a sample space with σ-algebra F and probability
measure P . The diffusion coefficient c(x, ω) : D × Ω → R is a random field. We
consider the case where the source term f is deterministic. The stochastic Galerkin
formulation of (2.1) uses a weak formulation: find u(x, ω) ∈ V = H1

0 (D) ⊗ L2(Ω)
satisfying

(2.2)

∫
Ω

∫
D

c(x, ω)∇u(x, ω) · ∇v(x, ω)dxdP =

∫
Ω

∫
D

f(x)v(x, ω)dxdP

for all v(x, ω) ∈ V. The problem is well posed if c(x, ω) is bounded and strictly
positive, i.e.,

0 < c1 ≤ c(x, ω) ≤ c2 <∞, a.e. ∀x ∈ D,

so that the Lax-Milgram lemma establishes existence and uniqueness of the weak
solution.

We will assume that the stochastic coefficient c(x, ω) is represented as a truncated
Karhunen-Loève (KL) expansion [14, 15], in terms of a finite collection of uncorrelated
random variables {ξl}ml=1:

(2.3) c(x, ω) ≈ c0(x) +

m∑
l=1

√
λlcl(x)ξl(ω)

where c0(x) is the mean function, (λl, cl(x)) is the lth eigenpair of the covariance func-
tion r(x, y), and the eigenvalues {λl} are assumed to be in non-increasing order. In sec-
tion 4 we will further assume these random variables are independent and identically
distributed. Let ρ(ξ) be the joint density function and Γ be the joint image of {ξl}ml=1.
The weak form of (2.1) is then given as follows: find u(x, ξ) ∈ W = H1

0 (D) ⊗ L2(Γ)
s.t.

(2.4)

∫
Γ

ρ(ξ)

∫
D

c(x, ξ)∇u(x, ξ) · ∇v(x, ξ)dxdξ =

∫
Γ

ρ(ξ)

∫
D

f(x)v(x, ξ)dxdξ

for all v(x, ξ) ∈W.
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2.1. Stochastic finite element method. We briefly review the stochastic fi-
nite element method as described in [1, 7]. This method approximates the weak
solution of (2.1) in a finite-dimensional subspace

(2.5) Whp = Sh ⊗ T p = span{φ(x)ψ(ξ) | φ(x) ∈ Sh, ψ(ξ) ∈ T p},

where Sh and T p are finite-dimensional subspaces of H1
0 (D) and L2(Γ). We will

use quadrilateral elements and piecewise bilinear basis functions {φ(x)} for the dis-
cretization of the physical space H1

0 (D), and generalized polynomial chaos [21] for the
stochastic basis functions {ψ(ξ)}. The latter are m-dimensional orthogonal polyno-
mials whose total degree does not exceed p. The orthogonality relation means∫

Γ

ψr(ξ)ψs(ξ)ρ(ξ)dξ = δrs

∫
Γ

ψ2
r(ξ)ρ(ξ)dξ.

For instance, Legendre polynomials are used if the random variables have uniform
distribution with zero mean and unit variance. The number of degrees of freedom in
T p is

Nξ =
(m+ p)!

m!p!
.

Given the subspace, now one can write the SFEM solution as a linear combination
of the basis functions,

(2.6) uhp(x, ξ) =

Nx∑
j=1

Nξ∑
s=1

ujsφj(x)ψs(ξ),

where Nx is the dimension of the subspace Sh. Substituting (2.3) and (2.6) into (2.4),
and taking the test function as any basis function φi(x)ψr(ξ) results in the Galerkin
system: find u ∈ RNxNξ , s.t.

(2.7) Au = f .

The coefficient matrix A can be represented in tensor product notation [17],

(2.8) A = G0 ⊗K0 +

m∑
l=1

Gl ⊗Kl,

where {Kl}ml=0 are the stiffness matrices and {Gl}ml=0 correspond to the stochastic
part, with entries

(2.9)

G0(r, s) =

∫
Γ

ψr(ξ)ψs(ξ)ρ(ξ)dξ, K0(i, j) =

∫
D

c0(x)∇φi(x)∇φj(x)dx,

Gl(r, s) =

∫
Γ

ξlψr(ξ)ψs(ξ)ρ(ξ)dξ, Kl(i, j) =

∫
D

√
λlcl(x)∇φi(x)∇φj(x)dx,

l = 1, . . . ,m; r, s = 1, . . . , Nξ; i, j = 1, . . . , Nx. The right-hand side can be written as
a tensor product of two vectors:

(2.10) f = g0 ⊗ f0,



4 H. C. ELMAN AND T. SU

where

(2.11)

g0(r) =

∫
Γ

ψr(ξ)ρ(ξ)dξ, r = 1, . . . , Nξ,

f0(i) =

∫
D

f(x)φi(x)dx, i = 1, . . . , Nx.

Note that in the Galerkin system (2.7), the matrix A is symmetric and positive
definite. It is also blockwise sparse (see Figure 2.1) due to the orthogonality of {ψr(ξ)}.
The size of the linear system is in general very large (NxNξ × NxNξ). For such a
system it is suitable to use an iterative solver. Multigrid methods are among the
most effective iterative solvers for the solution of discretized elliptic PDEs, capable of
achieving convergence rates that are independent of the mesh size, with computational
work growing only linearly with the problem size [9, 18].

Fig. 2.1. Block structure of A. m = 4, p = 1, 2, 3 from left to right. Block size is Nx ×Nx.

2.2. Multigrid. In this subsection we discuss a geometric multigrid solver pro-
posed in [4] for the solution of the stochastic Galerkin system (2.7). For this method,
the mesh size h varies for different grid levels, while the polynomial degree p is held
constant, i.e., the fine grid space and coarse grid space are defined as

(2.12) Whp = Sh ⊗ T p, W2h,p = S2h ⊗ T p,

respectively. Then the prolongation and restriction operators are of the form

(2.13) P = I ⊗ P, R = I ⊗ PT ,

where P is the same prolongation matrix as in the deterministic case. On the coarse
grid we only need to construct matrices {K2h

l }ml=0, and

(2.14) A2h = G0 ⊗K2h
0 +

m∑
l=1

Gl ⊗K2h
l .

The matrices {Gl}ml=0 are the same for all grid levels.
Algorithm 2.1 describes the complete multigrid method. In each iteration, we

apply one multigrid cycle (Vcycle) for the residual equation

(2.15) Ac(i) = r(i) = f −Au(i)

and update the solution u(i) and residual r(i). The Vcycle function is called recur-
sively. On the coarsest grid level (h = h0) we form matrix A and solve the linear
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system directly. The system is of order O(Nξ) since A ∈ RNxNξ×NxNξ where Nx is a
very small number on the coarsest grid. The smoothing function (Smooth) is based
on a matrix splitting A = Q− Z and stationary iteration

(2.16) us+1 = us +Q−1(f −Aus),

which we assume is convergent, i.e., the spectral radius ρ(I −Q−1A) < 1. The algo-
rithm is run until the specified relative tolerance tol or maximum number of iterations
maxit is reached. It is shown in [4] that for f ∈ L2(D), the convergence rate of this
algorithm is independent of the mesh size h, the number of random variables m, and
the polynomial degree p.

Algorithm 2.1: Multigrid for stochastic Galerkin systems

1: initialization: i = 0, r(0) = f , r0 = ‖f‖2
2: while r > tol ∗ r0 & i ≤ maxit do
3: c(i) = Vcycle(A,0, r(i))

4: u(i+1) = u(i) + c(i)

5: r(i+1) = f −Au(i+1)

6: r = ‖r(i+1)‖2, i = i+ 1

7: end

8: function uh = Vcycle(Ah,uh0 , f
h)

9: if h == h0 then
10: solve Ahuh = fh directly
11: else
12: uh = Smooth(Ah,uh0 , f

h)

13: rh = fh −Ahuh
14: r2h = Rrh

15: c2h = Vcycle(A2h,0, r2h)

16: uh = uh + Pc2h

17: uh = Smooth(Ah,uh, fh)

18: end

19: end

20: function u = Smooth(A,u, f)
21: for ν steps do
22: u = u +Q−1(f −Au)
23: end

24: end

3. Low-rank approximation. In this section we consider a technique designed
to reduce computational effort, in terms of both time and memory use, using low-rank
methods. We begin with the observation that the solution vector of the Galerkin
system (2.7)

u = [u11, u21, . . . , uNx1, . . . , u1Nξ , u2Nξ , . . . , uNxNξ ]
T ∈ RNxNξ
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can be restructured as a matrix

(3.1) U = mat(u) =


u11 u12 · · · u1Nξ

u21 u22 · · · u2Nξ
...

...
. . .

...
uNx1 uNx2 · · · uNxNξ

 ∈ RNx×Nξ .

Then (2.7) is equivalent to a system in matrix format,

(3.2) A(U) = F,

where

(3.3)
A(U) = K0UG

T
0 +

m∑
l=1

KlUG
T
l ,

F = mat(f) = mat(g0 ⊗ f0) = f0g
T
0 .

It has been shown in [3, 12] that the “matricized” version of the solution U can be
well approximated by a low-rank matrix when NxNξ is large. Evidence of this can
be seen in Figure 3.1, which shows the singular values of the exact solution U for the
benchmark problem discussed in section 4. In particular, the singular values decay
exponentially, and low-rank approximate solutions can be obtained by dropping terms
from the singular value decomposition corresponding to small singular values.

Fig. 3.1. Decay of singular values of solution matrix U . Left: exponential covariance, b = 5,
h = 2−6, m = 8, p = 3. Right: squared exponential covariance, b = 2, h = 2−6, m = 3, p = 3. See
the benchmark problems in section 4.

Now we use low-rank approximation in the multigrid solver for (3.2). Let U (i) =
mat(u(i)) be the ith iterate, expressed in matricized format1, and suppose U (i) is

1In the sequel, we use u(i) and U(i) interchangeably to represent the equivalent vectorized or
matricized quantities.
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represented as the outer product of two rank-k matrices, i.e., U (i) ≈ V (i)W (i)T , where
V (i) ∈ RNx×k, W (i) ∈ RNξ×k. This factored form is convenient for implementation
and can be readily used in basic matrix operations. For instance, the sum of two
matrices gives

(3.4) V
(i)
1 W

(i)T
1 + V

(i)
2 W

(i)T
2 = [V

(i)
1 , V

(i)
2 ][W

(i)
1 ,W

(i)
2 ]T .

Similarly, A(V (i)W (i)T ) can also be written as an outer product of two matrices:

(3.5)
A(V (i)W (i)T ) = (K0V

(i))(G0W
(i))T +

m∑
l=1

(KlV
(i))(GlW

(i))T

= [K0V
(i),K1V

(i), . . . ,KmV
(i)][G0W

(i), G1W
(i), . . . , GmW

(i)]T .

If V (i),W (i) are used to represent iterates in the multigrid solver and k � min(Nx, Nξ),
then both memory and computational (matrix-vector products) costs can be reduced,
from O(NxNξ) to O((Nx +Nξ)k). Note, however, that the ranks of the iterates may
grow due to matrix additions. For example, in (3.5) the rank may increase from k to
(m+ 1)k in the worst case. A way to prevent this from happening, and also to keep
costs low, is to truncate the iterates and force their ranks to remain low.

3.1. Low-rank truncation. Our truncation strategy is derived using an idea

from [12]. Assume X̃ = Ṽ W̃T , Ṽ ∈ RNx×k̃, W̃ ∈ RNξ×k̃, and X = T (X̃) is truncated
to rank k with X = VWT , V ∈ RNx×k, W ∈ RNξ×k and k < k̃. First, compute the
QR factorization for both Ṽ and W̃ ,

(3.6) Ṽ = QṼRṼ , W̃ = QW̃RW̃ , so X̃ = QṼRṼR
T
W̃
QT
W̃
.

The matrices RṼ and RW̃ are of size k̃ × k̃. Next, compute a singular value decom-
position (SVD) of the small matrix RṼR

T
W̃

:

(3.7) RṼR
T
W̃

= V̂ diag(σ1, . . . , σk̃)ŴT

where σ1, . . . , σk̃ are the singular values in descending order. We can truncate to a
rank-k matrix where k is specified using either a relative criterion for singular values,

(3.8)
√
σ2
k+1 + · · ·+ σ2

k̃
≤ εrel

√
σ2

1 + · · ·+ σ2
k̃

or an absolute one,

(3.9) k = max{k | σk ≥ εabs}.

Then the truncated matrices can be written in MATLAB notation as

(3.10) V = QṼ V̂ (:, 1 : k), W = QW̃ Ŵ (:, 1 : k)diag(σ1, . . . , σk).

Note that the low-rank matrices X obtained from (3.8) and (3.9) satisfy

(3.11) ‖X − X̃‖F ≤ εrel‖X̃‖F

and

(3.12) ‖X − X̃‖F ≤ εabs

√
k̃ − k,
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respectively. The right-hand side of (3.12) is bounded by
√
κNξεabs, κ ≤ m+ 2, since

in the worst case, there is a sum of m + 2 matrices (see Line 13 of Algorithm 3.1),
and in general κNξ < Nx. The total cost of this computation is O((Nx +Nξ + k̃)k̃2).

In the case where k̃ becomes larger than Nξ, we compute instead a direct SVD for

X̃, which requires a matrix-matrix product to compute X̃ and an SVD, with smaller
total cost O(NxNξk̃ +NxN

2
ξ ).

3.2. Low-rank multigrid. The multigrid solver with low-rank truncation is
given in Algorithm 3.1. It uses truncation operators Trel and Tabs, which are defined
using a relative and an absolute criterion, respectively. In each iteration, one multigrid
cycle (Vcycle) is applied to the residual equation. Since the overall magnitudes of the
singular values of the correction matrix C(i) decrease as U (i) converges to the exact
solution (see Figure 3.2(a) for example), it is suitable to use a relative truncation
tolerance εrel inside the Vcycle function. It is also shown in Figure 3.2(b) that in
each multigrid iteration, the singular values for the correction matrices C2h at grids
at all levels decay in a similar manner. In the smoothing function (Smooth), the
iterate is truncated after each smoothing step using a relative criterion

(3.13) ‖Trel1(U)− U‖F ≤ εrel‖Fh −Ah(Uh0 )‖F

where Ah, Uh0 , and Fh are arguments of the Vcycle function, and Fh −Ah(Uh0 ) is
the residual at the beginning of each V-cycle. In Line 13, the residual is truncated
via a more stringent relative criterion

(3.14) ‖Trel2(Rh)−Rh‖F ≤ εrelh‖Fh −Ah(Uh0 )‖F

where h is the mesh size. In the main while loop, an absolute truncation criterion
(3.9) with tolerance εabs is used and all the singular values of U (i) below εabs are
dropped. The algorithm is terminated either when the largest singular value of the
residual matrix R(i) is smaller than εabs or when the multigrid solution reaches the
specified accuracy (see (3.44)).

Note that the post-smoothing is not explicitly required in Algorithms 2.1 and 3.1,
and we include it just for sake of completeness. Also, in Algorithm 3.1, if the smooth-
ing operator has the form S = S1 ⊗ S2, then for any matrix with a low-rank factor-
ization X = VWT , application of the smoothing operator gives

(3.15) S (X) = S (VWT ) = (S2V )(S1W )T ,

so that the result is again the outer product of two matrices of the same low rank. The
prolongation and restriction operators (2.13) are implemented in a similar manner.
Thus, the smoothing and grid-transfer operators do not affect the ranks of matricized
quantities in Algorithm 3.1.

3.3. Convergence analysis. In order to show that Algorithm 3.1 is convergent,
we need to know how truncation affects the contraction of error. Consider the case of
a two-grid algorithm for the linear system Au = f , where the coarse-grid solve is exact
and no post-smoothing is done. Let Ā be the coefficient matrix on the coarse grid, let
e(i) = u − u(i) be the error associated with u(i), and let r(i) = f − Au(i) = Ae(i) be
the residual. It is shown in [4] that if no truncation is done, the error after a two-grid
cycle becomes

(3.16) e
(i+1)
notrunc = (A−1 −PĀ−1R)A(I −Q−1A)νe(i),
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Algorithm 3.1: Multigrid with low-rank truncation

1: initialization: i = 0, R(0) = F in low-rank format, r0 = ‖F‖F
2: while r > tol ∗ r0 & i ≤ maxit do
3: C(i) = Vcycle(A, 0, R(i))

4: Ũ (i+1) = U (i) + C(i), U (i+1) = Tabs(Ũ
(i+1))

5: R̃(i+1) = F −A(U (i+1)), R(i+1) = Tabs(R̃
(i+1))

6: r = ‖R(i+1)‖F , i = i+ 1

7: end

8: function Uh = Vcycle(Ah, Uh0 , F
h)

9: if h == h0 then
10: solve Ah(Uh) = Fh directly
11: else
12: Uh = Smooth(Ah, Uh0 , F

h)

13: R̃h = Fh −Ah(Uh), Rh = Trel2(R̃h)

14: R2h = R(Rh)

15: C2h = Vcycle(A2h, 0, R2h)

16: Uh = Uh + P(C2h)

17: Uh = Smooth(Ah, Uh, Fh)

18: end

19: end

20: function U = Smooth(A,U, F )
21: for ν steps do

22: Ũ = U + S (F −A(U)), U = Trel1(Ũ)
23: end

24: end

and

(3.17) ‖e(i+1)
notrunc‖A ≤ Cη(ν)‖e(i)‖A,

where ν is the number of pre-smoothing steps, C is a constant, and η(ν) → 0 as
ν →∞. The proof consists of establishing the smoothing property

(3.18) ‖A(I −Q−1A)νy‖2 ≤ η(ν)‖y‖A, ∀y ∈ RNxNξ ,

and the approximation property

(3.19) ‖(A−1 −PĀ−1R)y‖A ≤ C‖y‖2, ∀y ∈ RNxNξ ,

and applying these bounds to (3.16).
Now we derive an error bound for Algorithm 3.1. The result is presented in two

steps. First, we consider the Vcycle function only; the following lemma shows the
effect of the relative truncations defined in (3.13) and (3.14).

Lemma 3.1. Let u(i+1) = Vcycle(A,u(i), f) and let e(i+1) = u − u(i+1) be the
associated error. Assume a damped Jacobi smoother is used (see (4.4)). Then

(3.20) ‖e(i+1)‖A ≤ C1(ν)‖e(i)‖A,
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(a) (b)

Fig. 3.2. (a) Singular values of the coarse-grid correction matrix C(i) at multigrid iteration
i = 0, 1, . . . , 5. (b) Singular values of correction matrices C2h in the first multigrid iteration at
various grid-refinement levels, for grid sizes h = 2/2nc, nc = 4, 5, 6, 7. No truncation is introduced,
σ = 0.01, b = 5, h = 2−6, m = 8, p = 3. See the benchmark problem in subsection 4.1.

where, for small enough εrel and large enough ν, C1(ν) < 1 independent of the mesh
size h.

Proof. For s = 1, . . . , ν, let ũ
(i)
s be the quantity computed after application of

the smoothing operator at step s before truncation, and let u
(i)
s be the modification

obtained from truncation by Trel1 of (3.13). For example,

(3.21) ũ
(i)
1 = u(i) +Q−1(f −Au(i)), u

(i)
1 = Trel1(ũ

(i)
1 ).

Denote the associated error as e
(i)
s = u− u

(i)
s . From (3.13), we have

(3.22) e
(i)
1 = (I −Q−1A)e(i) + δ

(i)
1 , where ‖δ(i)

1 ‖2 ≤ εrel‖r(i)‖2.

Similarly, after ν smoothing steps,

(3.23)
e(i)
ν = (I −Q−1A)νe(i) + ∆(i)

ν

= (I −Q−1A)νe(i) + (I −Q−1A)ν−1δ
(i)
1 + · · ·+ (I −Q−1A)δ

(i)
ν−1 + δ(i)

ν ,

where

(3.24) ‖δ(i)
s ‖2 ≤ εrel‖r(i)‖2, s = 1, . . . , ν.

In Line 13 of Algorithm 3.1, the residual r̃
(i)
ν = Ae

(i)
ν is truncated to r

(i)
ν via (3.14),

so that

(3.25) ‖r(i)
ν − r̃(i)

ν ‖2 ≤ εrelh‖r(i)‖2.
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Let τ (i) = r
(i)
ν − r̃

(i)
ν . Referring to (3.16) and (3.23), we can write the error associated

with u(i+1) as

(3.26)

e(i+1) = e(i)
ν −PĀ−1Rr(i)

ν

= (I −PĀ−1RA)e(i)
ν −PĀ−1Rτ (i)

= e
(i+1)
notrunc + (A−1 −PĀ−1R)A∆(i)

ν −PĀ−1Rτ (i)

= e
(i+1)
notrunc + (A−1 −PĀ−1R)(A∆(i)

ν + τ (i))−A−1τ (i).

Applying the approximation property (3.19) gives

(3.27) ‖(A−1 −PĀ−1R)(A∆(i)
ν + τ (i))‖A ≤ C(‖A∆(i)

ν ‖2 + ‖τ (i)‖2).

Using the fact that for any matrix B ∈ RNxNξ×NxNξ ,

(3.28) sup
y 6=0

‖By‖A
‖y‖A

= sup
y 6=0

‖A1/2By‖2
‖A1/2y‖2

= sup
z 6=0

‖A1/2BA−1/2z‖2
‖z‖2

= ‖A1/2BA−1/2‖2,

we get

(3.29)

‖A(I −Q−1A)ν−sδ(i)
s ‖2 ≤ ‖A1/2‖2 ‖(I −Q−1A)ν−sδ(i)

s ‖A
≤ ‖A1/2‖2 ‖A1/2(I −Q−1A)ν−sA−1/2‖2 ‖δ(i)

s ‖A
≤ ρ(I −Q−1A)ν−s‖A1/2‖22 ‖δ(i)

s ‖2

where ρ is the spectral radius. We have used the fact that A1/2(I −Q−1A)ν−sA−1/2

is a symmetric matrix (since Q is symmetric). Define d1(ν) = (ρ(I − Q−1A)ν−1 +
· · ·+ ρ(I −Q−1A) + 1)‖A1/2‖22. Then (3.24) and (3.25) imply that

(3.30)
‖A∆(i)

ν ‖2 + ‖τ (i)‖2 ≤ εrel(d1(ν) + h)‖r(i)‖2
≤ εrel(d1(ν) + h)‖A1/2‖2 ‖e(i)‖A.

On the other hand,

(3.31)

‖A−1τ (i)‖A = (A−1τ (i), τ (i))1/2 ≤ ‖A−1‖1/22 ‖τ (i)‖2
≤ εrelh‖A−1‖1/22 ‖r(i)‖2
≤ εrelh‖A−1‖1/22 ‖A1/2‖2 ‖e(i)‖A.

Combining (3.17), (3.26), (3.27), (3.30), and (3.31), we conclude that

(3.32) ‖e(i+1)‖A ≤ C1(ν)‖e(i)‖A

where

(3.33) C1(ν) = Cη(ν) + εrel(C(d1(ν) + h) + h‖A−1‖1/22 )‖A1/2‖2.

Note that ρ(I −Q−1A) < 1, ‖A‖2 is bounded by a constant, and ‖A−1‖2 is of order
O(h−2) [17]. Thus, for small enough εrel and large enough ν, C1(ν) is bounded below
1 independent of h.
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Next, we adjust this argument by considering the effect of the absolute truncations
in the main while loop. In Algorithm 3.1, the Vcycle is used for the residual
equation, and the updated solution ũ(i+1) and residual r̃(i+1) are truncated to u(i+1)

and r(i+1), respectively, using an absolute truncation criterion as in (3.9). Thus, at
the ith iteration (i > 1), the residual passed to the Vcycle function is in fact a
perturbed residual, i.e.,

(3.34) r(i) = r̃(i) + β = Ae(i) + β, where ‖β‖2 ≤
√
κNξεabs.

It follows that in the first smoothing step,

(3.35) ũ
(i)
1 = u(i) +Q−1(f −Au(i) + β), u

(i)
1 = Trel1(ũ

(i)
1 ),

and this introduces an extra term in ∆
(i)
ν (see (3.23)),

(3.36) ∆(i)
ν = (I−Q−1A)ν−1δ

(i)
1 + · · ·+(I−Q−1A)δ

(i)
ν−1 +δ(i)

ν −(I−Q−1A)ν−1Q−1β.

As in the derivation of (3.29), we have

(3.37) ‖A(I −Q−1A)ν−1Q−1β‖2 ≤ ρ(I −Q−1A)ν−1‖A1/2‖22 ‖Q−1‖2 ‖β‖2.

In the case of a damped Jacobi smoother, ‖Q−1‖2 is bounded by a constant. Denote
d2(ν) = ρ(I −Q−1A)ν−1‖A1/2‖22 ‖Q−1‖2. Also note that ‖r(i)‖2 ≤ ‖A1/2‖2 ‖e(i)‖A +
‖β‖2. Then (3.30) and (3.31) are modified to

(3.38)

‖A∆(i)
ν ‖2 + ‖τ (i)‖2

≤ εrel(d1(ν) + h)‖r(i)‖2 + d2(ν)‖β‖2
≤ εrel(d1(ν) + h)‖A1/2‖2 ‖e(i)‖A + (d2(ν) + εrel(d1(ν) + h))‖β‖2,

and

(3.39) ‖A−1τ (i)‖A ≤ εrelh‖A−1‖1/22 ‖A1/2‖2 ‖e(i)‖A + εrelh‖A−1‖1/22 ‖β‖2.

As we truncate the updated solution ũ(i+1), we have

(3.40) u(i+1) = ũ(i+1) + γ, where ‖γ‖2 ≤
√
κNξεabs.

Let

(3.41) C2(ν) = (Cd2(ν) + εrel(C(d1(ν) + h) + h‖A−1‖1/22 ) + ‖A1/2‖2)
√
κ.

From (3.38)–(3.41), we conclude with the following theorem:

Theorem 3.2. Let e(i) = u − u(i) denote the error at the ith iteration of Algo-
rithm 3.1. Then

(3.42) ‖e(i+1)‖A ≤ C1(ν)‖e(i)‖A + C2(ν)
√
Nξεabs,

where C1(ν) < 1 for large enough ν and small enough εrel, and C2(ν) is bounded by a
constant. Also, (3.42) implies that

(3.43) ‖e(i)‖A ≤ Ci1(ν)‖e(0)‖A +
1− Ci1(ν)

1− C1(ν)
C2(ν)

√
Nξεabs,

i.e., the A-norm of the error for the low-rank multigrid solution at the ith iteration
is bounded by Ci1(ν)‖e(0)‖A + O(

√
Nξεabs). Thus, Algorithm 3.1 converges until the

A-norm of the error becomes as small as O(
√
Nξεabs).
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In the proof above, it is convenient to consider the damped Jacobi smoother in
that the matrix Q is symmetric and ‖Q−1‖2 is bounded. In fact, one can use the
smoothing property (3.18) to bound (3.29), which does not require symmetry in Q,
and the proof can be generalized for any smoother with bounded ‖Q−1‖2. Also,
it can be shown that the result in Theorem 3.2 holds if post-smoothing is used.
The convergence of full (recursive) multigrid with these truncation operations can be
established following an inductive argument analogous to that in the deterministic
case (see, e.g., [5, 9]). Besides, in Algorithm 3.1, the truncation on r̃(i+1) imposes a
stopping criterion, i.e.,

(3.44)
‖r̃(i+1)‖2 ≤ ‖r̃(i+1) − r(i+1)‖2 + ‖r(i+1)‖2

≤
√
κNξεabs + tol ∗ r0.

In section 4 we will vary the value of εabs and see how the low-rank multigrid solver
works compared with Algorithm 2.1 where no truncation is done.

Remark 3.3. It is shown in [17] that for (2.7), with constant mean c0 and standard
deviation σ,

(3.45) ‖A‖2 = α(c0 + σCmax
p+1

m∑
l=1

√
λl‖cl(x)‖∞),

where Cmax
p+1 is the maximal root of an orthogonal polynomial of degree p+ 1, and α

is a constant independent of h, m, and p. If Legendre polynomials on the interval
[−1, 1] are used, Cmax

p+1 < 1. Since both C1 and C2 in Theorem 3.2 are related to ‖A‖2,
the convergence rate of Algorithm 3.1 will depend on m. However, if the eigenvalues
{λl} decay fast, this dependence is negligable.

Remark 3.4. As shown in (3.33), the factor h in the truncation criterion (3.14)
is introduced to compensate for the order O(h−2) of ‖A−1‖2. Arguments similar to
those in [17] can also be used to show that if A comes from a model where the diffusion
coefficient is a lognormal random field, then ‖A−1‖2 = O(h−2) (see the discussions in
[6, 20]), and the error bound in Theorem 3.2 is still valid.

Remark 3.5. If instead a relative truncation is used in the while loop so that

(3.46) r(i+1) = r̃(i+1) + β = Ae(i+1) + β, where ‖β‖2 ≤ εrel‖r̃(i+1)‖2,

then a similar convergence result can be derived, and the algorithm stops when

(3.47) ‖r̃(i+1)‖2 ≤
tol ∗ r0

1− εrel
.

However, the relative truncation in general results in a larger rank for r(i), and the
improvement in efficiency will be less significant.

4. Numerical experiments. Consider the benchmark problem with a two-
dimensional spatial domain D = (−1, 1)2 and constant source term f = 1. We look
at two different forms for the covariance function r(x, y) of the diffusion coefficient
c(x, ω).
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4.1. Exponential covariance. The exponential covariance function takes the
form

(4.1) r(x, y) = σ2exp

(
−1

b
‖x− y‖1

)
.

This is a convenient choice because there are known analytic solutions for the eigenpair
(λl,cl(x)) [7]. In the KL expansion, take c0(x) = 1 and {ξl}ml=1 independent and
uniformly distributed on [−1, 1]:

(4.2) c(x, ω) = c0(x) +
√

3

m∑
l=1

√
λlcl(x)ξl(ω).

Then
√

3ξl has zero mean and unit variance, and Legendre polynomials are used as
basis functions for the stochastic space. The correlation length b affects the decay of
{λl} in the KL expansion. The number of random variables m is chosen so that

(4.3)

(
m∑
l=1

λl

)/( M∑
l=1

λl

)
≥ 95%.

Here M is a large number which we set as 1000.
We now examine the performance of the multigrid solver with low-rank trunca-

tion. We employ a damped Jacobi smoother, with

(4.4) Q =
1

ω
diag(A) =

1

ω
I ⊗ diag(K0)

(since G0 = I and diag(Gl) = 0 for l = 1, . . . ,m), and the parameter value ω = 2/3.
Apply three smoothing steps (ν = 3) in the Smooth function. Set the multigrid tol =
10−6. As shown in (3.44), the relative residual ‖F −A(U (i))‖F /‖F‖F for the solution
U (i) produced in Algorithm 3.1 is related to the value of the truncation tolerance εabs.
In all the experiments, we also run the multigrid solver without truncation to reach a
relative residual that is closest to what we get from the low-rank multigrid solver. We
fix the relative truncation tolerance εrel as 10−2. (The truncation criteria in (3.13)
and (3.14) are needed for the analysis. In practice we found the performance with
the relative criterion in (3.11) to be essentially the same as the results shown in this
section.) The numerical results, i.e., the rank of multigrid solution, the number of
iterations, and the elapsed time (in seconds) for solving the Galerkin system, are given
in Tables 4.1 to 4.3. In all the tables, the 3rd and 4th columns are the results of low-
rank multigrid with different values of truncation tolerance εabs, and for comparison
the last two columns show the results for the multigrid solver without truncation. The
Galerkin systems are generated from the Incompressible Flow and Iterative Solver
Software (IFISS, [19]). All computations are done in MATLAB 9.1.0 (R2016b) on a
MacBook with 1.6 GHz Intel Core i5 and 4 GB SDRAM.

Table 4.1 shows the performance of the multigrid solver for various mesh sizes
h, or spatial degrees of freedom Nx, with other parameters fixed. The 3rd and 5th
columns show that multigrid with low-rank truncation uses less time than the standard
multigrid solver. This is especially true when Nx is large: for h = 2−8, Nx = 261121,
low-rank approximation reduces the computing time from 2857s to 370s. The im-
provement is much more significant (see the 4th and 6th columns) if the problem
does not require very high accuracy for the solution. Table 4.2 shows the results for
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various degrees of freedom Nξ in the stochastic space. The multigrid solver with ab-
solute truncation tolerance 10−6 is more efficient compared with no truncation in all
cases and uses only about half the time. The 4th and 6th columns indicate that the
decrease in computing time by low-rank truncation is more obvious with the larger
tolerance 10−4.

Table 4.1
Performance of multigrid solver with εabs = 10−6, 10−4, and no truncation for various Nx =

(2/h− 1)2. Exponential covariance, σ = 0.01, b = 4, m = 11, p = 3, Nξ = 364.

εabs = 10−6 εabs = 10−4 No truncation

64× 64 grid
h = 2−5

Nx = 3969

Rank 51 12
Iterations 5 4 5 4
Elapsed time 6.26 1.63 12.60 10.08
Rel residual 1.51e-6 6.05e-5 9.97e-7 1.38e-5

128× 128 grid
h = 2−6

Nx = 16129

Rank 51 12
Iterations 6 4 5 3
Elapsed time 20.90 5.17 54.59 32.92
Rel residual 2.45e-6 9.85e-5 1.23e-6 2.20e-4

256× 256 grid
h = 2−7

Nx = 65025

Rank 49 13
Iterations 5 4 5 3
Elapsed time 76.56 24.31 311.27 188.70
Rel residual 4.47e-6 2.07e-4 1.36e-6 2.35e-04

512× 512 grid
h = 2−8

Nx = 261121

Rank 39 16
Iterations 5 3 4 3
Elapsed time 370.98 86.30 2857.82 2099.06
Rel residual 9.93e-6 4.33e-4 1.85e-5 2.43e-4

Table 4.2
Performance of multigrid solver with εabs = 10−6, 10−4, and no truncation for various Nξ =

(m+ p)!/(m!p!). Exponential covariance, σ = 0.01, h = 2−6, p = 3, Nx = 16129.

εabs = 10−6 εabs = 10−4 No truncation
Rank 25 9

b = 5,m = 8 Iterations 5 4 5 3
Nξ = 165 Elapsed time 5.82 1.71 19.33 11.65

Rel residual 5.06e-6 3.41e-4 1.22e-6 2.20e-4
Rank 51 12

b = 4,m = 11 Iterations 6 4 5 3
Nξ = 364 Elapsed time 20.90 5.17 54.59 32.92

Rel residual 2.45e-6 9.85e-5 1.23e-6 2.20e-4
Rank 91 23

b = 3,m = 16 Iterations 6 5 5 4
Nξ = 969 Elapsed time 97.34 16.96 197.82 158.56

Rel residual 5.71e-7 3.99e-5 1.23e-6 1.63e-5
Rank 165 86

b = 2.5,m = 22 Iterations 6 5 6 4
Nξ = 2300 Elapsed time 648.59 172.41 1033.29 682.45

Rel residual 1.59e-7 8.57e-6 9.29e-8 1.63e-5
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We have observed that when the standard deviation σ in the covariance func-
tion (4.1) is smaller, the singular values of the solution matrix U decay faster (see
Figure 3.1), and it is more suitable for low-rank approximation. This is also shown
in the numerical results. In the previous cases, we fixed σ as 0.01. In Table 4.3,
the advantage of low-rank multigrid is clearer for a smaller σ, and the solution is
well approximated by a matrix of smaller rank. On the other hand, as the value of
σ increases, the singular values of the matricized solution, as well as the matricized
iterates, decay more slowly and the same truncation criterion gives higher-rank ob-
jects. Thus, the total time for solving the system and the time spent on truncation
will also increase. Another observation from the above numerical experiments is that
the iteration counts are largely unaffected by truncation. In Algorithm 3.1, similar
numbers of iterations are required to reach a comparable accuracy as in the cases with
no truncation.

Table 4.3
Performance of multigrid solver with εabs = 10−6, 10−4, and no truncation for various σ.

Time spent on truncation is given in parentheses. Exponential covariance, b = 4, h = 2−6, m = 11,
p = 3, Nx = 16129, Nξ = 364.

εabs = 10−6 εabs = 10−4 No truncation

σ = 0.001

Rank 13 12
Iterations 6 4 5 4
Elapsed time 7.61 (4.77) 3.73 (2.29) 54.43 43.58
Rel residual 1.09e-6 6.53e-5 1.22e-6 1.63e-5

σ = 0.01

Rank 51 12
Iterations 6 4 5 3
Elapsed time 20.90 (15.05) 5.17 (3.16) 54.59 32.92
Rel residual 2.45e-6 9.85e-5 1.23e-6 2.20e-4

σ = 0.1

Rank 136 54
Iterations 6 4 5 3
Elapsed time 54.44 (33.91) 18.12 (12.70) 55.49 33.62
Rel residual 3.28e-6 2.47e-4 1.88e-6 2.62e-4

σ = 0.3

Rank 234 128
Iterations 9 7 8 4
Elapsed time 138.63 (77.54) 60.96 (38.66) 86.77 43.42
Rel residual 6.03e-6 4.71e-4 2.99e-6 7.76e-4

4.2. Squared exponential covariance. In the second example we consider
covariance function

(4.5) r(x, y) = σ2exp

(
− 1

b2
‖x− y‖22

)
.

The eigenpair (λl, cl(x)) is computed via a Galerkin approximation of the eigenvalue
problem

(4.6)

∫
D

r(x, y)cl(y)dy = λlcl(x).

Again, in the KL expansion (4.2), take c0(x) = 1 and {ξl}ml=1 independent and uni-
formly distributed on [−1, 1]. The eigenvalues of the squared exponential covariance
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(4.5) decay much faster than those of (4.1), and thus fewer terms are required to sat-
isfy (4.3). For instance, for b = 2, m = 3 will suffice. Table 4.4 shows the performance
of multigrid with low-rank truncation for various spatial degrees of freedom Nx. In
this case, we are able to work with finer meshes since the value of Nξ is smaller. In all
experiments the low-rank multigrid solver uses less time compared with no truncation.

Table 4.4
Performance of multigrid solver with εabs = 10−6, 10−4, and no truncation for various Nx =

(2/h− 1)2. Squared exponential covariance, σ = 0.01, b = 2, m = 3, p = 3, Nξ = 20.

εabs = 10−6 εabs = 10−4 No truncation

128× 128 grid
h = 2−6

Nx = 16129

Rank 9 4
Iterations 5 3 4 3
Elapsed time 0.78 0.35 1.08 0.82
Rel residual 1.20e-5 9.15e-4 1.63e-5 2.20e-4

256× 256 grid
h = 2−7

Nx = 65025

Rank 8 4
Iterations 4 3 4 3
Elapsed time 2.55 1.31 4.58 3.46
Rel residual 3.99e-5 9.09e-4 1.78e-05 2.35e-4

512× 512 grid
h = 2−8

Nx = 261121

Rank 8 2
Iterations 4 2 4 2
Elapsed time 10.23 2.13 18.93 9.61
Rel residual 6.41e-5 6.91e-3 1.85e-5 3.29e-3

1024× 1024 grid
h = 2−9

Nx = 1045629

Rank 8 2
Iterations 4 2 4 2
Elapsed time 58.09 10.66 115.75 63.54
Rel residual 6.41e-5 6.93e-3 1.90e-5 3.32e-3

5. Conclusions. In this work we focused on the multigrid solver, one of the
most efficient iterative solvers, for the stochastic steady-state diffusion problem. We
discussed how to combine the idea of low-rank approximation with multigrid to reduce
computational costs. We proved the convergence of the low-rank multigrid method
with an analytic error bound. It was shown in numerical experiments that the low-
rank truncation is useful in decreasing the computing time when the variance of the
random coefficient is relatively small. The proposed algorithm also exhibited great
advantage for problems with large number of spatial degrees of freedom.
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