

Spatially compatible meshfree discretization

Nat Trask
Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Talk overview

- An introduction to generalized moving least squares (GMLS)
 - A high-level summary of approximation theory
 - A brief survey of our ongoing work
- Conservation principles for meshfree discretization
 - How to obtain a conservative method, when we don't have a mesh to apply the Gauss divergence theorem to
- Asymptotically compatible strong-form discretizations of non-local mechanics
 - An integral theory of continuum mechanics
 - Combining in a meshfree framework allows for consistent coupling of multiphysics+fracture

Why use meshfree?

- In classical methods, a mesh gives you a lot:
 - Easy construction of basis functions
 - A partition of unity
 - Simple quadrature
 - A simplicial complex and associated exterior calculus structures
 - i.e. cells, faces, edges, nodes linked together through a boundary operator + generalized Stokes theorems
- Usually the best option, but for many applications its infeasible/annoying to efficiently build a mesh
 - Lagrangian large-deformation problems
 - Automated design-to-analysis
 - (~50% of analyst time!)¹
 - Non-intrusive multiphysics coupling for legacy code

Compadre – Compatible Particle Discretization

Objectives:

- Meshless schemes with rigorous approximation theory and mimetic properties like compatible mesh-based methods
- Software library supporting solution of general meshless schemes with tools for coarse+fine grain parallelism and preconditioning

People:

- Pavel Bochev (PI)
- Pete Bosler
- Paul Kuberry
- Mauro Perego
- Kara Peterson
- Nat Trask

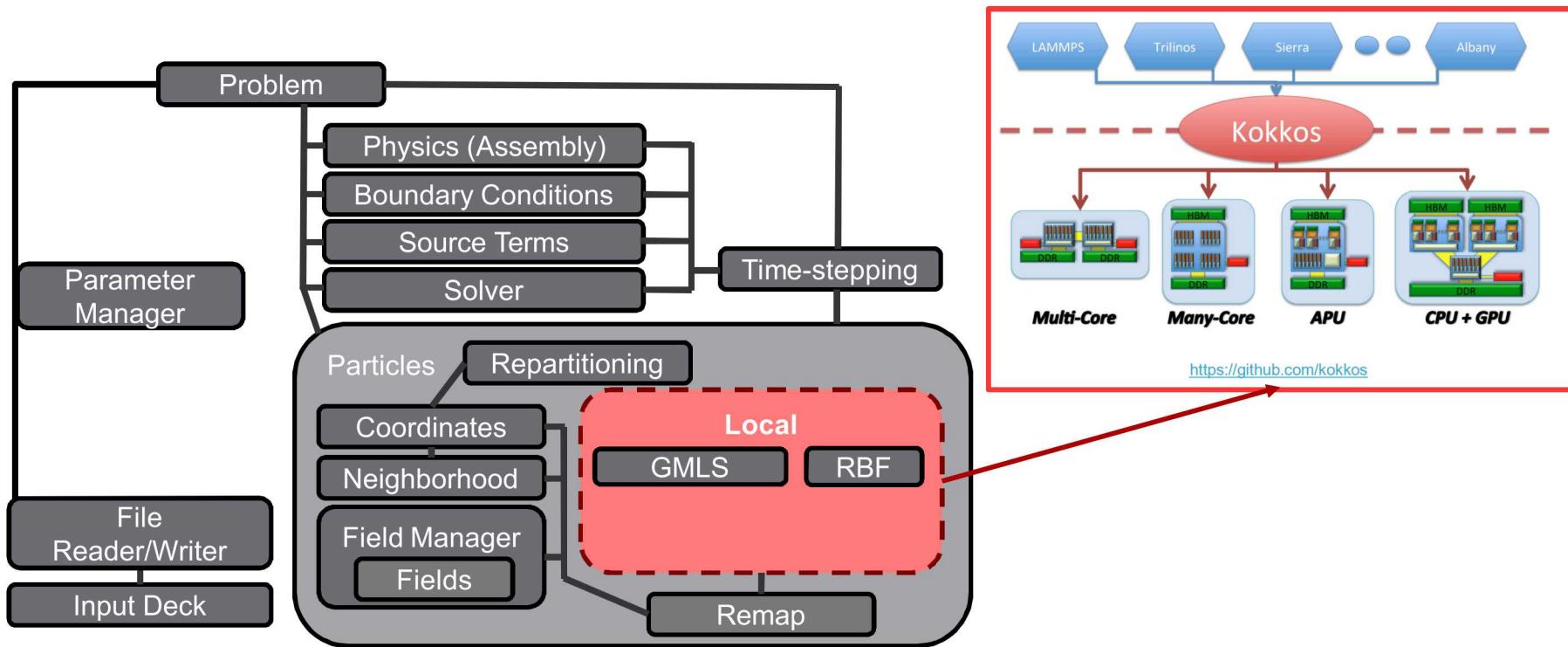
Students/collaborators:

- Huaiqian You, Yue Yu – Lehigh
- Amanda Howard, Martin Maxey – Brown
- Wenxiao Pan – UW Madison
- Paul Atzberger – UC Santa Barbara
- J.S. Chen – UC San Diego

Key tools:

- Optimization based approaches to develop meshfree discretizations with reproduction properties
- The Compadre Trilinos library – open source library for scalable implementation of meshfree methods

Compadre Trilinos package



Collection of modules for general meshfree discretizations + heterogeneous architectures

- **Local modules for efficiently solving small optimization problems on each particle**
 - Kokkos implementation gives fine grained thread/GPU parallelism
- **Global modules for assembling global matrices and applying fast solvers**
 - MPI based domain decomposition for coarse grained parallelism
 - Interfaces to MueLu for fast solvers

Objectives:

- Develop mathematical underpinnings for meshfree nonlocal models

People:

- Nat Trask (PI)
- Marta D'Elia
- David Littlewood
- Stewart Silling
- Michael Tupek

PhiLMs DoE MMICCs center –

Physics-based Learning Machines for scientific computing

Objectives:

- Develop approximation theory for deep neural networks in multiscale applications

People:

- George Karniadakis (Brown University – head PI)
- Sandia Team
 - Michael Parks (Institutional PI)
 - Pavel Bochev
 - Marta D'Elia
 - Mauro Perego
 - Nat Trask

Generalized moving least squares (GMLS)

$$\begin{aligned} \tau(u) &\approx \tau^h(u) \\ p^* &= \operatorname{argmin}_{p \in \mathbf{V}} \left(\sum_j \lambda_j(p) - \lambda_j(u) \right)^2 W(\tau, \lambda_j) \\ \tau^h(u) &:= \tau(p^*) \end{aligned}$$

Example:

Approximate point evaluation of derivatives:

Target functional $\tau_i = D^\alpha \circ \delta_{x_i}$

Reconstruction space $\mathbf{V} = P^m$

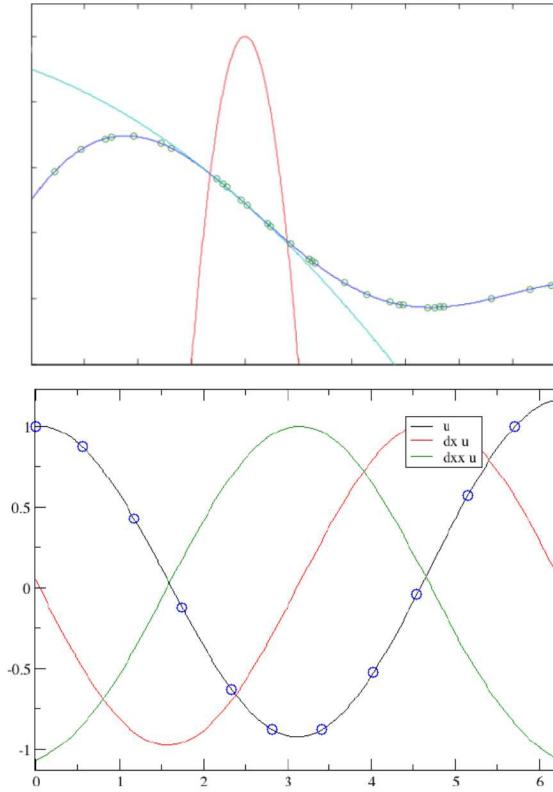
Sampling functional $\lambda_j = \delta_{x_j}$

Weighting function $W = W(\|x_i - x_j\|)$

Takeaway:

A rigorous way to obtain formulas that look like:

$$\tau^h(u) := \sum_j \alpha_j \lambda_j(u)$$



Approximation theory sketch: local reproduction

Given linear bounded functional τ , and an approximation $\tau_h = \sum_j s_{\lambda_j, \tau} \lambda_j(u)$.

We assume τ may be associated with a point x . A process for generating the coefficients $\{s_{\lambda_j, \tau}\}$ is a local reproduction over V if:

1. $\sum_j s_{\lambda_j, \tau} \lambda_j(p) = \tau(p)$ for all $p \in V$

2. $\sum_j |s_{\lambda_j, \tau}| < C_1 h^{-\alpha}$

3. $s_{\lambda_j, \tau}$ if $\|x - x_j\| < C_2 h$

- GMLS may be shown to satisfy condition one, provided a solution exists to the optimization problem, and condition three by choice of kernel.
- Satisfaction of condition two depends upon the target and sampling functionals under consideration.

Truncation error sketch

Let $p \in V$.

$$\begin{aligned}
 |\tau(u) - \tau_h(u)| &\leq |\tau(u) - \tau(p)| + |\tau_h(p) - \tau_h(u)| \\
 &\leq |\tau(u) - \tau(p)| + \sum_j |s_{\lambda_j, \tau}| |\lambda_j(p) - \lambda_j(u)| \\
 &\leq \|\tau(u) - \tau(p)\|_{L^\infty(\Omega)} + C_1 h^{-\alpha} \|\lambda_j(u) - \lambda_j(p)\|_{L^\infty(\Omega)}
 \end{aligned}$$

To proceed, a specific choice must be made for operators. For example, Mirzaei estimates point evaluation of derivatives from point evaluation of functions.

Let $u \in C^m(\Omega)$, $\tau := D^\alpha \circ \delta_i$, $\lambda_j := \delta_j$, $V := P_m$

Taking p as the Taylor series about x_i leads to the following estimate

$$\|D^\alpha u - D_h^\alpha u\|_{L^\infty(\Omega)} \leq C h^{m+1-|\alpha|} |u|_{C^{m+1}(\Omega)}$$

A rigorous framework for designing schemes

$$\tau(u) \approx \tau^h(u)$$
$$p^* = \operatorname{argmin}_{p \in \mathbf{V}} \left(\sum_j \lambda_j(p) - \lambda_j(u) \right)^2 W(\tau, \lambda_j)$$

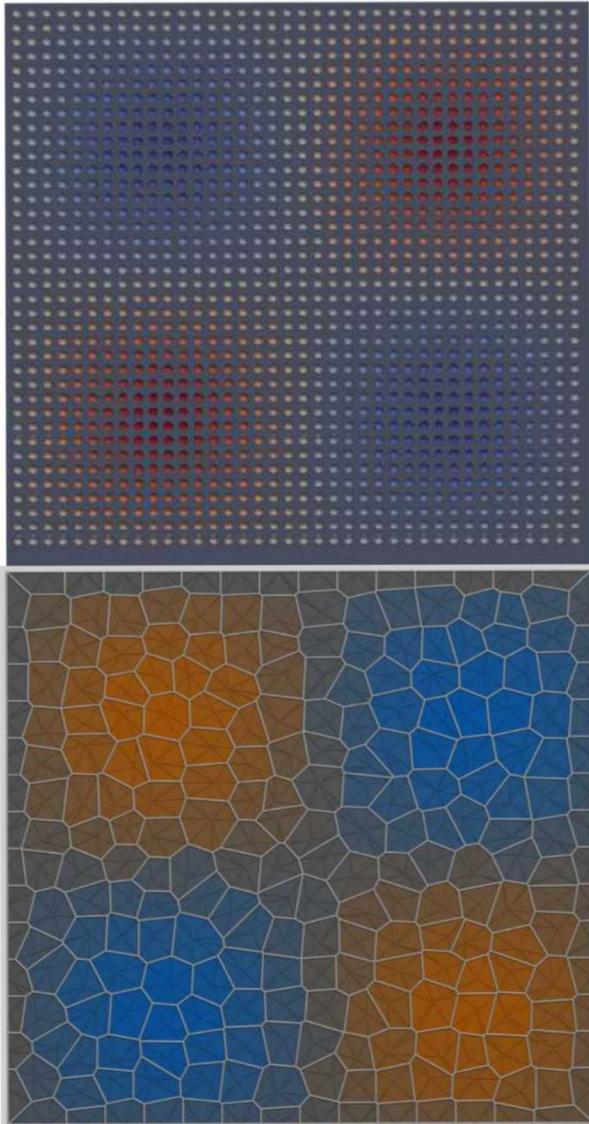
$$\tau(u) = \operatorname{div}(u) \quad \tau(u) = \int_{B(x)} K(x, y) u(y) - u(x) dy \quad \tau(u) = \int_{\partial\Omega} \sigma(u) \cdot d\mathbf{A}$$

$$\lambda_i^e(\mathbf{u}) := \frac{1}{|e_i|} \int_{e_i} \mathbf{u} \cdot \mathbf{t}_i \quad \lambda_i^f(\mathbf{u}) = \frac{1}{|f_i|} \int_{f_i} \mathbf{u} \cdot \mathbf{n}_i \quad \lambda_i^v(u) := \frac{1}{|V_i|} \int_{V_i} u(\mathbf{y}) d\mathbf{y}$$

$$V_h = \{ \mathbf{v} \in (\Pi_m)^d | \quad \nabla \cdot \mathbf{v} = 0 \}$$

$$V_h = \{ \mathbf{v} \in (\Pi_m)^d | \quad \nabla \times \mathbf{v} = 0 \}$$

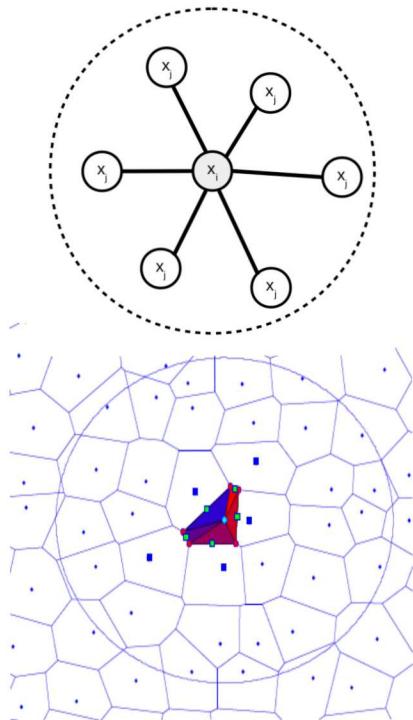
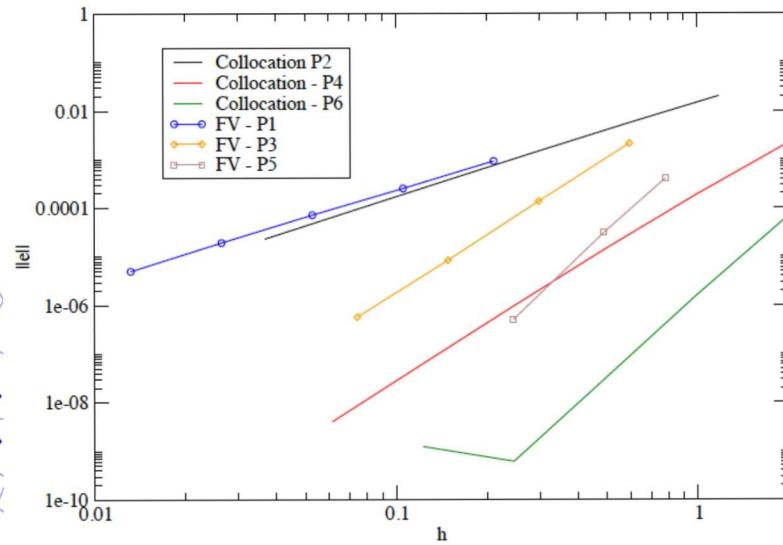
Solving PDEs with or without a mesh



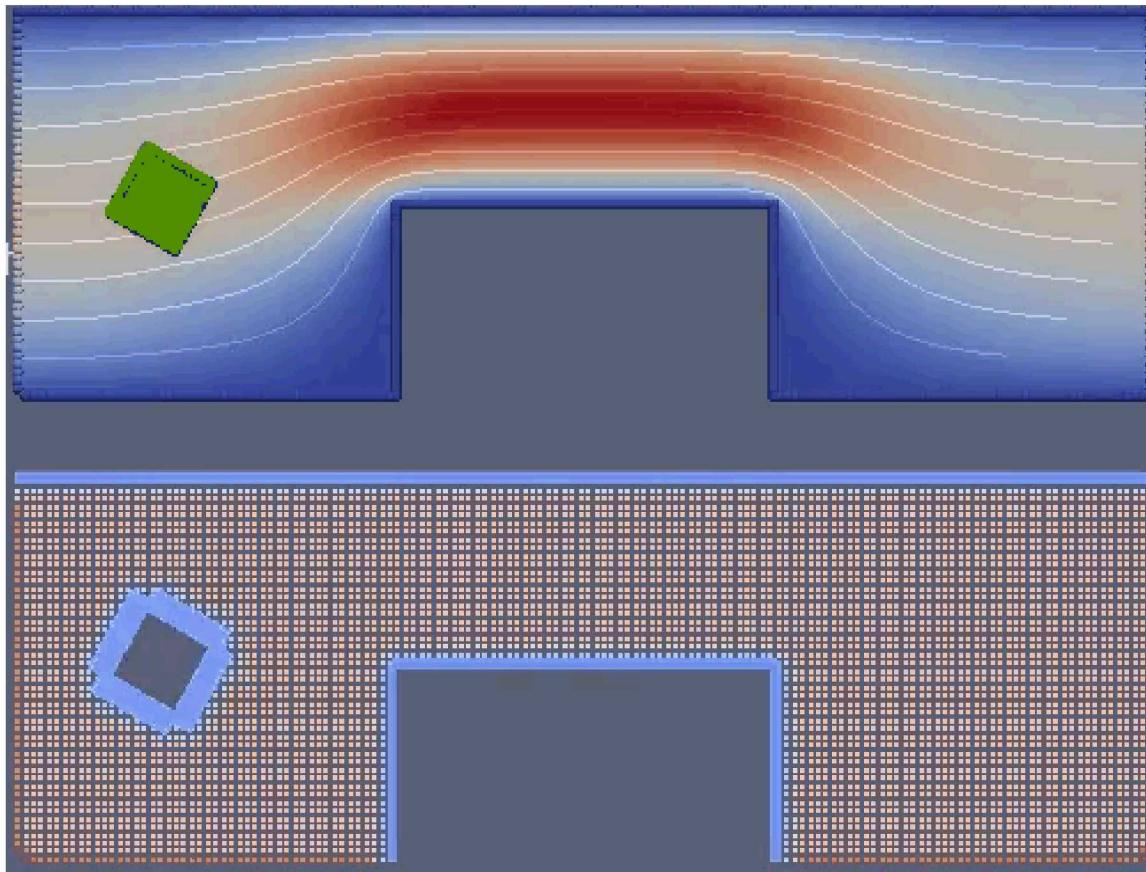
To generate mesh free schemes for $\nabla^2\phi = f$:

Target functional
Reconstruction space
Sampling functional
Weighting function

	Finite difference	Finite volume
τ_i	$\nabla^2\phi(\mathbf{x}_i)$	$\int_{face} \nabla\phi \cdot d\mathbf{A}$
\mathbf{V}	P_m	P_m
λ_j	$\phi(\mathbf{x}_j)$	$\phi(\mathbf{x}_j)$
W	$W(\ \mathbf{x}_j - \mathbf{x}_i\)$	$W(\ \mathbf{x}_j - \mathbf{x}_i\)$



Example: Choosing approximation space

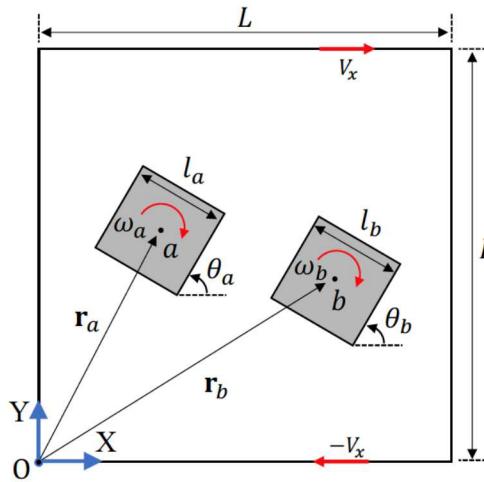
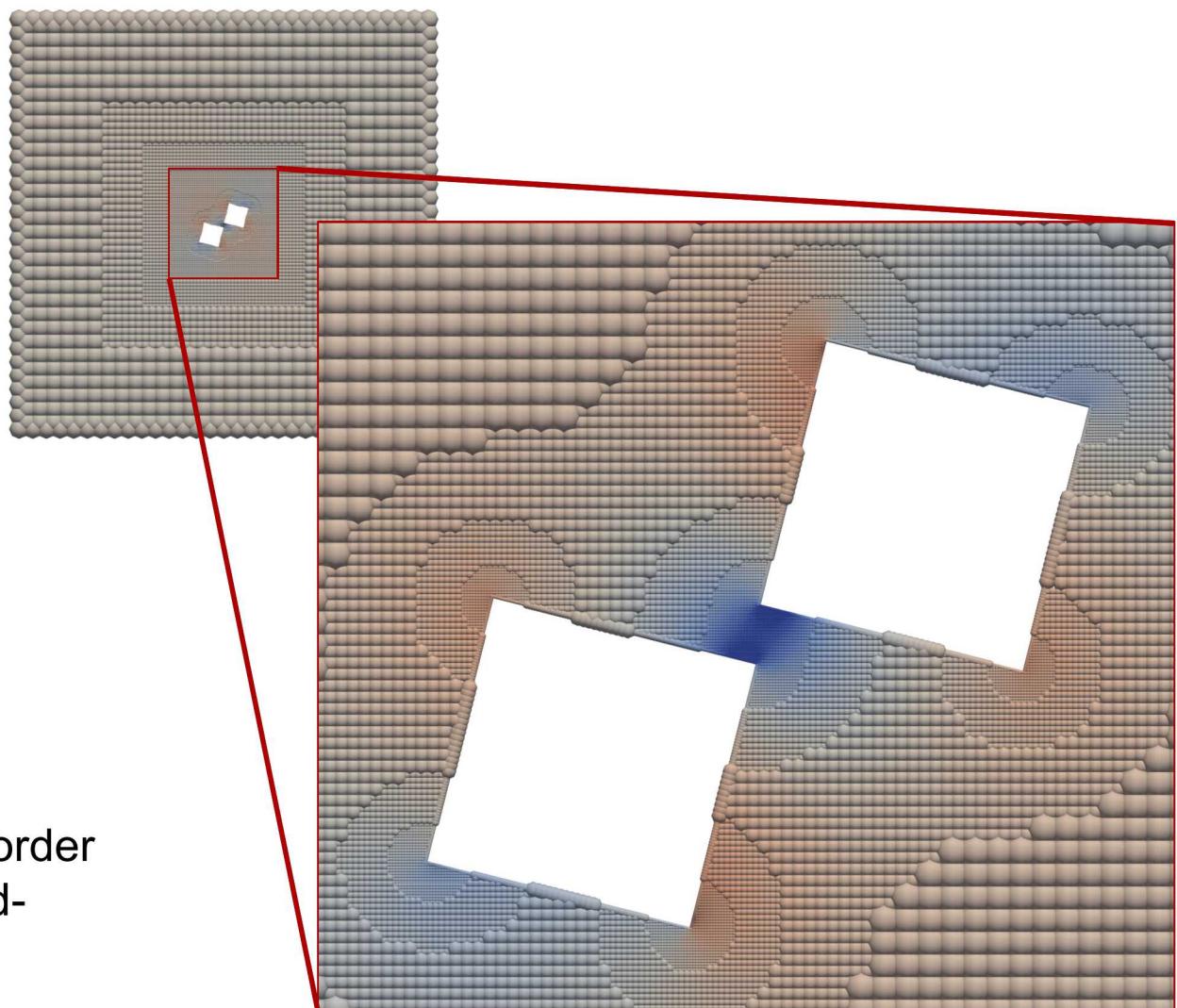


$$\begin{cases} -\nabla^2 \mathbf{u} + \nabla p = \mathbf{f} \\ \nabla \cdot \mathbf{u} = 0 \\ \mathbf{u}|_{\partial\omega} = \mathbf{U} + (x - \mathbf{X}) \times \boldsymbol{\Omega} \\ \int_{\partial\omega} \boldsymbol{\sigma} \cdot d\mathbf{A} = 0 \end{cases}$$

Trask, N., Maxey, M., and Hu, X.
"A compatible high-order meshless
method for the Stokes equations
with applications to suspension
flows."

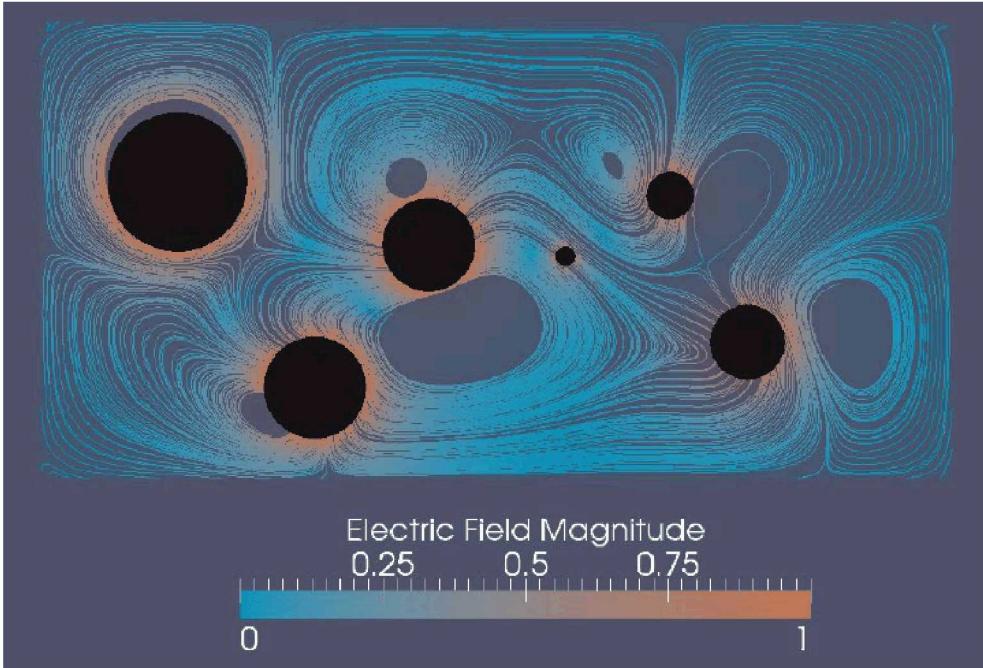
Journal of Computational Physics
355 (2018): 310-326.

Example: Choosing kernel



Hu, Trask, Hu, Pan
 “A spatially adaptive high-order
 meshless methods for fluid-
 structure interactions”
 (In review, CMAME)

Example: Choosing approximation space



$$\begin{cases} -\nu \nabla^2 \mathbf{u} + \nabla p = -\rho_e(\phi) \nabla \phi \\ \nabla \cdot \mathbf{u} = 0 \\ \mathbf{u} = \mathbf{w} \\ \mathbf{u} = \mathbf{V}_i + (x - \mathbf{X}_i) \times \boldsymbol{\Omega}_i \end{cases}$$

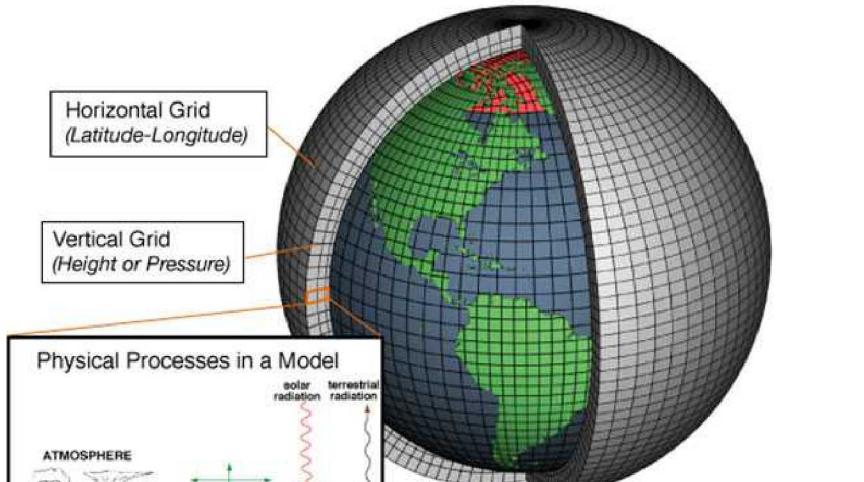
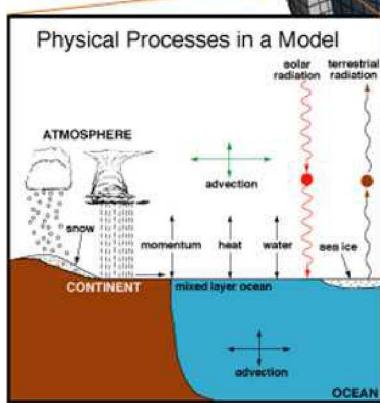
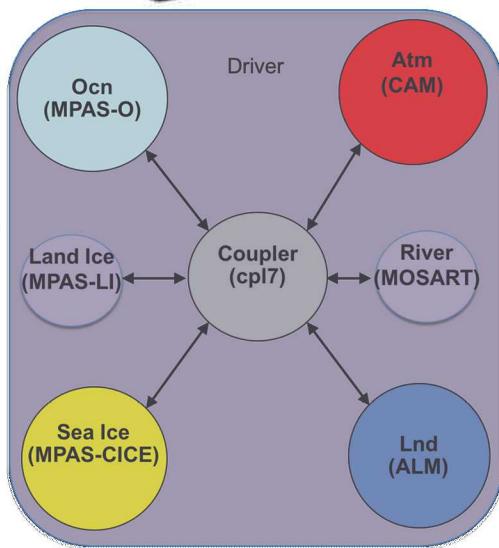
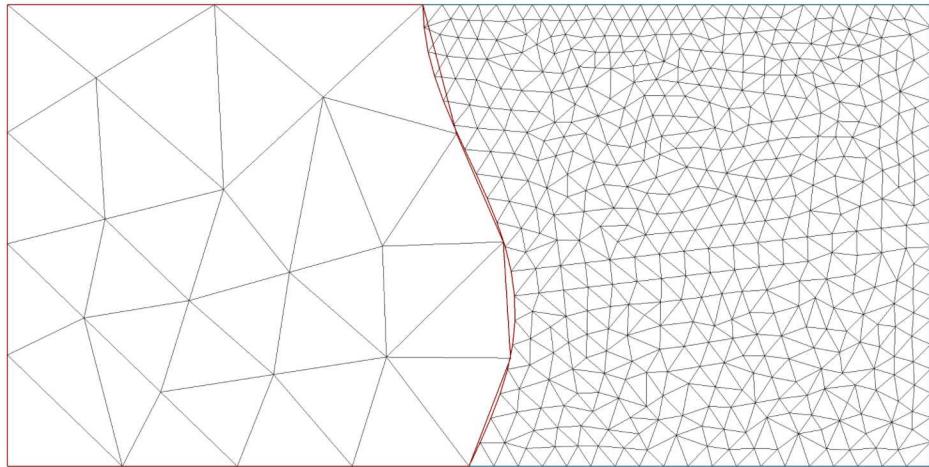
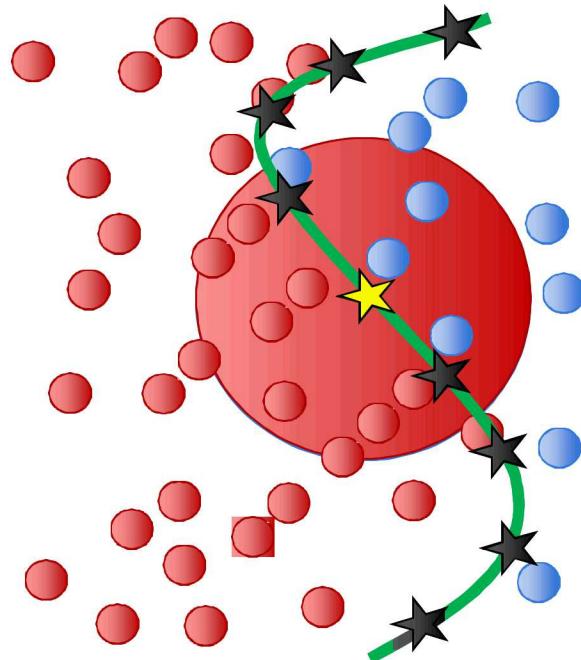
$$-l_c^2 \nabla^4 \phi + \nabla^2 \phi = -\frac{\rho_e(\phi)}{\epsilon}$$

$$\begin{cases} 0 = \int_{\partial \Omega_i} \bar{\bar{\sigma}} \cdot d\mathbf{A} \\ 0 = \int_{\partial \Omega_i} \bar{\bar{\sigma}} \times (x - \mathbf{X}_i) \cdot d\mathbf{A} \end{cases}$$

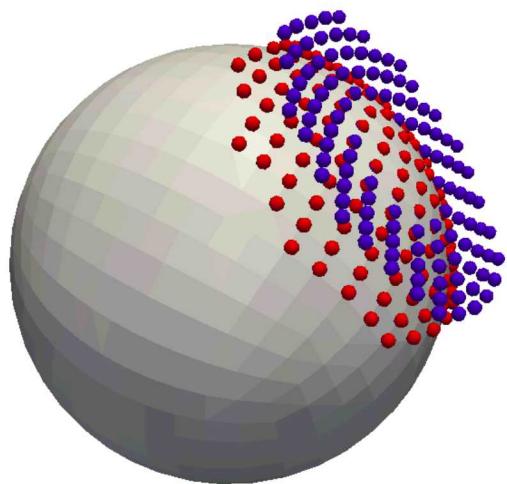
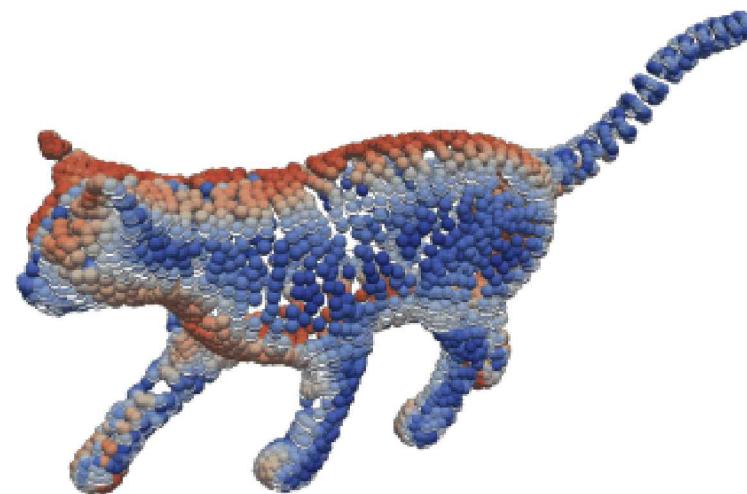
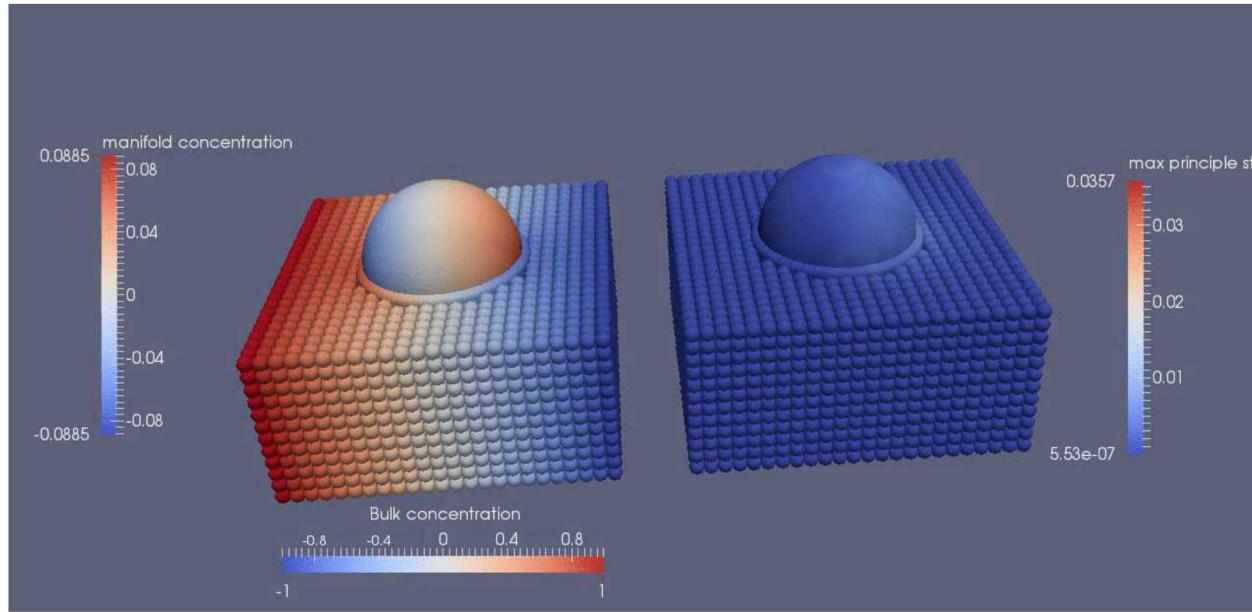
$$\bar{\bar{\sigma}} = -\epsilon_0 \left(\mathbf{E} \otimes \mathbf{E} + E^2 \mathbf{I} \right) + -p \mathbf{I} + \frac{\nu}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T)$$

A compatible Stokes solver provides a high-order foundation for multiphysics problems in FSI

Example: Choosing sampling functional



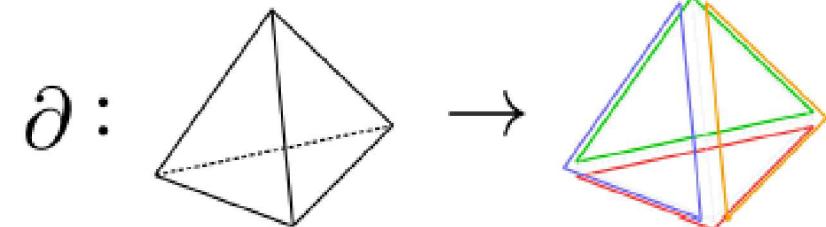
Example: Choosing target functional



Why is conservation hard in meshfree?

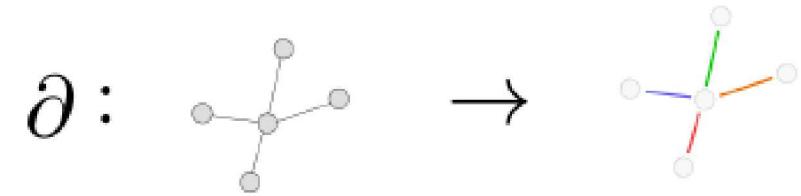
Generalized Stokes theorem

$$\int_{\Omega} d\omega = \int_{\partial\Omega} \omega$$



Gauss divergence theorem

$$\int_C \nabla \cdot \mathbf{u} dV = \oint_{F \in C} \mathbf{u} \cdot d\mathbf{A}$$



Two ingredients:

- A chain complex
 - A topological structure with a well-defined boundary operator
- An exterior derivative
 - A consistent definition of a divergence

Quadrature with GMLS

Assume a basis, $\forall p \in \mathbf{V}$, $p = \mathbf{c}^T \mathbf{P}$ and rewrite GMLS problem as

$$c^* = \arg \min_{c \in \mathbb{R}^{\dim(\mathbf{V})}} \frac{1}{2} \sum_{j=1}^N (\lambda_j(u) - c^* \lambda_j(\mathbf{P}))^2 \omega(\tau; \lambda_j).$$

$$\tau(u) \approx c^* \tau(P^*)$$

Ex: Selecting $\tau = \int_c u \, dx$, and defining the vector

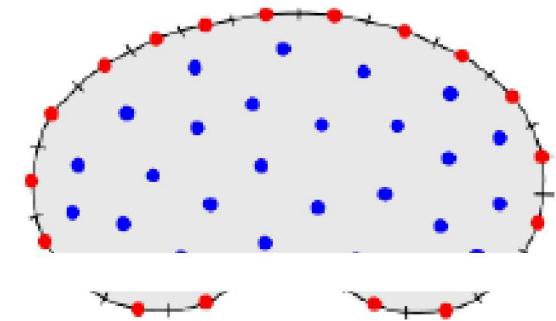
$$\mathbf{v}_c = \int_c \mathbf{P} \, dx$$

we can see that a quadrature functionals may be represented as a pairing of the GMLS reconstruction coefficient vector with some vector in its dual space

$$I_c[u] = \mathbf{v}_c^T \mathbf{c}^*$$

We seek to similarly define *meshfree quadrature functionals* with summation by parts properties.

Ansatz for a meshless Gauss divergence theorem



Recall classical FVM:

$$V_i (\nabla \cdot \mathbf{u})_i = \sum_{f_{ij} \in \partial C_i} \mathbf{u}_{ij} \cdot \mathbf{A}_{ij}$$

Want to define **virtual metric information**, so that $\forall \mathbf{u} \in P^1$

$$\mu_i (\nabla \cdot \mathbf{u})_i = \sum_{j \in B(x_i)} \mathbf{c}_{ij} \cdot \mu_{ij}$$

Assume physical metric information on domain boundary, and $\mu_{ij} = -\mu_{ji}$, then

$$\sum_i \mu_i (\nabla \cdot \mathbf{u})_i = \sum_{i,j \in B(x_i)} \mathbf{c}_{ij} \cdot \mu_{ij} = \int_{\partial \Omega} \mathbf{u} \cdot d\mathbf{A}$$

An ansatz for orientable virtual faces

Assume virtual areas μ_{ij} may be expressed in terms of *virtual area potentials* multiplied by point evaluation of basis function at virtual face

$$\mu_{ij}^\alpha = (\psi_j^\alpha - \psi_i^\alpha) \phi^\alpha(\mathbf{x}_{ij})$$

Conjecture. *Let $\mathbf{u} \in C_1(\Omega)$, and consider a set of virtual metric information $(\{\mu_i\}, \{\mu_{ij}\})$ that define a P_1 -reproducing SBP operator. Assume that the virtual face moments satisfy the scalings, $|\psi_j^\alpha - \psi_i^\alpha| \leq C_f h^{d-1}$ and $|\mu_i| \leq C_c h^d$ for all α, i, j . If $P_1 \subset \Pi$, then there exists $C > 0$ such that the following estimate holds at each virtual cell*

$$|\nabla \cdot \mathbf{u} - \nabla_h \cdot \mathbf{u}|_i \leq Ch$$

where $\nabla_h \cdot \mathbf{u} = \sum_\alpha (\partial_{x_\alpha} u^\alpha)_i$.

How to get the areas?

For each basis function $\phi^\beta \in V$, plug into ansatz and get

$$\sum_j (\psi_j^\alpha - \psi_i^\alpha) \phi^\alpha(\mathbf{x}_{ij}) = \mu_i (\nabla \cdot \phi^\alpha)_i - \chi_{I \in \partial\Omega} \int_{\partial\Omega_i} \phi^\alpha \cdot d\mathbf{A}$$

Assume we have a process for generating volumes satisfying

- $\sum \mu_i = |\Omega|$
- $\mu_i > 0$

then this provides a weighted-graph Laplacian problem for each area moment, with RHS satisfying Fredholm alternative necessary for singularity.

Solve $d + 1$ graph Laplacian problems, each with d RHSs, using AMG for $O(N)$ work.

Results: singularly perturbed advection-diffusion

Consider conservation laws

$$\partial_t \phi + \nabla \cdot \mathbf{F}(\phi) = 0$$

Where we will assume steady state and the following fluxes:

- **Darcy:**

$$\mathbf{F} = -\mu \nabla \phi$$

- **Singularly perturbed advection diffusion:**

$$\mathbf{F} = -\mu \nabla \phi + \mathbf{a} \phi$$

Skip lots of details: but we'll show how we handle benchmarks that challenge conventional mesh-based methods

How to get the volumes?

Assumed we have a process for generating volumes satisfying

- $\sum V_i = |\Omega|$
- $V_i > 0$

Pose as a constrained quadratic program

$$V_i = \operatorname{argmin}_i \sum_i V_i^2 w_i$$

$$\sum_i V_i = |\Omega|$$

$$w_i = \sum_j \phi(|x_i - x_j|)$$

With analytic solution

$$V_i = \frac{1}{w_i} \left(\frac{|\Omega|}{\sum_j \frac{1}{w_j}} \right)$$

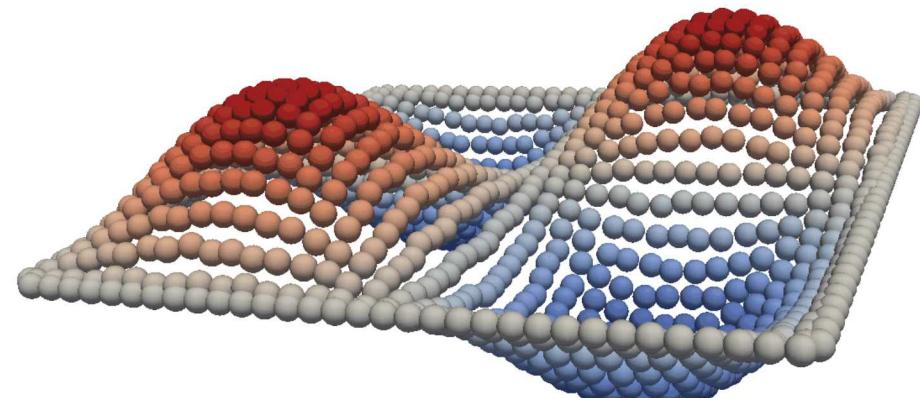
Lemma. *Assume a quasi-uniform set of points X . Then there exist $C_1, C_2 > 0$ satisfying*

$$C_1 h^d \leq V_i \leq C_2 h^d$$

Convergence of divergence operator

$$V_i = \frac{1}{w_i} \left(\frac{|\Omega|}{\sum_j \frac{1}{w_j}} \right)$$

h	Unweighted	Weighted
1/16	0.081	0.058
1/32	0.049	0.032
1/64	0.024	0.015
1/128	0.011	0.0072



Results: singularly perturbed advection-diffusion

Consider conservation laws for conserved variable q

$$\partial_t q + \nabla \cdot \mathbf{F} = 0$$

Where we will assume steady state and the following fluxes:

- **Darcy:**

$$\mathbf{F} = -\mu \nabla \phi$$

- **Singularly perturbed advection diffusion:**

$$\mathbf{F} = -\mu \nabla \phi + \mathbf{a} \phi$$

- **Linear elasticity:**

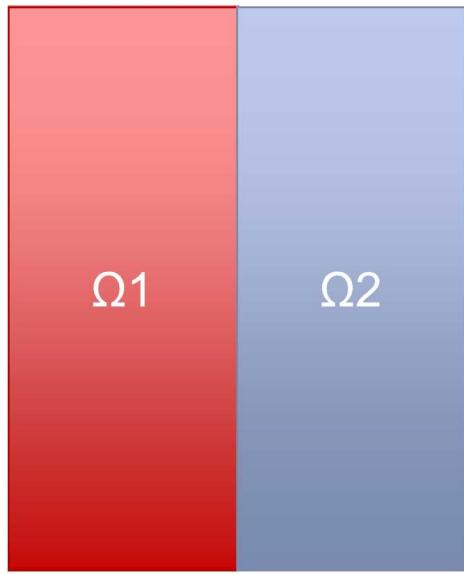
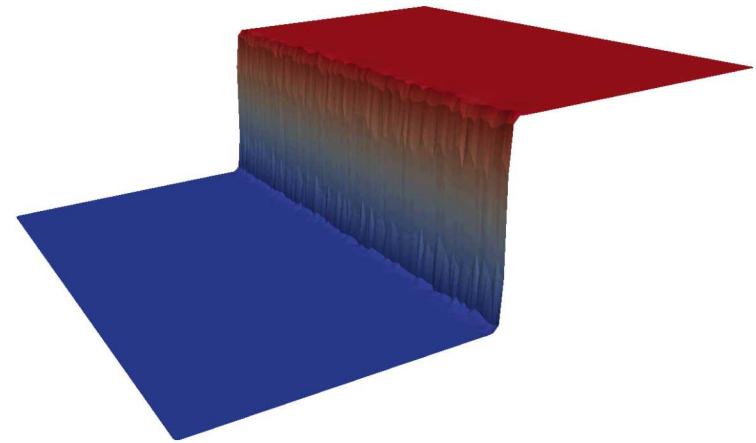
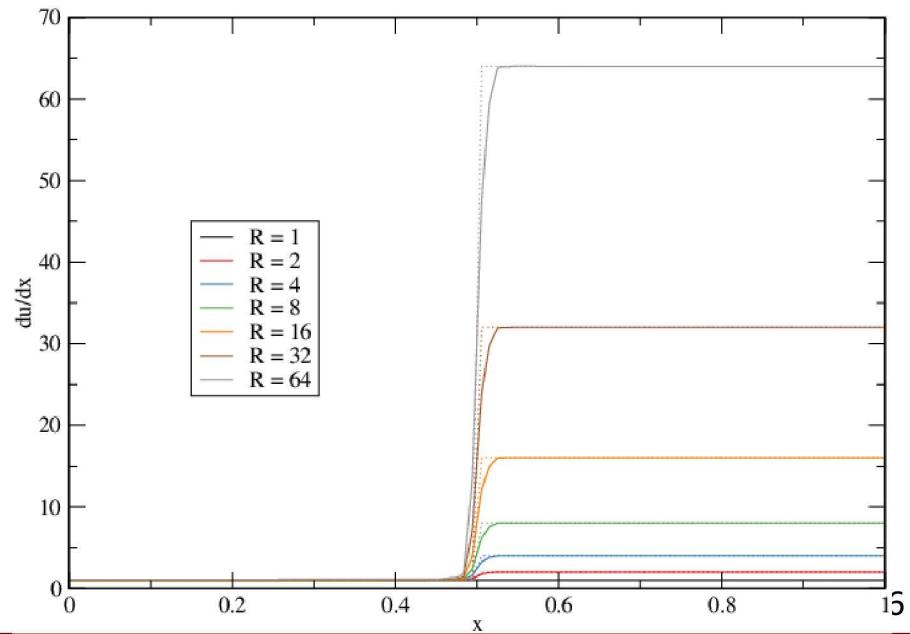
$$\mathbf{F} = \lambda (\nabla \cdot \mathbf{u}) \mathbf{I} + \mu (\nabla \mathbf{u} + \nabla \mathbf{u}^\top)$$

All problems will be shown for discontinuous material properties to highlight flux continuity of approach.

Darcy: jumps in material properties

$$[\kappa \nabla \phi \cdot \mathbf{n}] = 0$$

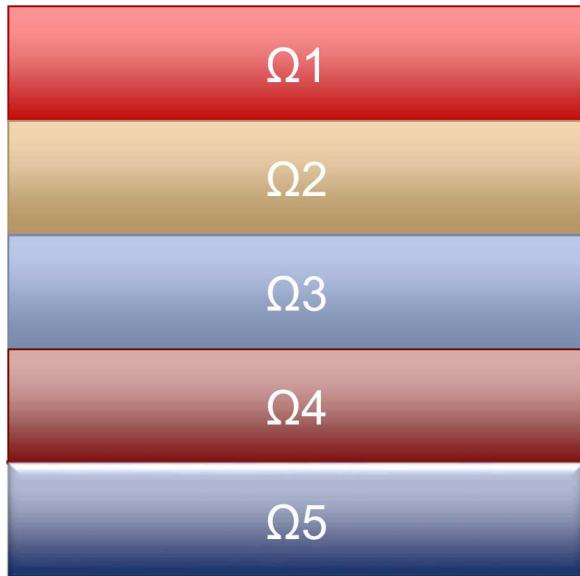
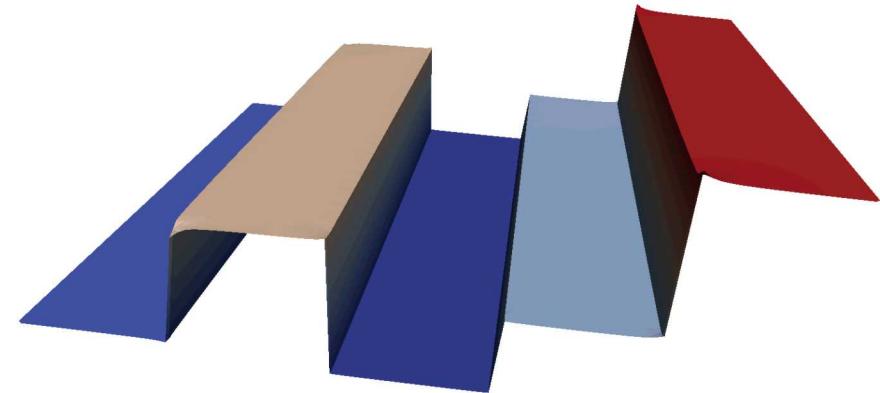
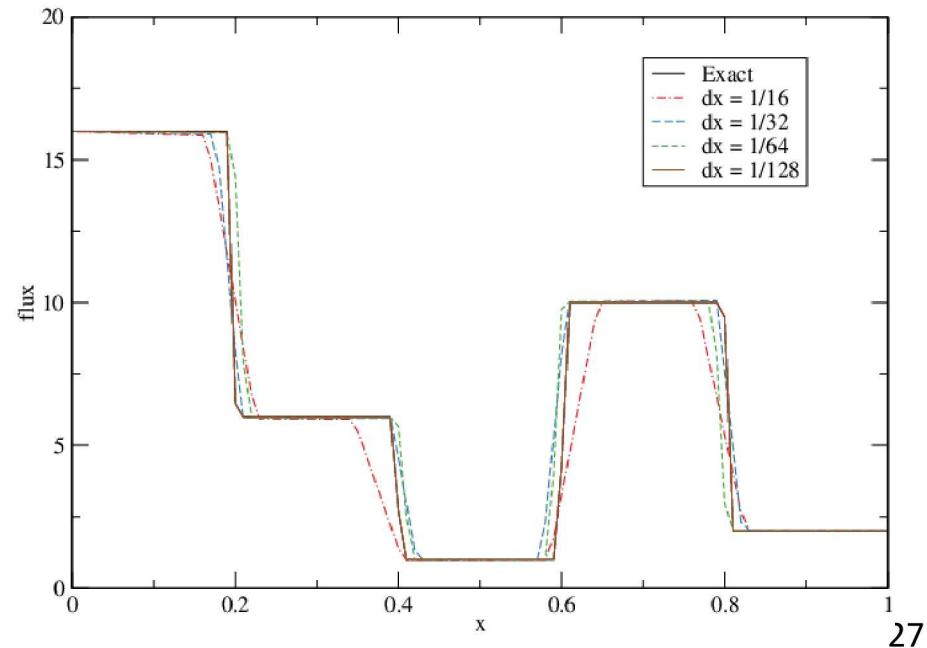
$$\nabla \phi \rightarrow$$



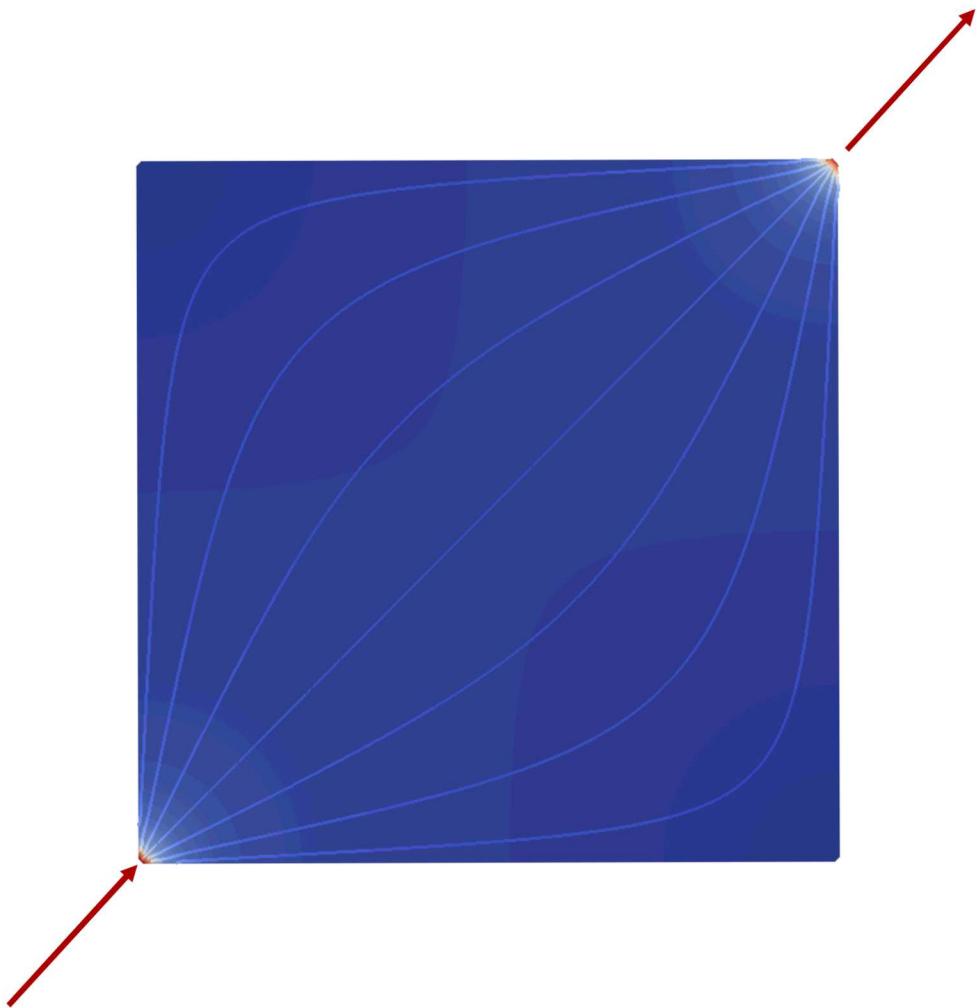
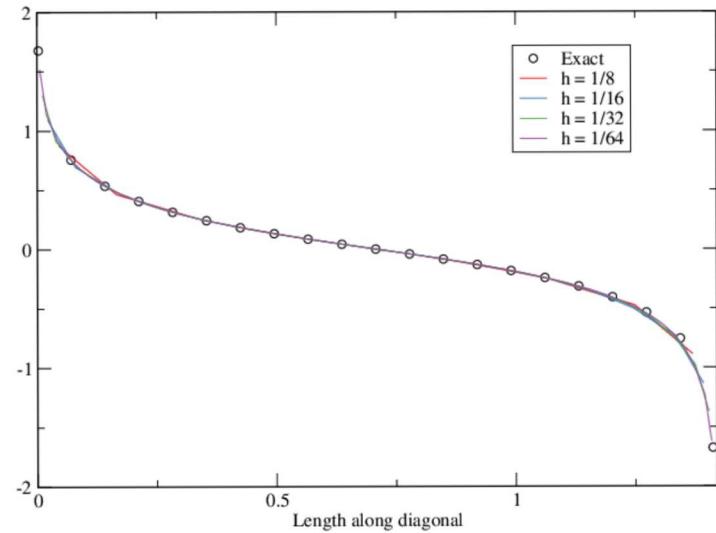
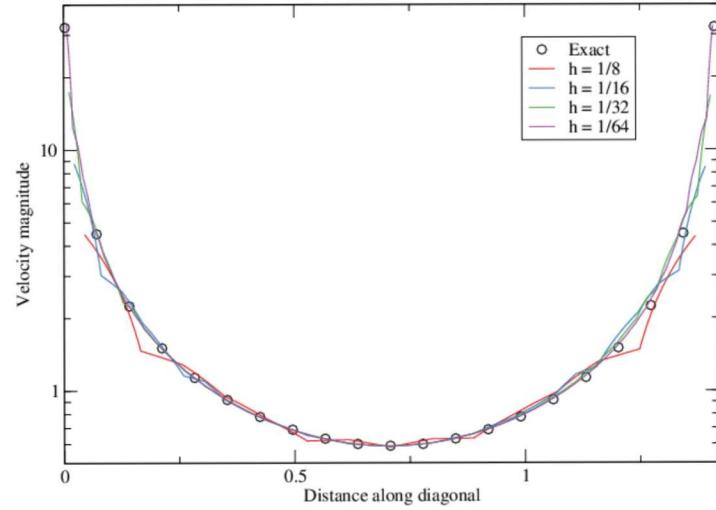
Darcy: jumps in material properties

$$[\kappa \nabla \phi \cdot \mathbf{n}] = 0$$

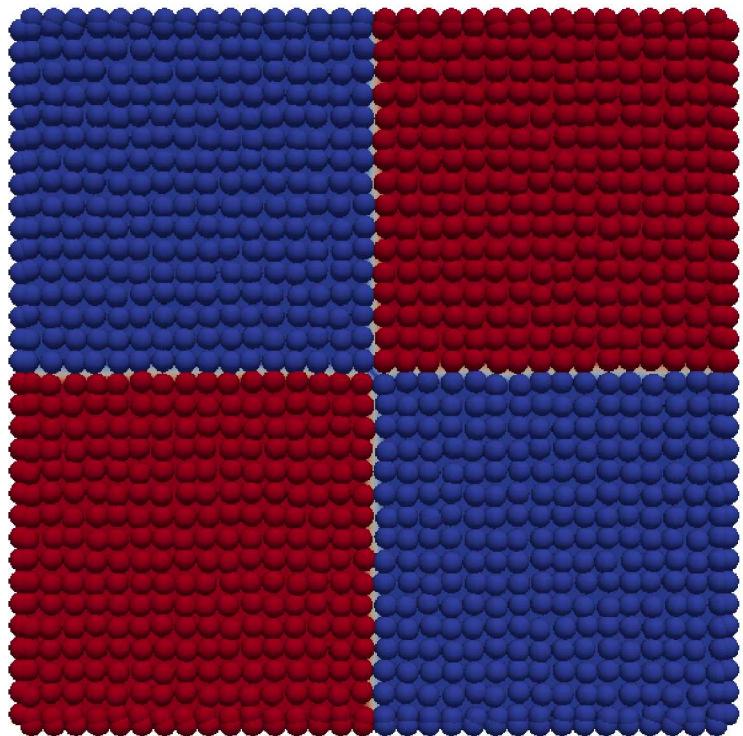
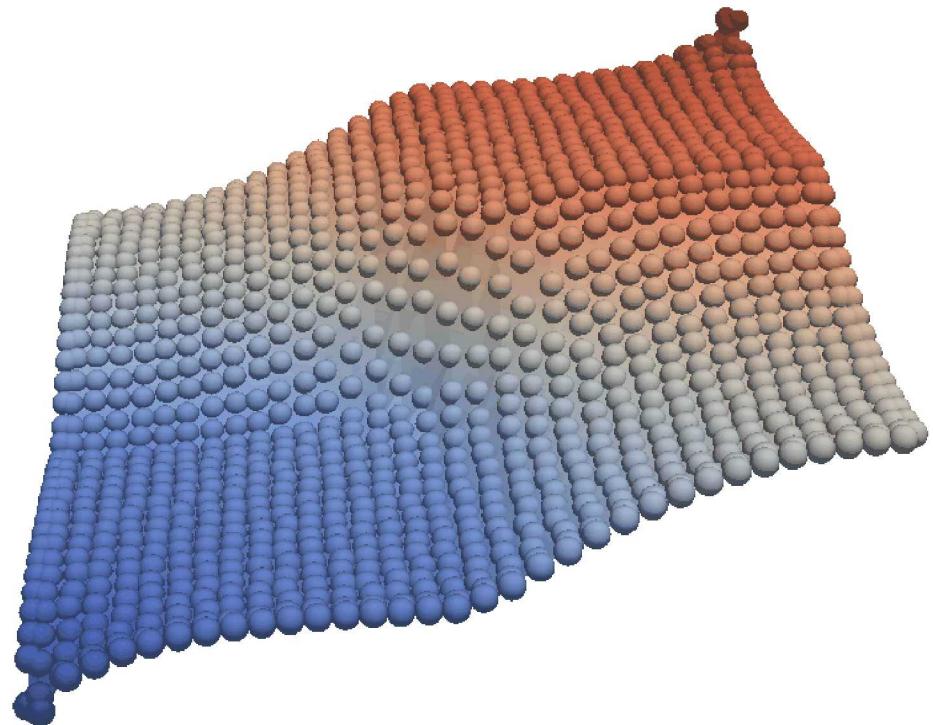
$$\nabla \phi \rightarrow$$



Darcy: 5-spot problem

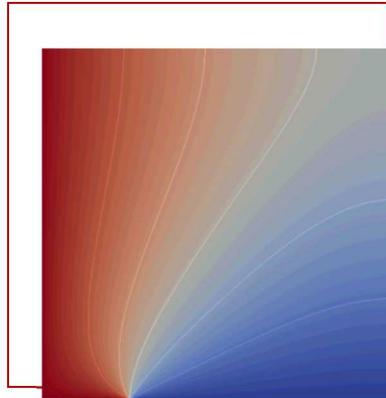
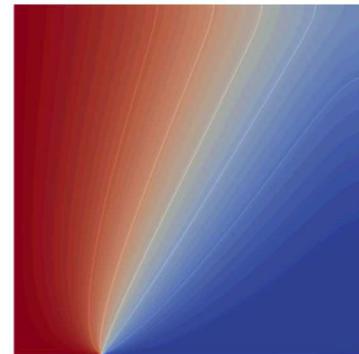
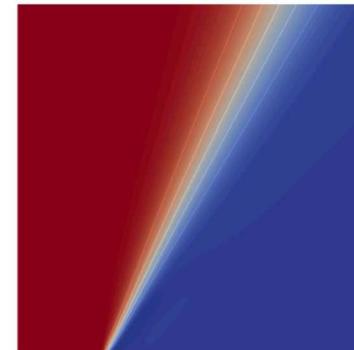


Darcy 5-spot problem



Singularly perturbed advection diffusion

$$\hat{\mathbf{n}} \cdot \nabla \phi = 0$$



$$\phi \equiv 0$$

$$\text{Pe}=1$$

$$\text{Pe}=10$$

$$\text{Pe}=100$$

$$\frac{\partial}{\partial t} \phi + \nabla \cdot \mathbf{F} = 0$$

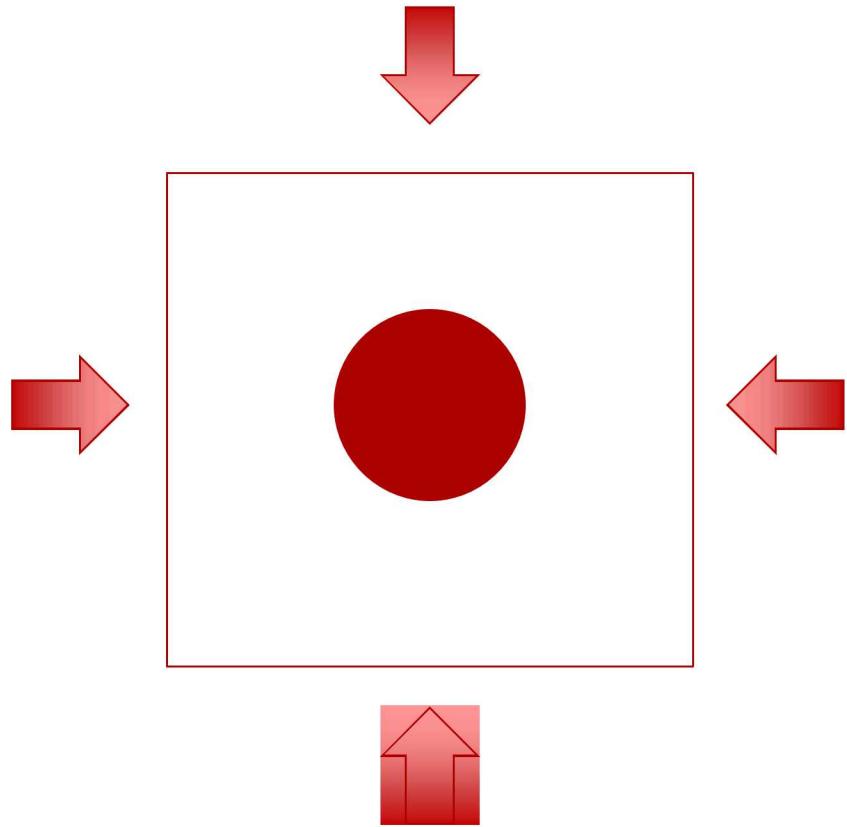
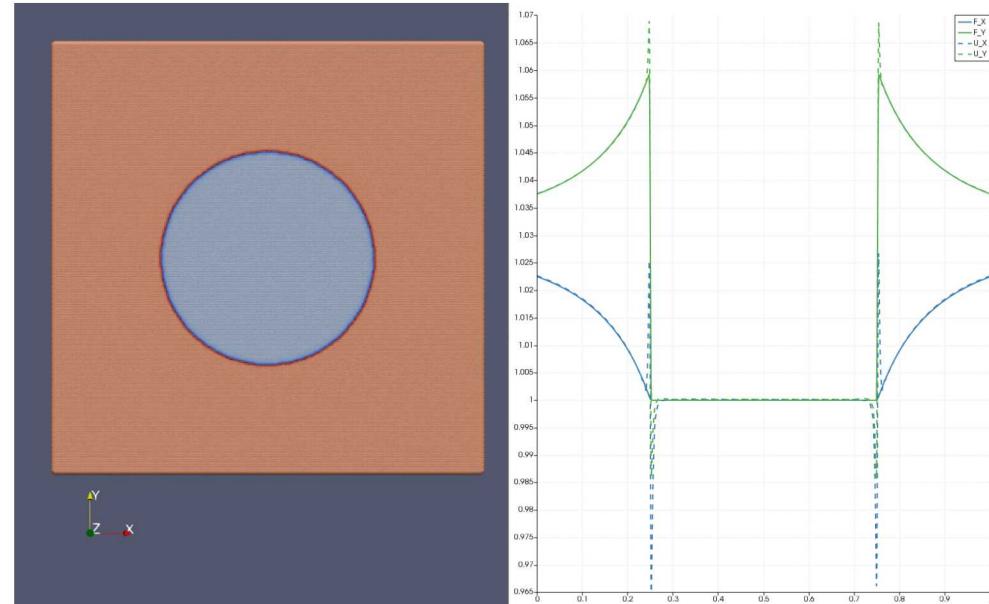
$$\mathbf{F} = \mathbf{a}\phi - \epsilon \nabla \phi$$

Single timestep

$$Co \in \{1, 10, 100, 1000, \infty\}$$

demonstrating L-stability

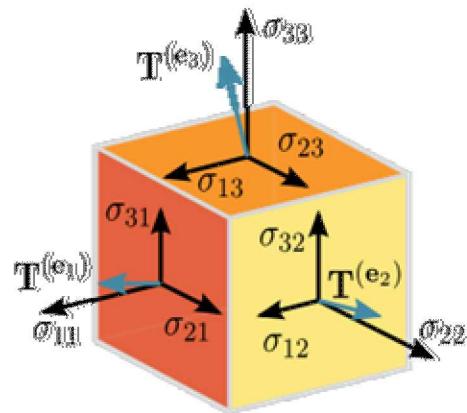
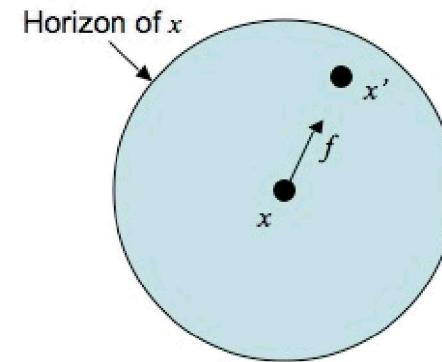
Linearly elastic composite materials



$$[\sigma \cdot \mathbf{n}] = 0$$

Talk part 2: Non-local models for the mesoscale

Peridynamics – a continuum theory based on integrals instead of derivatives



$$\rho \ddot{\mathbf{u}}(x) = \nabla \cdot \sigma(\mathbf{u})$$

$\sigma(\mathbf{u})$ - stress tensor

$$\rho \ddot{\mathbf{u}}(x) = \int \mathbf{f}(\mathbf{u}(\mathbf{y})) - \mathbf{f}(\mathbf{u}(\mathbf{x})) d\mathbf{y}$$

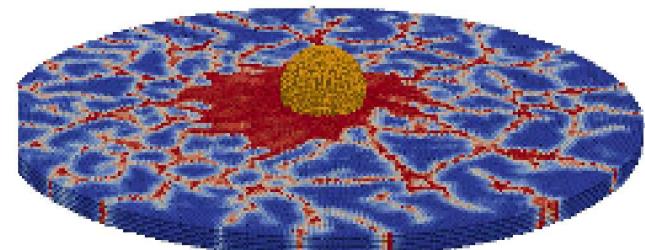
$\mathbf{f}(\mathbf{u})$ - force state

Target application: non-local fracture mechanics

Local mechanics: Natural setting $\mathbf{u} \in H^1$

$$\rho(\mathbf{x}) \frac{d^2}{dt^2} \mathbf{u}(\mathbf{x}) = \mathcal{L}[\mathbf{u}](\mathbf{x})$$

$$\mathcal{L}[\mathbf{u}](\mathbf{x}) = \frac{3K}{8} (\nabla^2 \mathbf{u} + \nabla \nabla \cdot \mathbf{u})$$



Non-local mechanics: Natural setting $\mathbf{u} \in L^2$

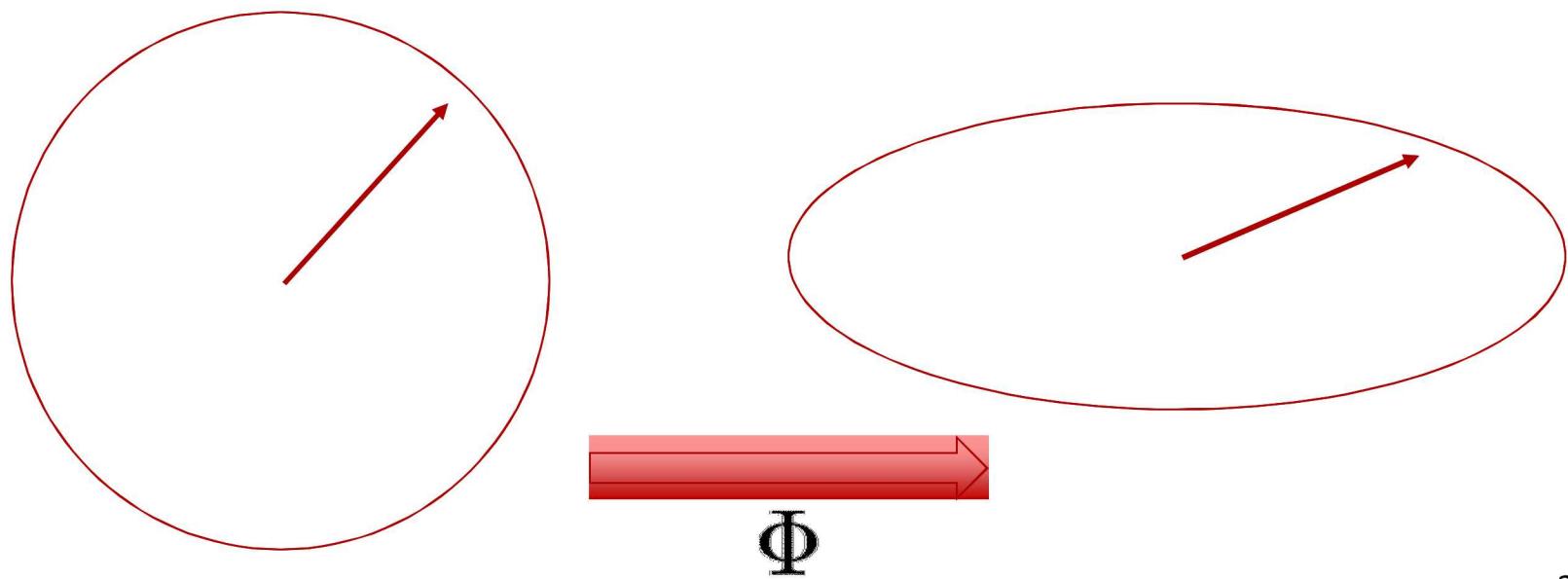
$$\rho(\mathbf{x}) \frac{d^2}{dt^2} \mathbf{u}^\delta(\mathbf{x}) = \mathcal{L}^\delta[\mathbf{u}](\mathbf{x})$$

$$\mathcal{L}^\delta[\mathbf{u}](\mathbf{x}) = \int_{B(\mathbf{x}, \delta)} c \frac{\boldsymbol{\xi} \otimes \boldsymbol{\xi}}{\|\boldsymbol{\xi}\|^3} (\mathbf{u}^\delta(\mathbf{y}) - \mathbf{u}^\delta(\mathbf{x})) \, d\mathbf{y}$$

In contrast to classical techniques, no need for enrichment/tracking of free surfaces/etc

Where do these models come from?

- **Ansatz:** Assume a functional form for pairwise interactions
 - **Ex:** Bond-based peridynamics
 - Assume elastic response analogous to Hooke's law
 - Force state is proportional to displacement from reference configuration
 - By calculating strain energy, may relate stiffness to classical local properties



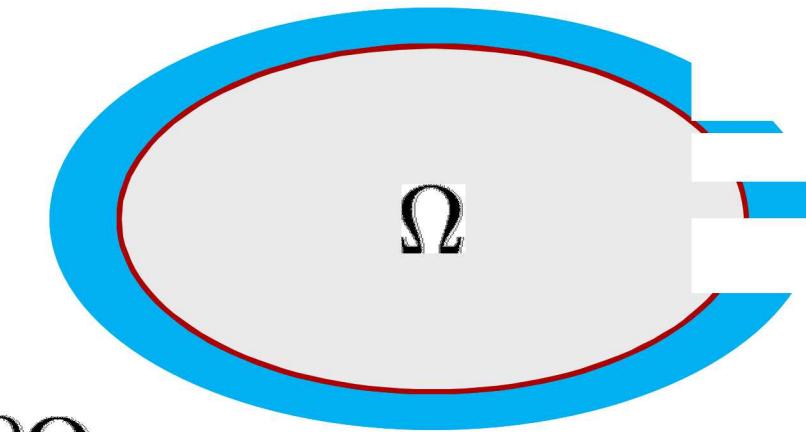
Non-local setting and notation

Consider a family of integral equations of the form:

$$\mathcal{L}_\delta[u](\mathbf{x}) = \int_{\mathbb{R}^d} K(\mathbf{x}, \mathbf{y}) u(\mathbf{y}) d\mathbf{y} = \mathbf{f}(\mathbf{x})$$

$$supp(K(x, \cdot)) = B_\delta(\mathbf{x})$$

$$K(\mathbf{x}, \mathbf{y}) = \frac{n(\mathbf{x}, \mathbf{y})}{|\mathbf{y} - \mathbf{x}|^\alpha}, \text{ where } n(\mathbf{x}, \mathbf{y}) \leq C_n$$



$$\Omega^\delta = \bigcup_{\mathbf{x} \in \Omega} B(\mathbf{x}, \delta)$$

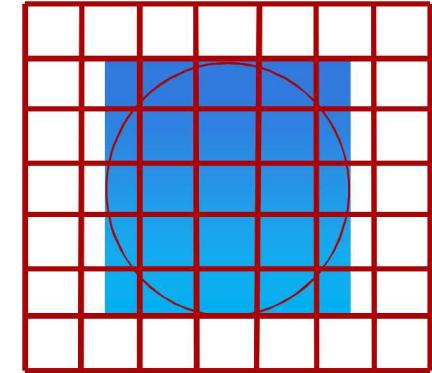
$$\partial^\delta \Omega = \Omega^\delta \setminus \Omega$$

Motivation: non-local quadrature on mesh

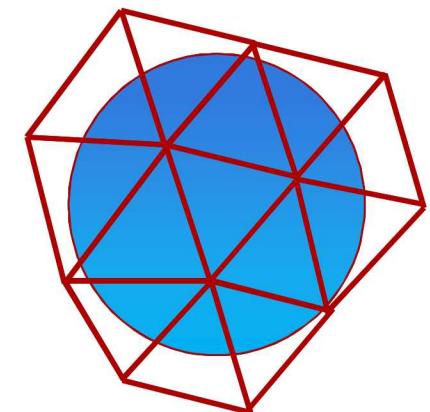
Define quadrature rule:

$$\mathcal{L}_\delta[u](\mathbf{x}) = \int_{B(\mathbf{x}, \delta)} K(\mathbf{x}, \mathbf{y}) u(\mathbf{y}) d\mathbf{y}$$

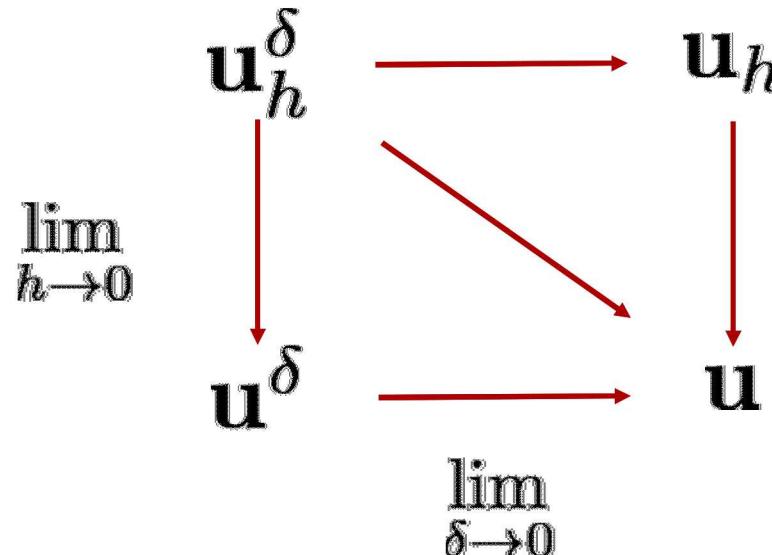
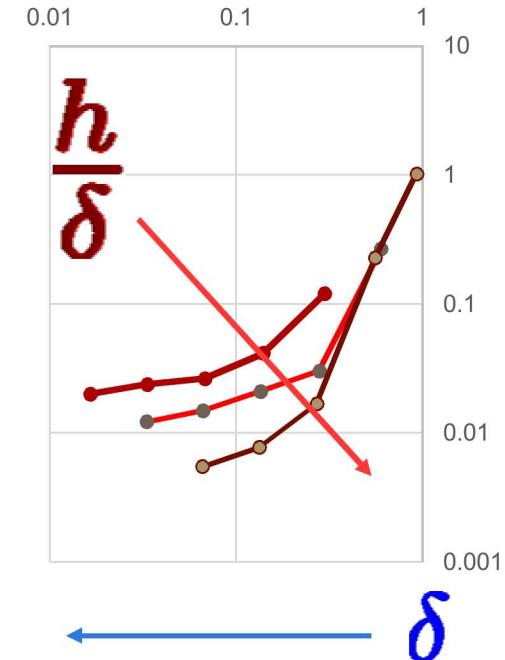
$$\mathcal{L}_\delta^h[u](\mathbf{x}_i) = \sum_{\mathbf{x}_j \in \mathbf{X}_q \subset B(\mathbf{x}_q, \delta)} K(\mathbf{x}_i, \mathbf{x}_j) u(\mathbf{x}_j) \omega_j$$



- Challenges in finite element setting:
 - Costly geometric intersection
 - Singularity in non-local kernel – **particularly hard on unstructured meshes**



Asymptotically compatible discretization



**Seek a discretization that recovers local solution
as nonlocal + local length scales both tend to
zero at same rate**

Meshfree generation of quadrature rules on balls

$$I[f] \approx I_h[f] = \sum_j f_j \omega_j$$

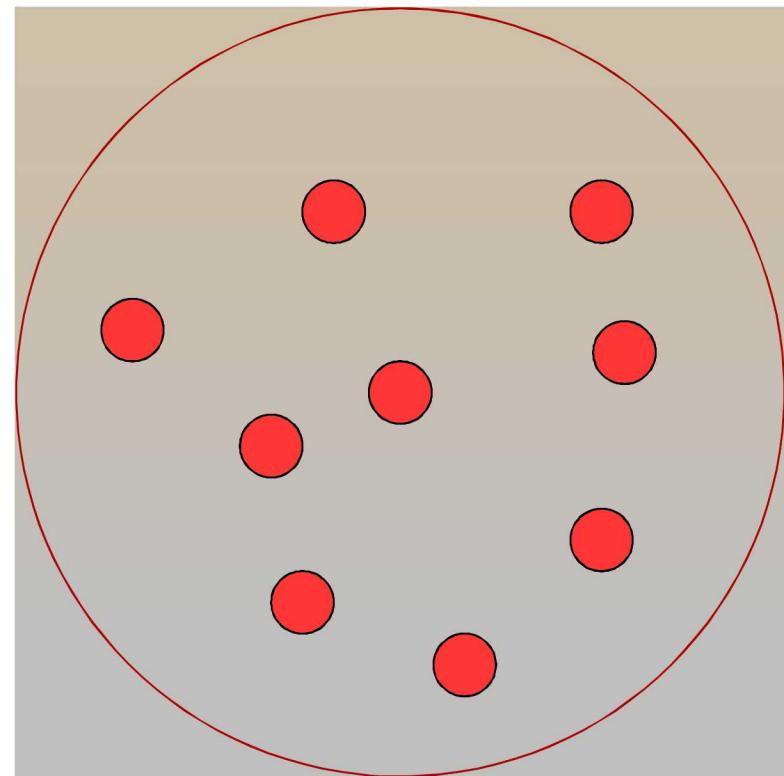
$$\underset{\omega}{\text{minimize}} \sum_j \omega_j^2$$

subject to

$$I[f] = \sum_j f_j \omega_j, \forall p \in \mathbf{V}$$

where

$$I[f] = \int_{B(x, \delta)} f dx$$



Idea:

- Construct rule just like Gauss quadrature
- Requires knowledge of how to integrate against each member of reproducing set

Singular integrals

- As reproducing space, select polynomials + integrand of operator

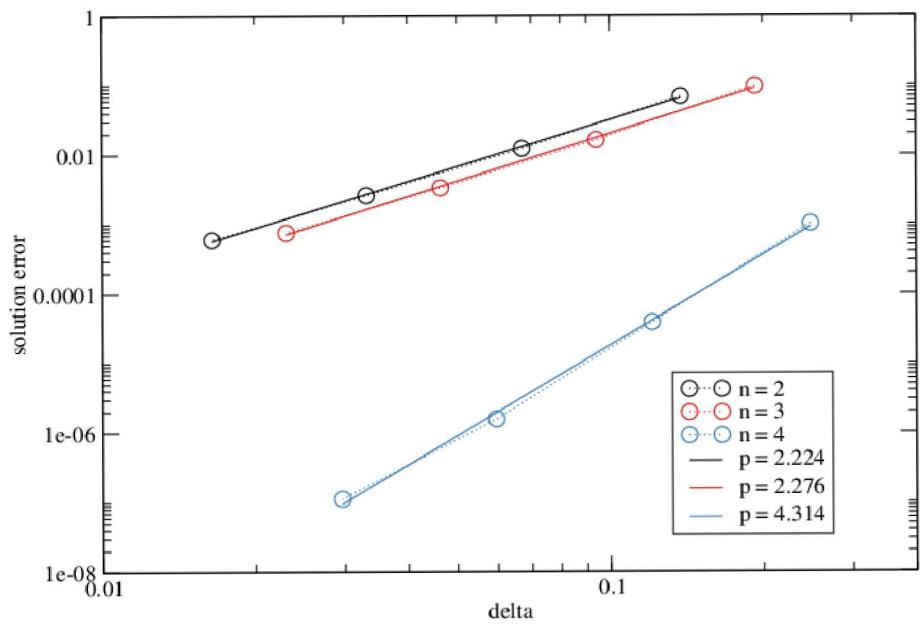
$$\mathbf{V}_h = P_m \cup S_{K,n,\mathbf{x}}, \text{ where}$$

$$S_{K,n,\mathbf{x}} := \{K(\mathbf{x}, \mathbf{y})f(\mathbf{y}) \mid f \in P_n\}$$

Theorem. Consider for fixed \mathbf{x} a kernel of the form $K(\mathbf{x}, \mathbf{y}) = \frac{n(\mathbf{x}, \mathbf{y})}{|\mathbf{y} - \mathbf{x}|^\alpha}$, where the numerator n satisfies $n(\mathbf{x}, \mathbf{y}) \leq C_n$ for all $\mathbf{y} \in B(\mathbf{x}, \delta)$. A set of quadrature weights obtained from the GMLS process with the choice of $\mathbf{V}_h = P_m \cup S_{K,n,\mathbf{x}}$ for $u \in C^m$ and $m > n$ satisfies the following pointwise error estimate, with $C > 0$ independent of the particle arrangement.

$$\left| \int_{B(\mathbf{x}, \delta)} K(\mathbf{x}, \mathbf{y})u(\mathbf{y})d\mathbf{y} - \sum_{j \in \mathbf{X}_q} K(\mathbf{x}, \mathbf{x}_j)u_j\omega_j \right| \leq C\delta^{n-\alpha+d+1}$$

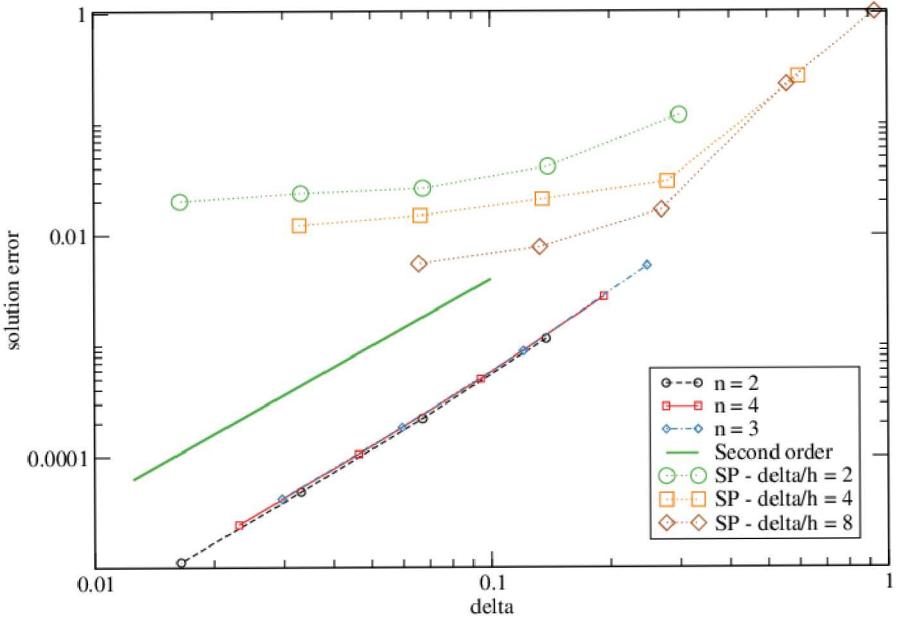
Manufactured solution to BVP



$$u_h^\delta \rightarrow u^\delta$$

$$-c \sum_{j \in B(\mathbf{x}_i, \delta)} K_{ij} (\mathbf{u}_j - \mathbf{u}_i) \omega_{j,i} = \mathcal{L}^\delta[\mathbf{u}](\mathbf{x}_i)$$

$$\mathbf{u} = \langle \sin x \sin y, \cos x \cos y \rangle$$



$$u_h^\delta \rightarrow u$$

$$\begin{array}{ccc}
 u_h^\delta & \xrightarrow{\quad} & \mathbf{u}_h \\
 \downarrow \lim_{h \rightarrow 0} & \searrow & \downarrow \lim_{h \rightarrow 0} \\
 u^\delta & \xrightarrow{\quad} & \mathbf{u} \\
 \downarrow \lim_{\delta \rightarrow 0} & \nearrow & \downarrow \lim_{\delta \rightarrow 0}
 \end{array}$$

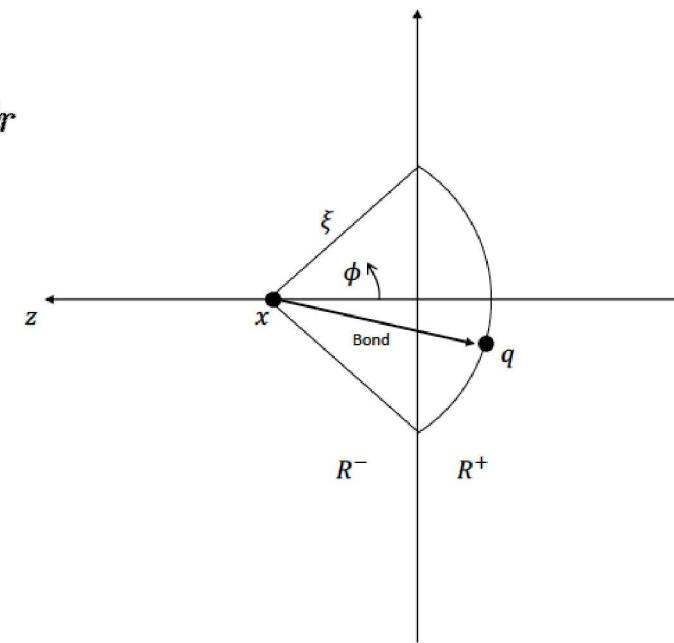
Surface effects + implicit transmission conditions

To calculate effective flux and model boundary conditions, postulate:

$$F[u](\mathbf{x}) = C \int_{\Omega^c \cap B(\mathbf{x}, \delta)} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y}$$

For an infinitesimal area element near half-plane boundary, the nonlocal flux is given by

$$\mathbf{Q}/dA = \int_0^\delta \int_0^r \int_{\cos^{-1}(-z/r)}^{\cos^{-1}(z/r)} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) r d\theta dz dr$$



Damage modelling

Given a pair (i, j) in $B(x_i, \delta)$, associate the state of either broken or unbroken

$$\tilde{\omega}_{j,i} = \begin{cases} \omega_{j,i}, & \text{if bond is unbroken} \\ 0, & \text{if bond is broken.} \end{cases}$$

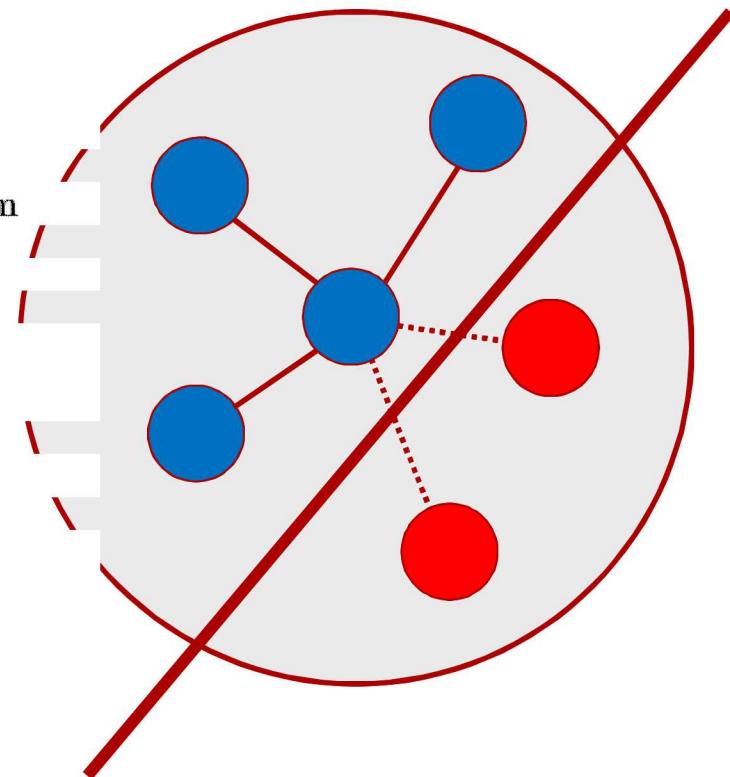
Bonds are either

- Broken as a pre-processing step to introduce a crack to the problem
- Broken over the course of the simulation if the bond strain

$$s = \frac{|\mathbf{u}_j - \mathbf{u}_i| - |\mathbf{x}_j - \mathbf{x}_i|}{|\mathbf{x}_j - \mathbf{x}_i|},$$

Exceeds a damage criteria, e.g. $s > s_0$ where

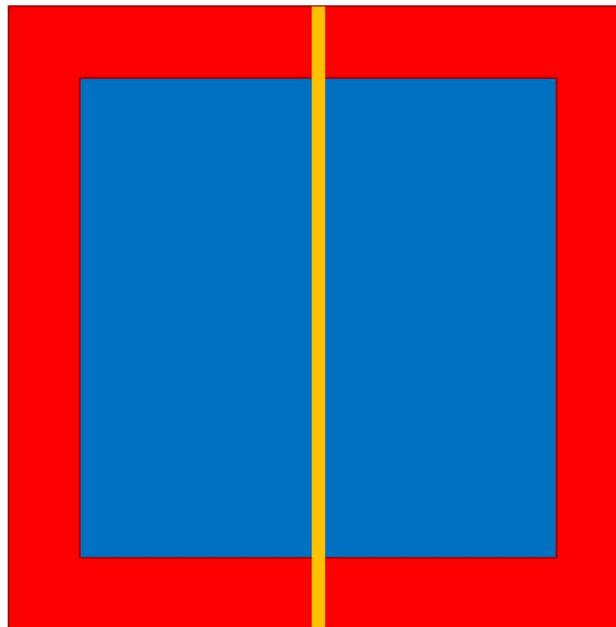
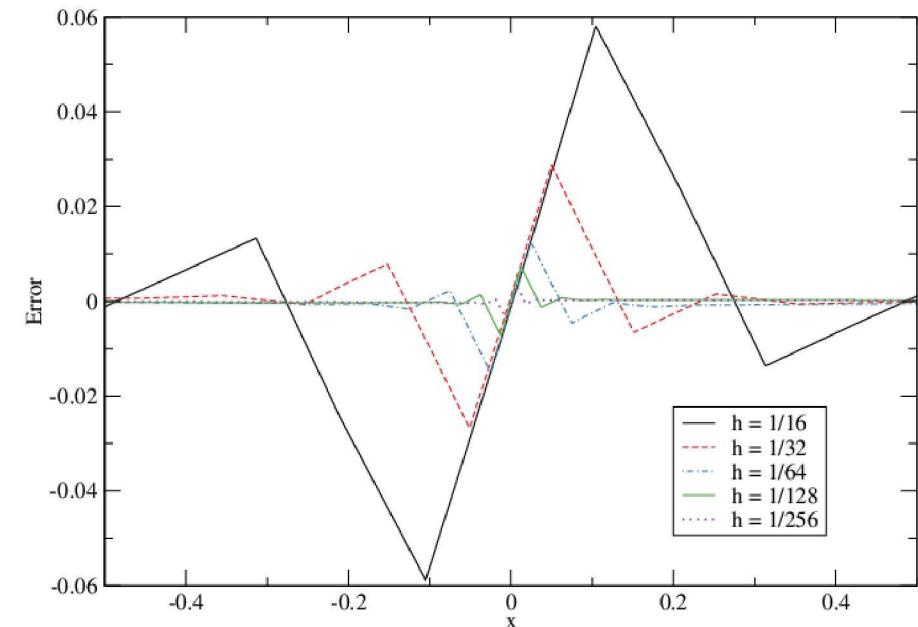
$$s_0 = \begin{cases} \sqrt{\frac{G_c}{\left(\frac{6\mu}{\pi} + \frac{16}{9\pi^2}(\kappa - 2\mu)\right)\delta}}, & d = 2 \\ \sqrt{\frac{G_c}{\left(3\mu + \left(\frac{3}{4}\right)^4\left(\kappa - \frac{5\mu}{3}\right)\right)\delta}}, & d = 3. \end{cases}$$



Asymptotic convergence to local condition

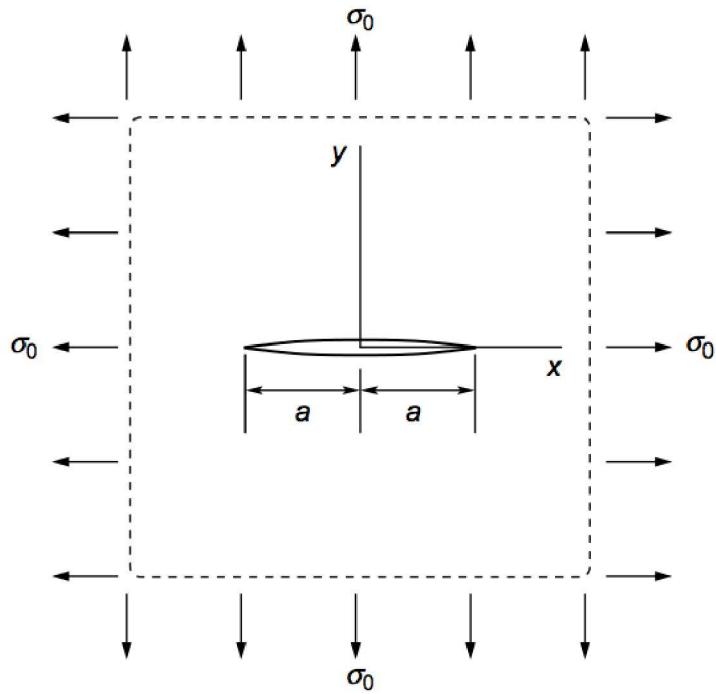
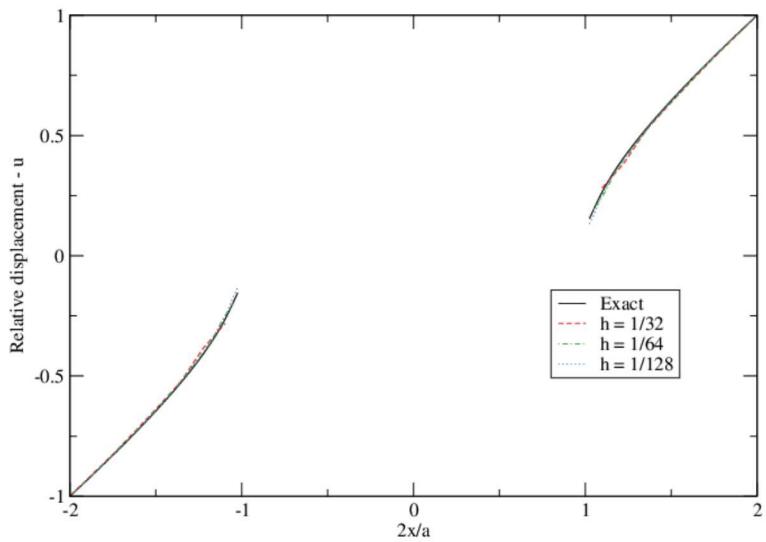
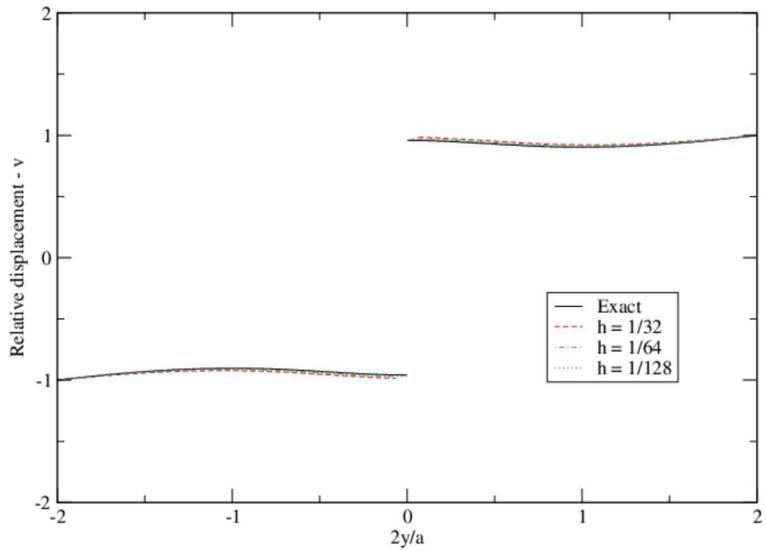
$$\mathbf{u}_{tf} = \langle x + y, -x - 3y \rangle \rangle$$

$$\sigma(u) \cdot \hat{n} = 0$$

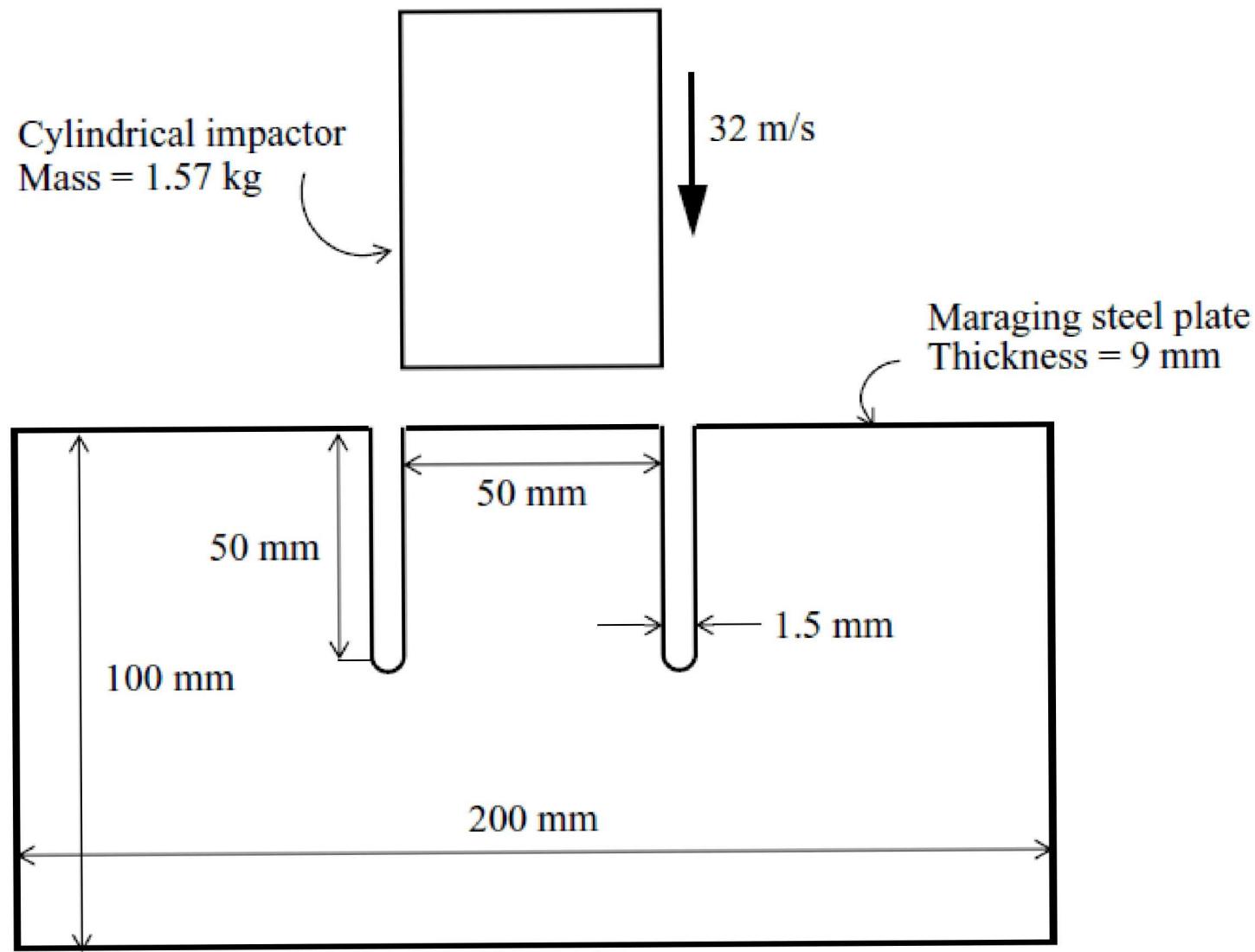


Damage model recovers analytic traction-free local solution as $O(\delta)$.

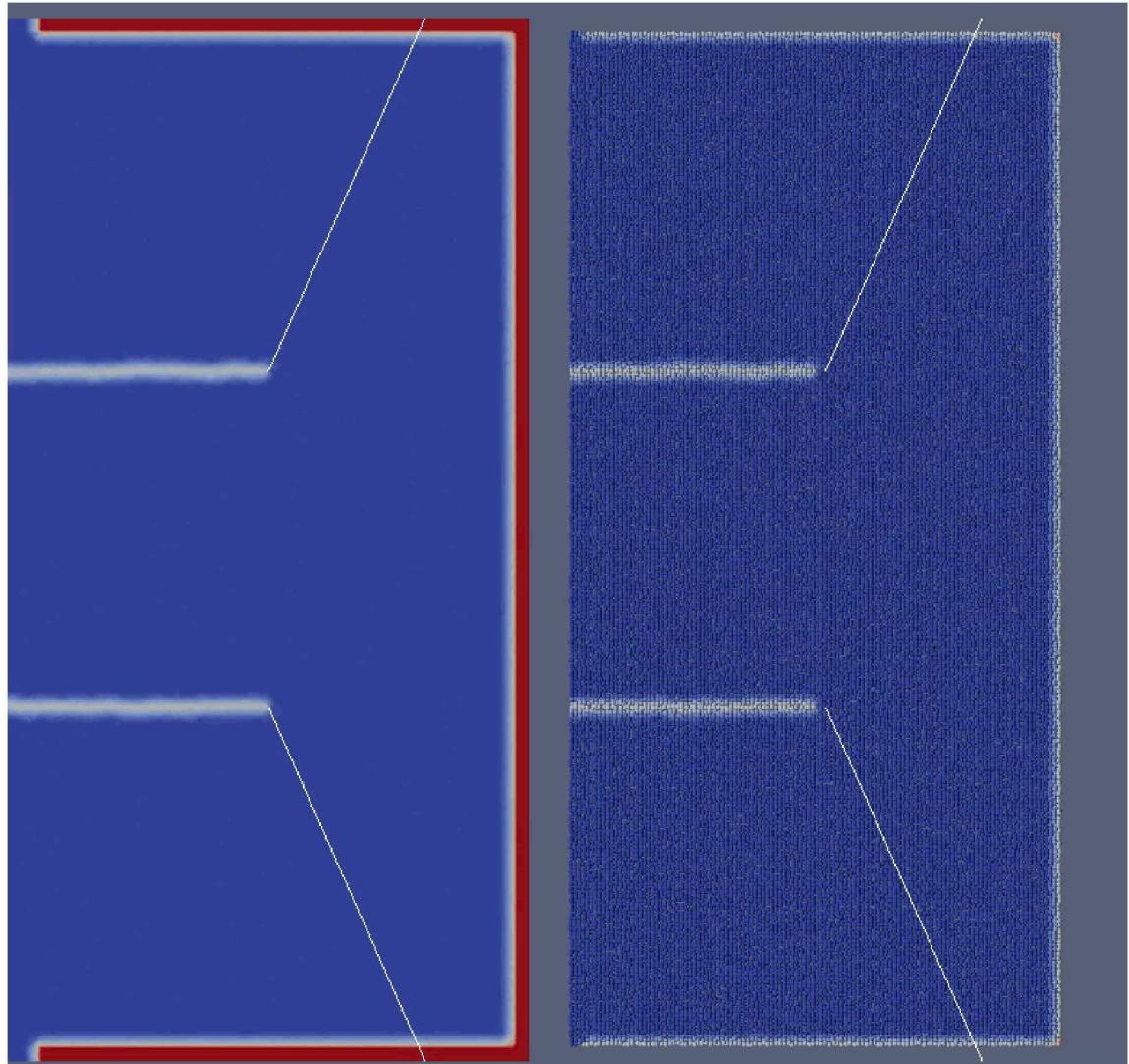
Type-I crack loading



Kalthoff-Winkler experiment

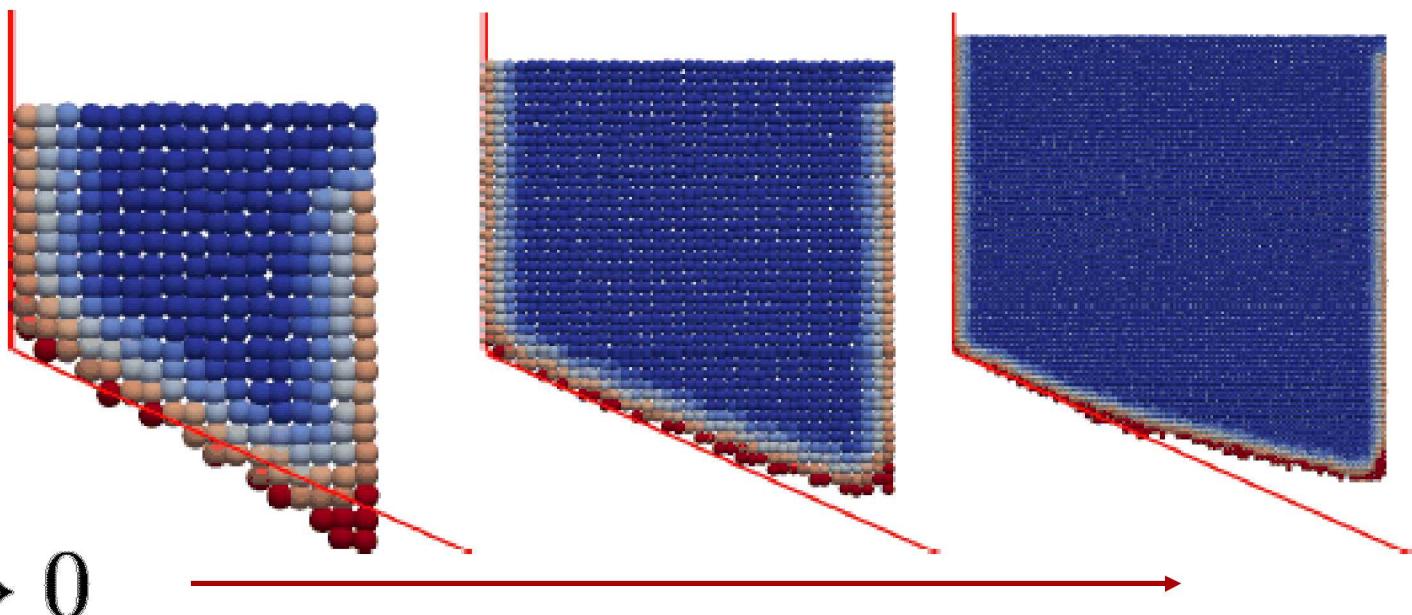


Kalthoff-Winkler experiment



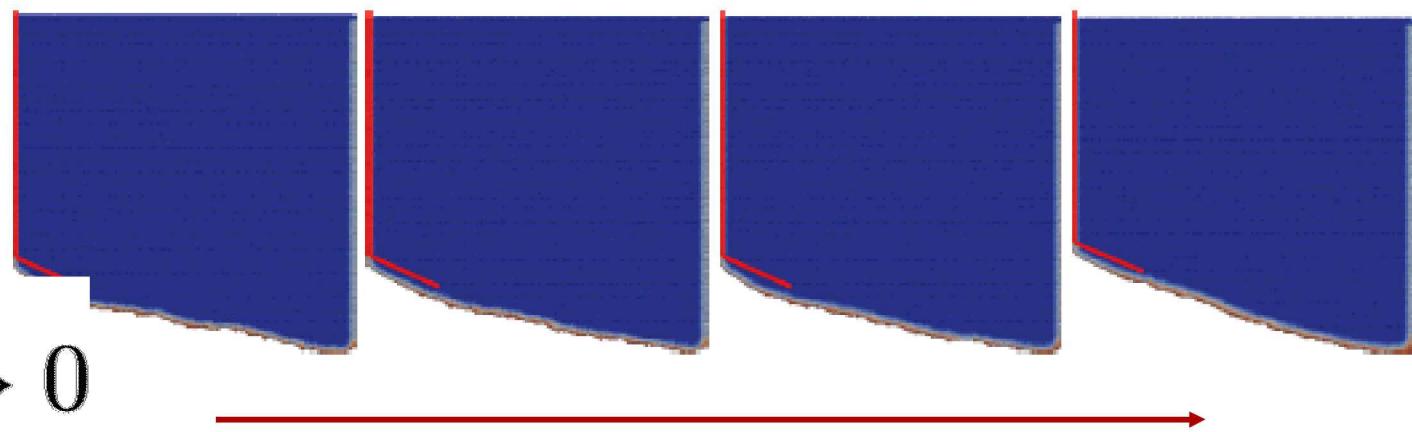
Kalthoff-Winkler experiment

$$\frac{\delta}{h} = 3$$



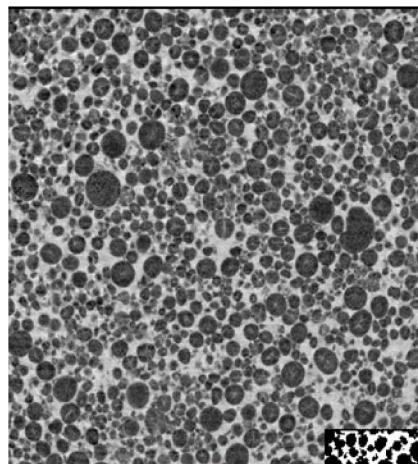
$$h = \frac{1}{256}$$

$$\frac{h}{\delta} \rightarrow 0$$

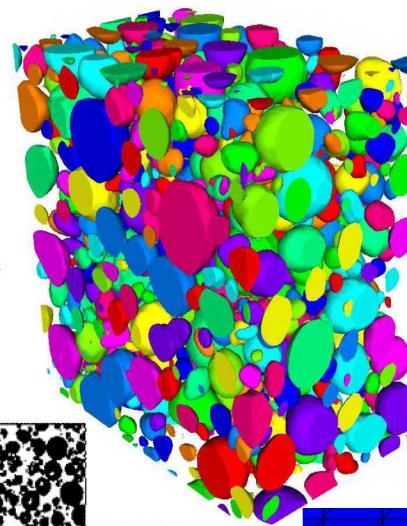


Application driver: Lithiation-induced failure

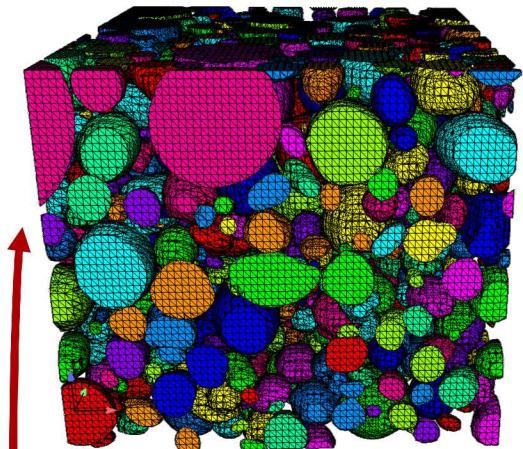
3D Image Data
(X-ray CT)



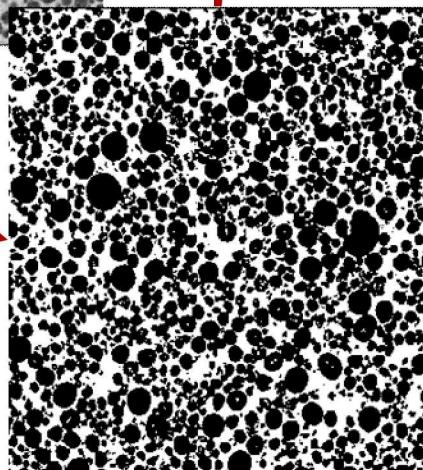
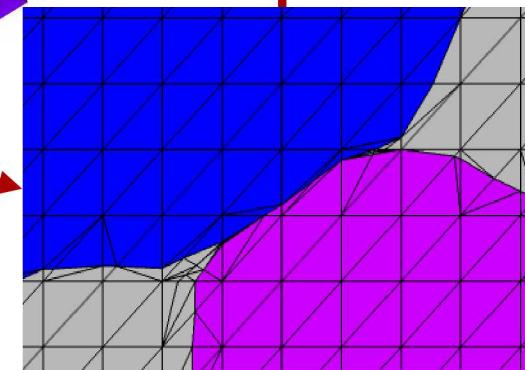
Labeling



Exodus mesh



Segmentation



CDFEM

Diffusion process

$$\nabla \cdot \mathbf{F} = g$$

$$\mathbf{F} = -\kappa \nabla \phi$$

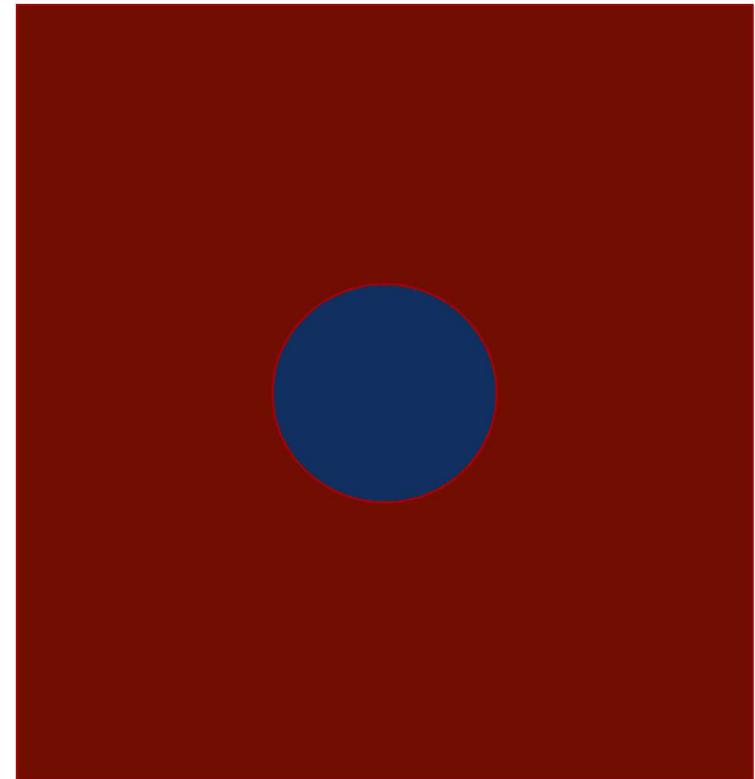
$$[\hat{\mathbf{n}} \cdot \kappa \nabla \phi] = h$$

Mechanics process

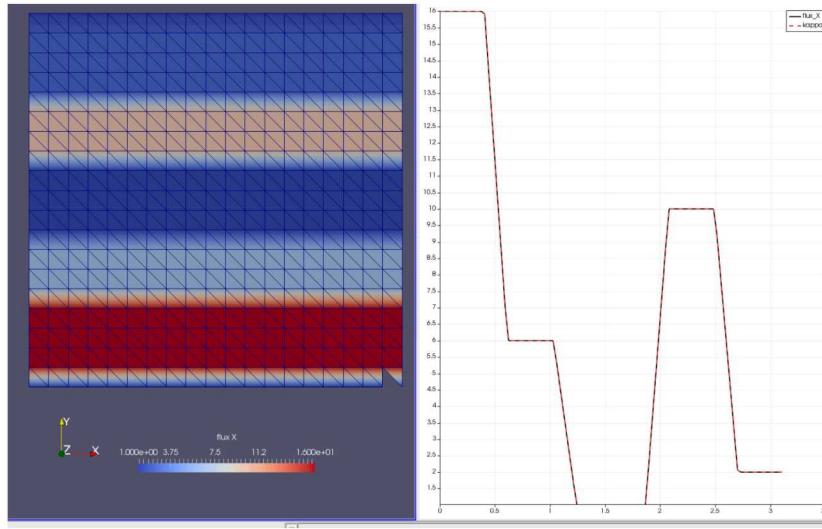
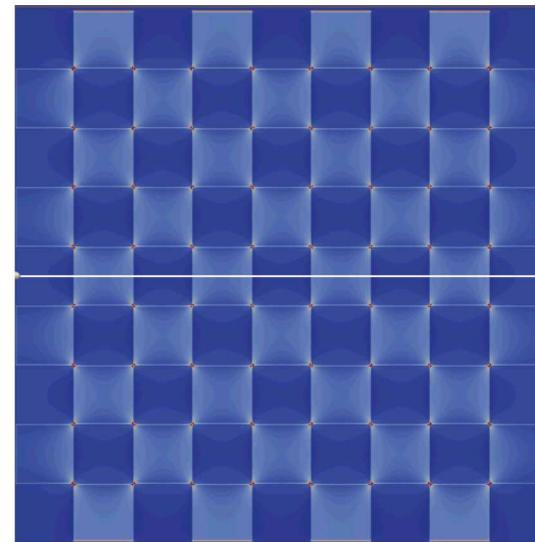
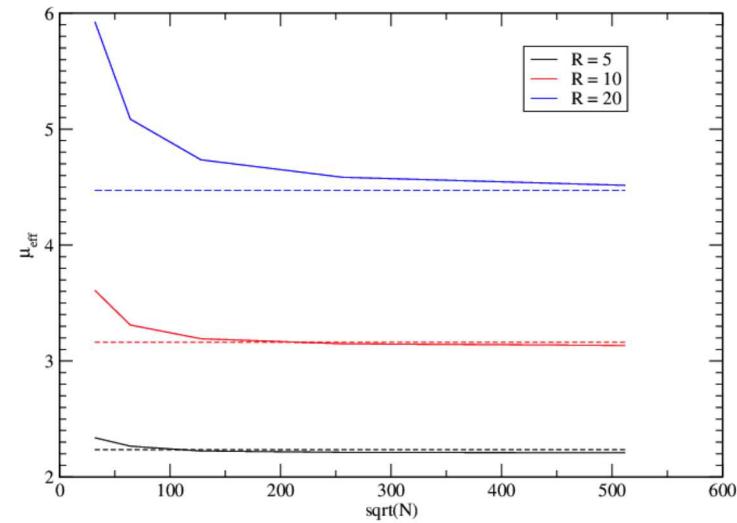
$$\nabla \cdot \boldsymbol{\sigma} = f$$

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}_{mech}(\mathbf{u}) + \epsilon \phi \mathbb{I}$$

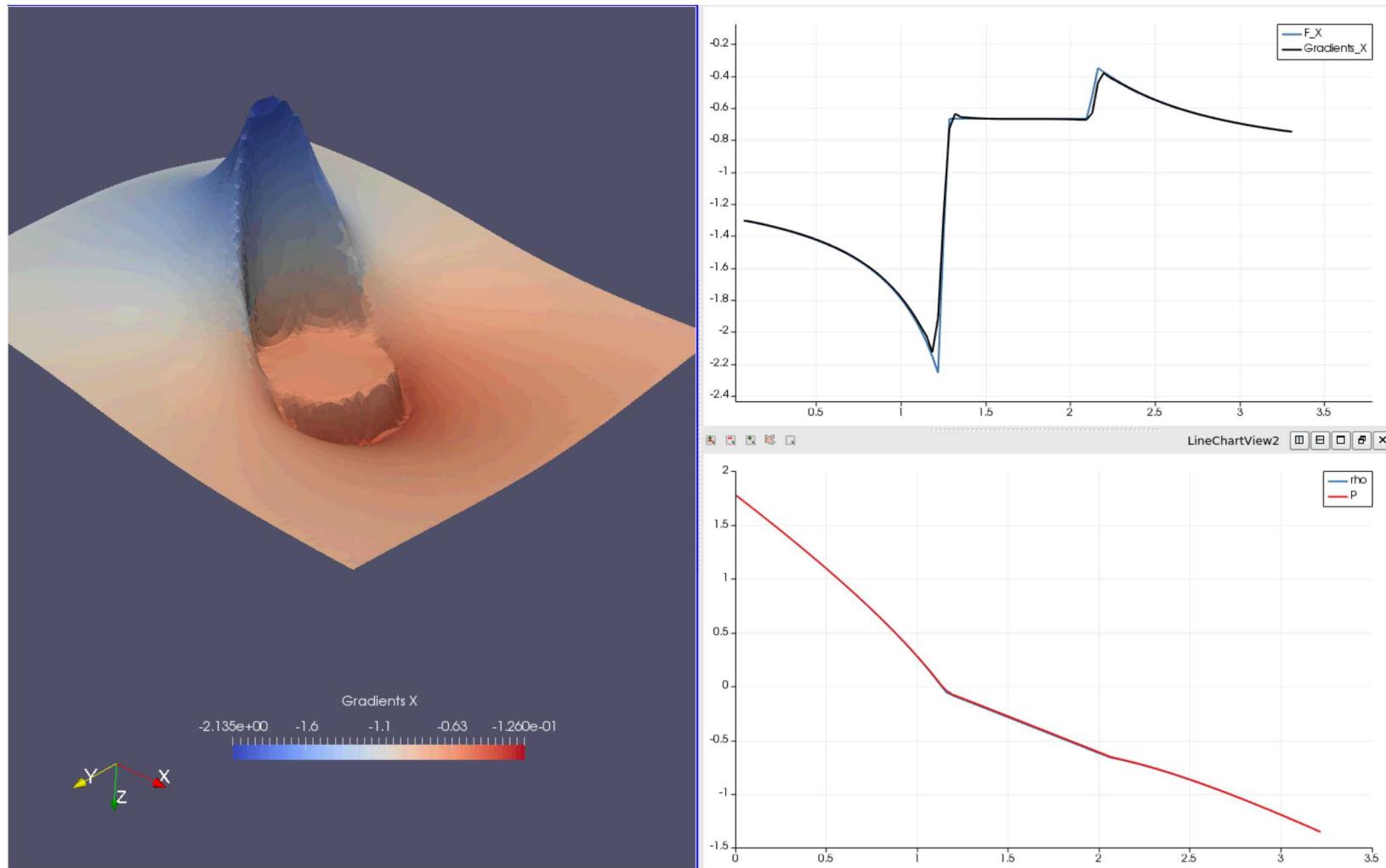
$$\hat{\mathbf{n}} \cdot \boldsymbol{\sigma} = \mathbf{t}$$



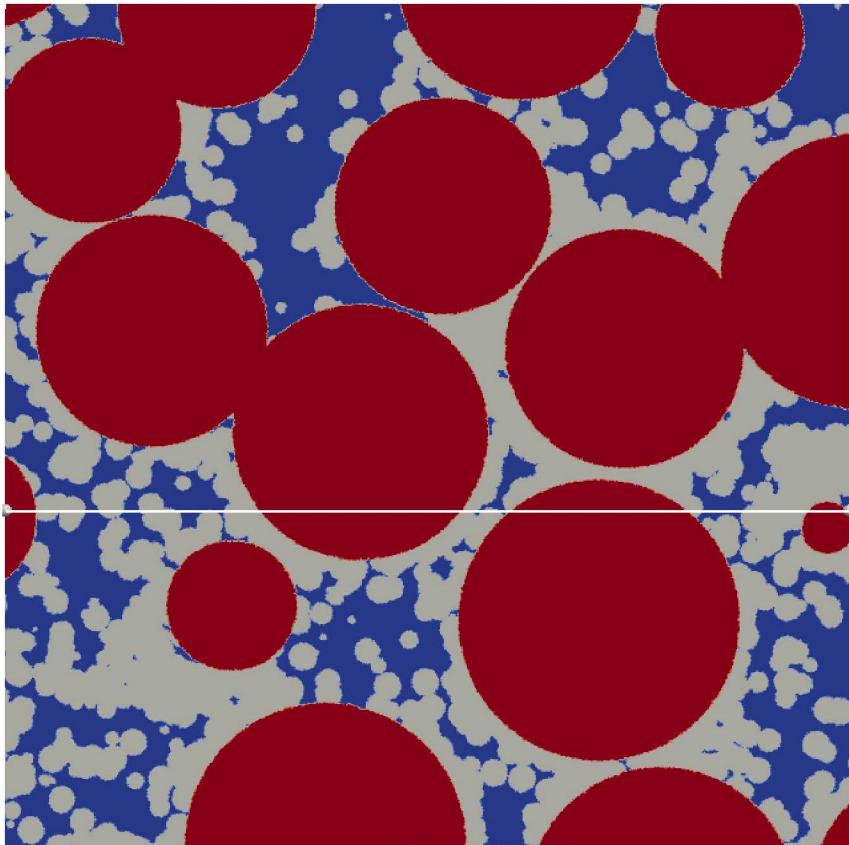
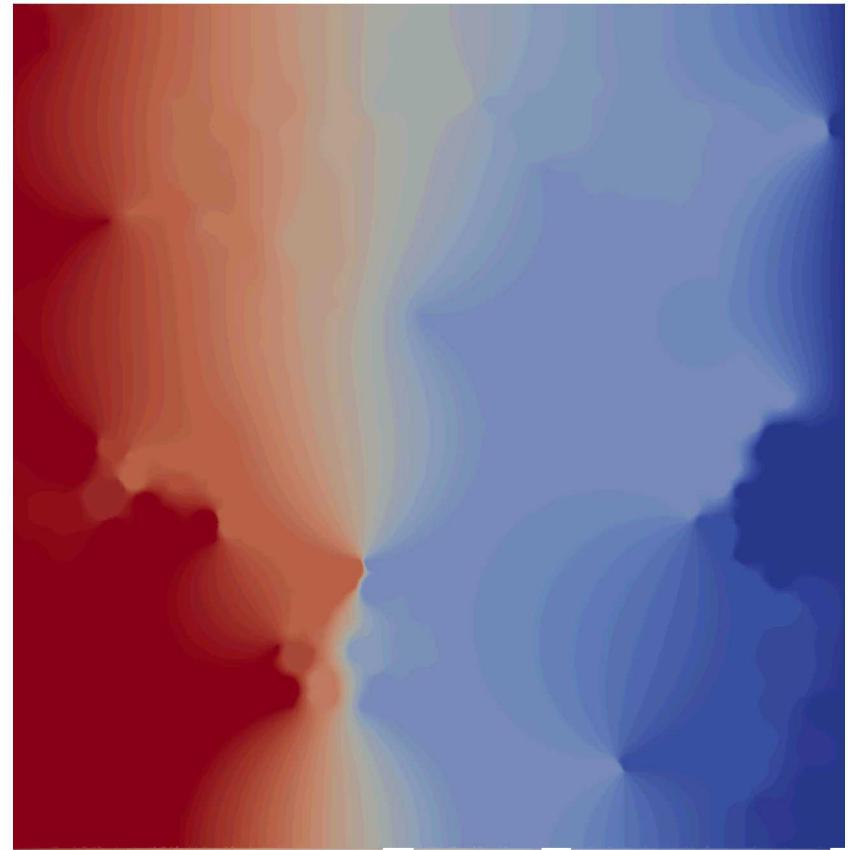
Diffusion for heterogeneous materials



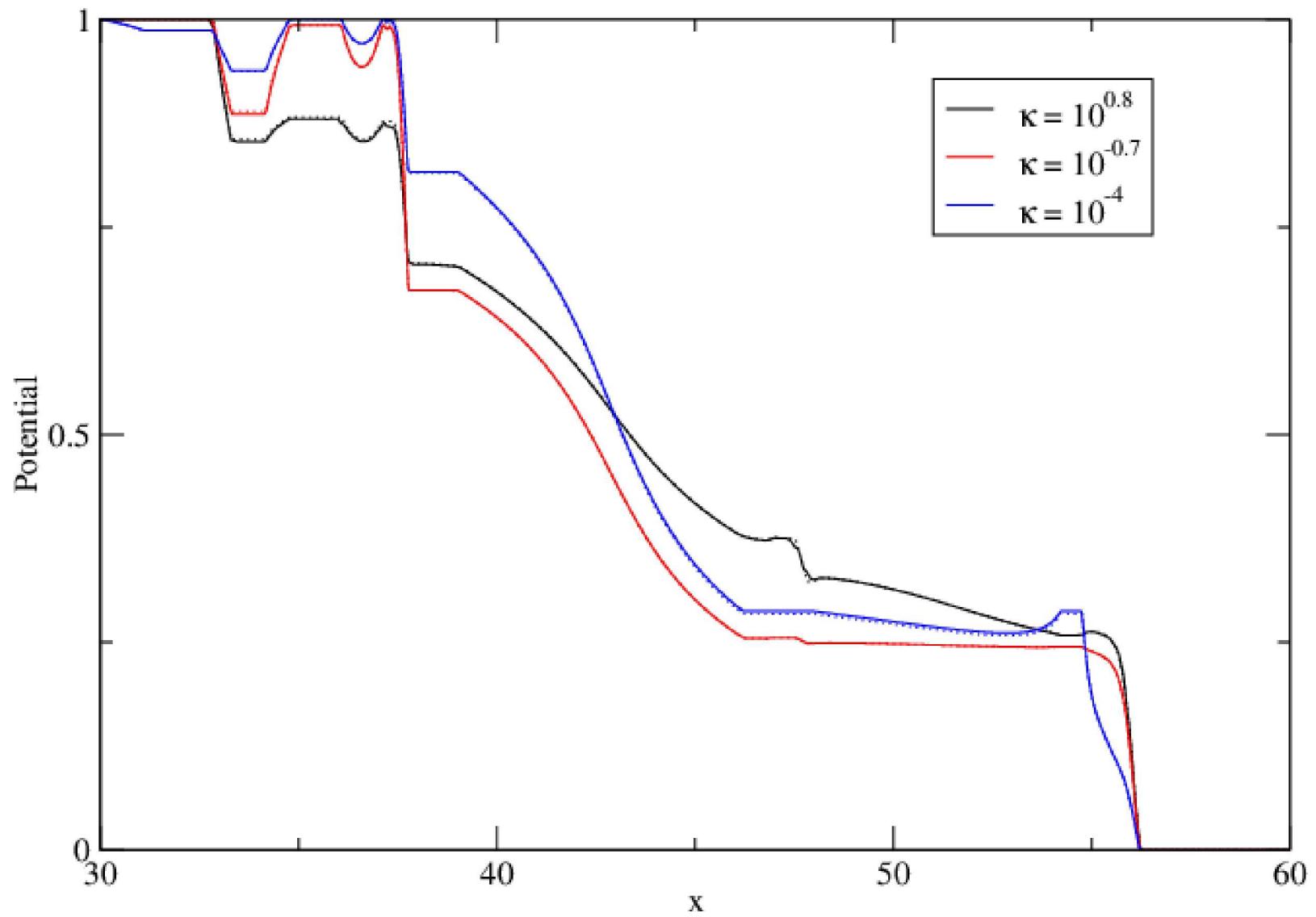
Inhomogeneous flux condition



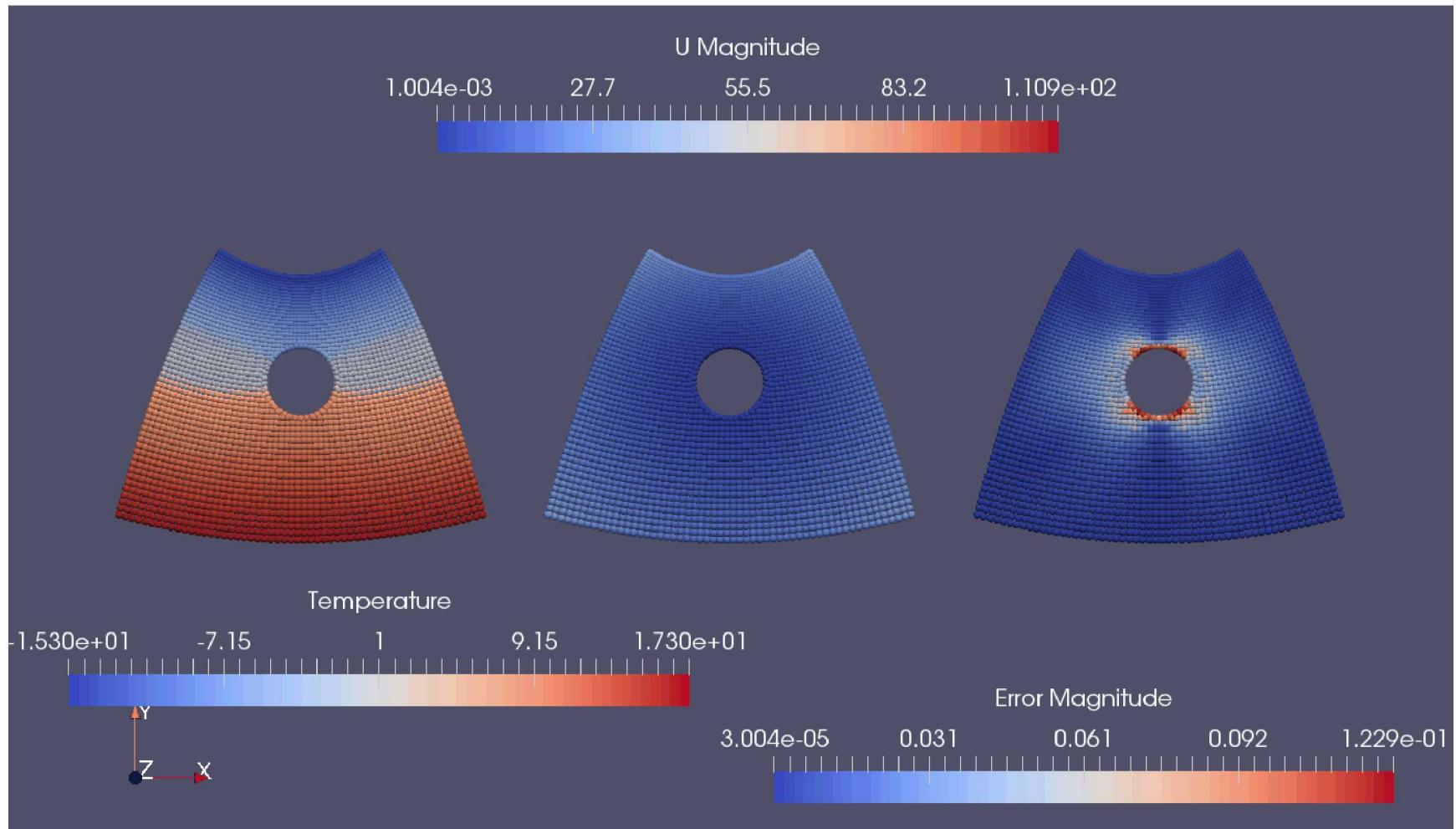
Comparison to microstructural data



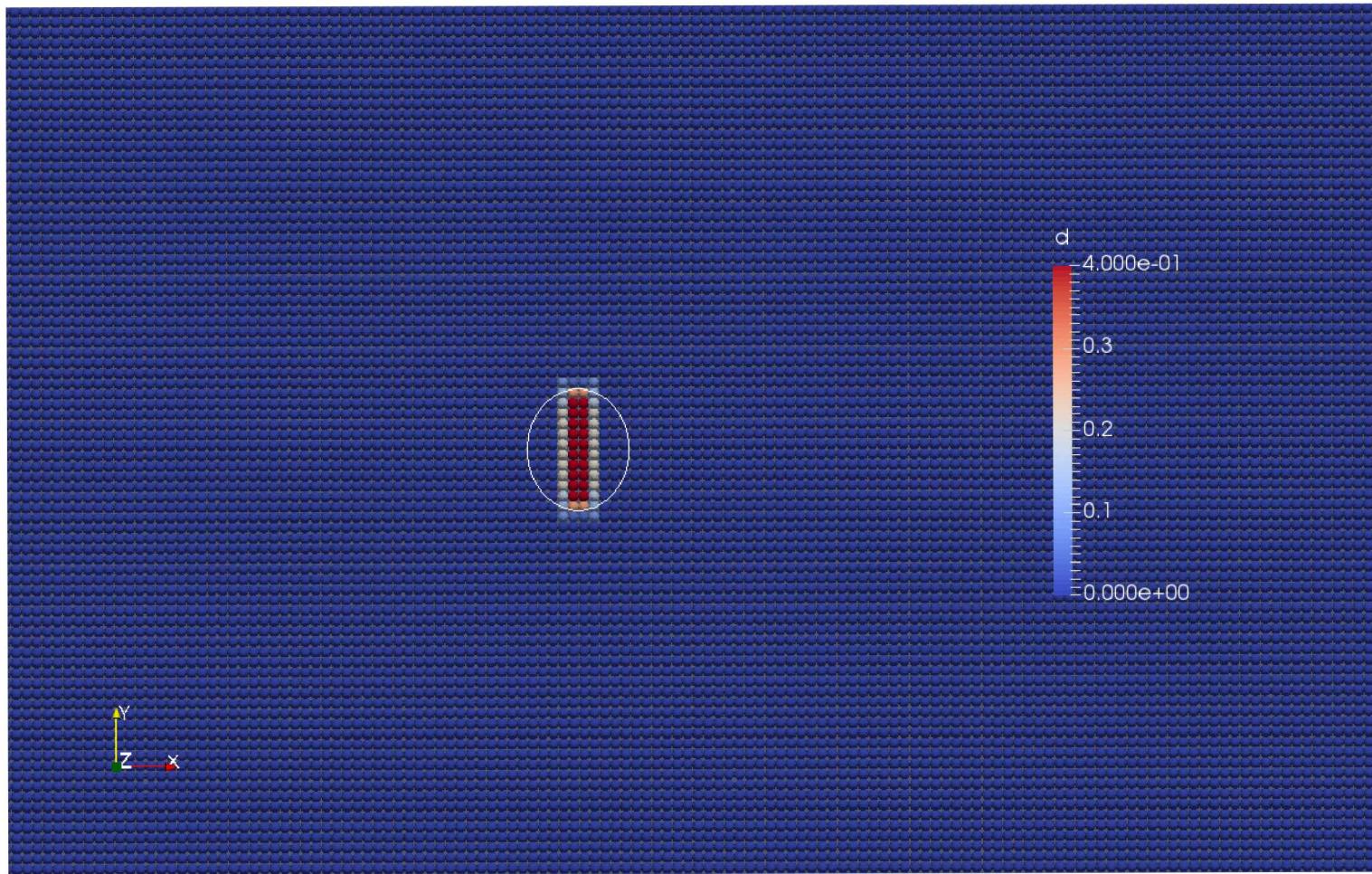
Comparison to finite element solution



Consistent coupling to mechanics



Pressure loading of cracks



Conclusions

- GMLS provides a versatile platform for rigorous meshfree recovery of functionals
- By constructing meshfree analogues to the Gauss divergence theorem, we provide a topological structure which may be paired with GMLS to obtain a purely meshfree finite volume method
 - Swap the geometric problem of mesh generation for a scalable algebraic one
- Same ideas may be used to restore consistency to nonlocal models of mechanics
- End result: a flexible and rigorous multiphysics framework well suited for large deformation problems