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Talk overview
Sandia
National
laboratories

■ An introduction to generalized moving least squares (GMLS)
■ A high-level summary of approximation theory
■ A brief survey of our ongoing work

■ Conservation principles for meshfree discretization
■ How to obtain a conservative method, when we don't have a mesh to apply the

Gauss divergence theorem to

■ Asymptotically compatible strong-form discretizations of non-local
mechanics

■ An integral theory of continuum mechanics
■ Combining in a meshfree framework allows for consistent coupling of

multiphys ic s+fracture
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Why use meshfree?

■ In classical methods, a mesh gives you a lot:
■ Easy construction of basis functions

■ A partition of unity

■ Simple quadrature

■ A simplicial complex and associated exterior calculus structures

i.e. cells, faces, edges, nodes linked together through a boundary
operator + generalized Stokes theorems

■ Usually the best option, but for many applications its
infeasible/annoying to efficiently build a mesh

■ Lagrangian large-deformation problems

■ Automated design-to-analysis

(-50% of analyst time!)1

■ Non-intrusive multiphysics coupling for

legacy code

[1] "DART system analysis" SAND2005-4647
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Compadre — Compatible Particle Discretization

Objectives:
• Meshless schemes with rigorous approximation theory and mimetic properties like

compatible mesh-based methods
• Software library supporting solution of general meshless schemes with tools for

coarse+fine grain parallelism and preconditioning

People:
• Pavel Bochev (PI)
• Pete Bosler
• Paul Kuberry
• Mauro Perego
• Kara Peterson
• Nat Trask

Students/collaborators:
• Huaiqian You, Yue Yu — Lehigh
• Amanda Howard, Martin Maxey — Brown
• Wenxiao Pan — UW Madison
• Paul Atzberger — UC Santa Barbara
• J.S. Chen — UC San Diego

Key tools:
• Optimization based approaches to develop meshfree discretizations with reproduction

properties
• The Compadre Trilinos library — open source library for scalable implementation of

meshfree methods

Sandia
National
Laboratories
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Compadre Trilinos package
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Muld-Core Mony-Com

https://github.com/kokkos
  r 

Collection of modules for general meshfree discretizations + heterogeneous architectures

• Local modules for efficiently solving small optimization problems on each particle

• Kokkos implementation gives fine grained thread/GPU parallelism

• Global modules for assembling global matrices and applying fast solvers

• MPI based domain decomposition for coarse grained parallelism

• Interfaces to MueLu for fast solvers

CPU +GPU
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ASCeND —
Asymptotically compatible foundations for nonlocal discretization

Objectives:
• Develop mathematical underpinnings for meshfree nonlocal models

People:
• Nat Trask (PI)
• Marta D'Elia
• David Littlewood
• Stewart Silling
• Michael Tupek

PhiLMs DoE MMICCs center—

Physics-based Learning Machines for scientific computing

Objectives:
• Develop approximation theory for deep neural networks in multiscale applications

People:
• George Kamiadakis (Brown University — head PI)
• Sandia Team

• Michael Parks (Institutional PI)
• Pavel Bochev
• Marta D'Elia
• Mauro Perego

Sande
Mond
laboratories
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Generalized moving least squares (GMLS)

Example:
Approximate point evaluation of derivatives:

Target functional DI1N

Sampling ft
[

4411' 1110111111' r 4.01' '

a

41414;

V

Ai —

—40

Takeaway:
A rigorous way to obtain formulas that look like:

7_11, (21\
) a A-(u)

, A )

2 3 4 5 6
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Approximation theory sketch: local reproduction

G ven line

We ass
coefficients

bounded func ional T7 and

TA

approxi a OIL Th

ay be associat with a point x. A pr cess fO ene
is a local reproduction over V if:

(p) (p) for all p e V

2. < C h-

C2h

• GMLS may be shown to satisfy condition one, provided a solution exists to the
optimization problem, and condition three by choice of kernel.

• Satisfaction of condition two depends upon the target and sampling functionals
under consideration.

Santla
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Truncation error sketch

Let p V.

(u) — T h (U) Th(u)1

1A-(p) A(u)l

C h ( (t2)
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o proceed, a specific choice must be made for operators. For ex p e, Mirzaei
esti ates point e luation of der tives fro point evaluation o ctions.

Let u E C 01)1 := D := V := P

aking p as he Taylor series about Xi leads t©► t e g es   te

II D"u l L ) c C h
I l 

ICm+1(1-1)

Mirzaei, Schacback, Dehghan. "On generalized moving least squares and diffuse derivatives" IMA
Journal of Numerical Analysis (2012) 9



A rigorous framework for designing schemes

(u) = div(u)

)1/4,,u) le41 1
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) = Boo I (x, y)u(y) u(x)dy (u) = f (u) dA
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Solving PDEs with or without a mesh

a
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Example: Choosing approximation space
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Trask, N., Maxey, M.,, and Hu, X.
"A compatible high-order meshless
method for the Stokes equations
with applications to suspension
flows."
Journal of Computational Physics
355 (2018): 310-326.
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Example: Choosing kernel

L

♦

Y1

L

Hu, Trask, Hu, Pan
"A spatially adaptive high-order
meshless methods for fluid-
structure interactions"
(In review, CMAME)
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Example: Choosing approximation space

Electrle Held Magnitude
0.5 0.75

0 1
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{
-vv2u + vp = -pe(o)vo
v • u = 0

U = w

u = V, ± (x — X,) x E2,

_icv40 ± v20 = pe(0) 

E

{0 = fac_2, Tr • dA

0 = fac_2, x ()( — Xi) • dA

a = —co (E E E21)-F—p1+1 (Vu VuT)
2

A compatible Stokes solver provides a
high-order foundation for multiphysics

problems in FSI
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Example: Choosing sampling functional

Horizontal Grid
(Latitude-Longitude)

Vertical Grid
(Height or Pressure)

Physical Processes in a Model
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manifold concentration
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Example: Choosing target functional
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Why is conservation hard in meshfree?

Generalized Stokes theorem

=

Gauss divergence theorem

V • udV= u• dA a
FE C

a

a

•

a

Two ingredients:
• A chain complex

• A topological structure with a well-defined
boundary operator

• An exterior derivative
• A consistent definition of a divergence

Sande
Mond
laboratories
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Quadrature with GMLS

Assume a basis, Vf...) V, CP and rewrite GMLS problem as

= a rg min 7
cG ::Grefn ky 2

A1(P))2 A1).

er(P')

Ex: Selecting T = fc u dx, ard defining the vector

= Pdx

we can see that a quadrature functionais rnay be represented as a pairing
of the GMLS reconstruction coefficient vector with some vector in its
dual space

ic[u] = -vIc*

We seek to similarly define meshfree quadr3ture hinctionols with
summation by parts properties.

Sandia
National
Laboratories
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Ansatz for a meshless Gauss divergence theorem

R al c sical FVM:
1- *

j Eaci

Wan o define virtual met info ation, so that Vu c P1

.)

Sandia
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Assume physical metric info a ion on domain boundary, and 3 then

E (v
'EB

Ci - u•dA
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An ansatz for orientable virtual faces

Assu e vit al are 3 may be expressed in ter
ultiplied by point ev uation of basis function at

Sandia
till9 National

Laboratories

f virtual a potentials
ual ace

— (7P - 07) -)

Co lecture. Let u E C1(Q), and consider a set of virtual metric info ation
ilLii}) that define a PI-reproducing SBP operator. Assume that the vir-

tual face moments satisfy the scalings, < C hd-i and < Cchd for
all , i, j If C 11, then there ts C 0 such that the following estimate
holds at ch virtual cell

< Ch

where Vh " u (az
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How to get the areas?

For e h basis c ion 013 E V, plug mto a.nsa z d get

E ?pi )4) ( -) (V- Xicao /au • dA

Assume we have a process for genera ing vo

> 0

the this provides a
with RHS satisfying

es sa isfying

eighted-graph Lapl problem for e
Fredholin altern tive necess

Solve di- 1 aph a

f©r sin

Sandia
National
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a aio en
ity.

lac oblems, each with d Ss, using
AMG o O(N) work.
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Results: singularly perturbed advection-diffusion

Consider co

ere we

• D cy:

e ion s

9811 e steady state = r d the fo o ing es:

Singularly

— IL

rbed advection diffusion:

AVO-1- a0

Skip lo s of details: ut we'll show
conventiona mesh-based me hods

we h die bench

Sandia
Fr I, National
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that chal len.ge
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How to get the volumes?

Assumed we have a pr ess for ge ating vohimes satisfying

E

Po

Wi h

> 0

a constrained quadratic progr

alytic solution

— I li

Evi=

3

Lemma. Assume a quasi-unifo set of points X. Then there C C2 > 0
satisfying

hd < C2 hd

Sandia
National
Laboratories
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Convergence of divergence operator

h Unweighted Weighted

1/16

1/32

1/64

0.081

0.049

0.024

0.058

0.032

0.015

1/128 0.011 0.0072

Sandia
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Results: singularly perturbed advection-diffusion

Con  ider conse ion laws for conserved variable q

atq-FV-F

Where we e steady state an the follo

• Darcy:

Singu

Lin

All prob e

g

/NO

y perturbed advection diffusion:

F iaV(/) a0

a city:

es:

F ,X(p-u)/+1107u )

e sho r disco tinuous mama  1
continuity f approach.
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Darcy: jumps in material properties

70

50

30

10

10
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Darcy: jumps in material properties

15

g 10
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— Exact
dx = 1/16

- dx = 1/32
- - dx = 1/64
— dx = 1/128

0.2 0,4 0.6 0.8 1



Darcy: 5-spot problem
Santla
!Mond
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o Exact
— h= 1/8
— h= 1/16
— h= 1/32
— h = 1/64

10

.0

1

0.5
Length along diagonal

o Exact
— h= 1/8
— h= 1/16
— h= 1/32
— h= 1/64

0 0.5
Distance along diagonal

1
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Darcy 5-spot problem
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Singularly perturbed advection diffusion

0
Pe=1

a • F =

F = — €V4i

Single tirnestep
Co E {1,, 10,, 100} 1000, op}
demonstrating L-stability

Pe=10 Pe=100
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Linearly elastic composite materials

E>

-

\Z

•
1

< I
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Talk part 2: Non-local models for the mesoscale
Sandia.

4 jrna tiatioogories

Peridynamics — a continuum theory based on integrals instead of
derivatives

pu(

()

V cr(u

ess ensor

!Horizon of x

x

f( ))dy

o ce s ate

32



Target application: non-local fracture mechanics

Local mechani Natur

Non-local me

tin.g u E H1

(x) [u](x)

8 
(V2u VV

s: atural setting u E L2

19(x) de (X) =

RIO = C 
B(0) 113

(x)

(y)— (x)) dy

In contrast to classical techniques, no need for enrichment/tracking of
free surfaces/etc

Sandia
National
Laboratories
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Where do these models come from?
Sandia

4Til i!atiool:.!ries

• Ansatz: Assume a functional form for pairwise interactions

• Ex: Bond-based peridynamics

• Assume elastic response analogous to Hooke's law

Force state is proportional to displacement from reference configuration

By calculating strain energy, may relate stiffness to classical local properties

34



Non-local setting and notation

Consider a family of
integral equations of the

form:

IC(x,y

(x)

35
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K(x, y)u(y) dy = f(x)

supp(K(x, -)) (x)

3r) where n(x, y) < C
xi

xE



Motivation: non-local quadrature on mesh

Define quadrature rule:

[24(

fB K(x, y)u(yj dy

xj EXt B 6)

K(xi, x •)u

• Challenges in finite element setting:

• Costly geometric intersection

• Singularity in non-local kernel — particularly
hard on unstructured meshes

Sandia
National
Laboratories
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Asymptotically compatible discretization

0.01

1
u

4 

Seek a discretization that recovers local solution
as nonlocal + local length scales both tend to
zero at same rate

0.1 1
10

0.1

0.01

0.001

Santla
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Tian, Xiaochuan, and Qiang Du. "Asymptotically compatible schemes and applications to robust discretization of nonlocal
models." SIAM Journal on Numerical Analysis 52.4 (2014): 1641-1665.
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Meshfree generation of quadrature rules on balls

II1111

sub jec

I[f]

where

I[f]

`Vp e V

dx

Sandia
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0 0

Idea:
- Construct rule just like Gauss quadrature
- Requires knowledge of how to integrate

against each member of reproducing set
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Singular integrals
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• As reproducing space, select polynomials + integrand of operator

PrrtU SK,n,x7 where

y)f(y) I f c Pm}

,y)Theore Consider for fixed x a ke el of the fo K(x,y) ly—
n(x

xle, 7 where

the numerator n satisfies n(x, y) C Cn for all y E B(x,(5). A set of guadmture
weights obtained from the GMLS process with the choice of Vh = P U SK,n,x
for u E Cm and m > n satisfies the following point e error estimate, with
C > 0 independent of the particle a ngement.

IB K( (y)dy — K(z,*EXci < C d+1
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Manufactured solution to BVP

0.01 —

le-06 —

le-08  
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1 1 1
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Surface effects + implicit transmission conditions

'T© calculate effective flux d odel bo conditions, postulate:

For an 
is given by

F [u]

nit imal area ele

Q/dA

IncriB( ,ö)(X) = C K (x, y) f (y)dy

nt near haff-plane bound the nonlocal ft

r ros z/r)

0 Los —z/r)
K (x, y) f (y)r dO dz dr

z
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Damage modelling

Given a p j) in B(xi, ~i), ~~.~,~::.~ci~~~~te the state of either br ken or unbroken

111ds are either

if bond is rir broken

if bond broken .

/
• Broken a pre-pr© sing step to oduce a k to the problem

• Broken over the ©$ the simulation if the bond str

X

1;1 — —

— l

a d age iteria, e.g. s > so where

1 so =

G, 
  9' 62 

(r
, 214)6

Gc 

014+0)4 
3
))6

X
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Asymptotic convergence to local condition

Da ge mode

u f = (x y x 3y))

(u)

(Dyers

0.06

0.04

0.02

-0.4 -0.2

action- ree

0
x

SO

0.2 0.4
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ntion as 0(6).

43



Type-I crack loading

CIO -411-

13-0

x

a a

1 1 1
Cr0

cro
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0.5

0
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2

1

0

-1

-1
1 
0

2x/a

— Exact
h = 1/32

- h= 1/64
  h= 1/128

1 2

— Exact
h= 1/32

-•-• h= 1/64
  h= 1/128

0
2y/a

1 2
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Kalthoff-Winkler experiment

Cylindrical impactor
Mass = 1.57 kg i

50 mm

100 mm

50 mm

200 mm

32 mis

c
Maraging steel plate
Thickness = 9 mm

1.5 mm
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Kalthoff-Winkler experiment

RW.1

101.11111111111111101

256

h

 ►
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Application driver: Lithiation-induced failure

3D Image Data
(X-ray CT)

Segmentation

Labeling

kiaalitidoinaal

rill, Laboratories

Exodus mesh

CDFEM
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A microstructure framework for transport induced fracture

Di usion p cess

F

h

Mech nics process

mech

n

f
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Diffusion for heterogeneous materials
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lnhomogeneous flux condition

Gradients X
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Comparison to microstructural data
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Comparison to finite element solution
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Consistent coupling to mechanics
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Pressure loading of cracks
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Conclusions

■ GMLS provides a versatile platform for rigorous meshfree
recovery of functionals

■ By constructing meshfree analogues to the Gauss divergence
theorem, we provide a topological structure which may be
paired with GMLS to obtain a purely meshfree finite volume
method

■ Swap the geometric problem of mesh generation for a scalable
algebraic one

■ Same ideas may be used to restore consistency to nonlocal
models of mechanics

■ End result: a flexible and rigorous multiphysics framework
well suited for large deformation problems

Sandia
National
Laboratories

56


