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Sandia
Talk overview ) Mot

* An introduction to generalized moving least squares (GMLYS)
= A high-level summary of approximation theory
= A brief survey of our ongoing work
= (Conservation principles for meshfree discretization
= How to obtain a conservative method, when we don’t have a mesh to apply the
Gauss divergence theorem to
= Asymptotically compatible strong-form discretizations of non-local
mechanics

= An integral theory of continuum mechanics

= (Combining in a meshfree framework allows for consistent coupling of
multiphysics+fracture




Why use meshfree?

= |n classical methods, a mesh gives you a lot:
= Easy construction of basis functions
= A partition of unity
= Simple quadrature

= Asimplicial complex and associated exterior calculus structures

= j.e. cells, faces, edges, nodes linked together through a boundary
operator + generalized Stokes theorems

= Usually the best option, but for many applications its
infeasible/annoying to efficiently build a mesh
= Lagrangian large-deformation problems ==

= Automated design-to-analysis
= (~50% of analyst time!)!

= Non-intrusive multiphysics coupling for
legacy code

[1] "DART system analysis" SAND2005-4647




Sandia
Compadre — Compatible Particle Discretization ) foor

Objectives:
* Meshless schemes with rigorous approximation theory and mimetic properties like
compatible mesh-based methods
» Software library supporting solution of general meshless schemes with tools for
coarse+fine grain parallelism and preconditioning

People: Students/collaborators:
* Pavel Bochev (PI) * Huaiqian You, Yue Yu — Lehigh
* Pete Bosler * Amanda Howard, Martin Maxey — Brown
* Paul Kuberry * Wenxiao Pan — UW Madison
* Mauro Perego * Paul Atzberger — UC Santa Barbara
« Kara Peterson e J.S. Chen — UC San Diego
* Nat Trask
Key tools:
* Optimization based approaches to develop meshfree discretizations with reproduction
properties

* The Compadre Trilinos library — open source library for scalable implementation of
meshfree methods
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Compadre Trilinos package ) e

Physics (Assembly)

Parameter Solver
Manager

Coordinates
Neighborhood

File
Reader/\Writer

Field Manager
Fields

Input Deck

Boundary Conditions

PartiCIQS Repal’titiOning \ https://github.com/kokkos

Time-stepping

Local
GMLS

Collection of modules for general meshfree discretizations + heterogeneous architectures

e Local modules for efficiently solving small optimization problems on each particle
* Kokkos implementation gives fine grained thread/GPU parallelism

* Global modules for assembling global matrices and applying fast solvers
* MPI based domain decomposition for coarse grained parallelism

* Interfaces to MuelLu for fast solvers



ASCeND - Ft -
Asymptotically compatible foundations for nonlocal discretization
Obj ectlves
Develop mathematical underpinnings for meshfree nonlocal models
People:
* Nat Trask (PI)
 Marta D’Elia
* David Littlewood

» Stewart Silling
* Michael Tupek

PhiLMs DoE MMICCs center—
Physics-based Learning Machines for scientific computing

Obj ectlves
Develop approximation theory for deep neural networks in multiscale applications
People:
* George Karniadakis (Brown University — head PI)

* Sandia Team
* Michael Parks (Institutional PI)
* Pavel Bochev
e Marta D’Elia
* Mauro Perego

b
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Generalized moving least squares (GMLS) ) e

T ‘Eﬂ ~ 7 h((‘?&l&) 2

7" = orgmin (z;;, M(E) ) W)
Example: [
Approximate point evaluation of derivatives: | /\\ |

= D% 0 dy,

Takeaway:
A rigorous way to obtain formulas that look like:

T (u) =35 A4 (u)




Approximation theory sketch: local reproduction

Given linear bounded functional 7, and an approximation 7, = ) sx; 7 Aj(u).
J
We assume 7 may be associated with a point z. A process for generating the

coefficients {5 AT } is a local reproduction over V if:

L. > sa;~Aj(p) =7(p) forallpe V
J

2. E”S«M,Tm <Cih™@
J

3. sx,,r if ||z — x| < Caoh

* GMLS may be shown to satisfy condition one, provided a solution exists to the
optimization problem, and condition three by choice of kernel.
 Satisfaction of condition two depends upon the target and sampling functionals

under consideration.
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Sandia
Truncation error sketch Pl et

Let pe V.
[7(w) — mh(u)| <|7(u) — 7(p)| + |70 (P) — Th(u)]
<|r(uw) — ()| + Zﬂsxmﬂ 1A () — Aw)]

<|l7(u) — 7(P)|| Lo (@) + C1h™*||Aj(u) — A(P)|| Lo ()

To proceed, a specific choice must be made for operators. For example, Mirzaei
estimates point evaluation of derivatives from point evaluation of functions.

Let u € C™(Q),7:= D%0;,\; :=46;,V =P,
Taking p as the Taylor series about z; leads to the following estimate

|[D“u — Dyul| e (o) < Chpmt1-lel |u|cm1 ()

Mirzaei, Schacback, Dehghan. “On generalized moving least squares and diffuse derivatives” IMA
Journal of Numerical Analysis (2012) S



A rigorous framework for designing schemes

(u) =~ 7"(u)

2
p* = argmin (53 () — A (w)) W(r, A;)

T(v) =div(u) 7(uv) =[5, K(@y)uly) —ul@)dy () = [4oo(u) dA

, 1 1 | 1
Ai(u) == el ] u- t; M (u) = 7 [f u-n; A (u) = ﬁ[wu(y] dy

Vi={vedl,) V-v=0}
Vi={ve,? Vxv=0}
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Solving PDEs with or without a mesh

To generate mesh free schemes fi

Tmrgetﬁmeei;mmal T ) Wg&{ ffm%gﬁwdﬁ

W Wl o) Wl — )

—— Collocation P2
E —— Collocation - P4
001 '_ —— Collocation - P6
o—o FV-P1
FV-P3
a FV-P5




Example: Choosing approximation space i) Nevora

Laboratories
—V?u+Vp=f
V-u=20
ulpy, =U+ (z —X) x Q2
f5,0-dA =0

Trask, N., Maxey, M.,, and Hu, X.
"A compatible high-order meshless
method for the Stokes equations
with applications to suspension
flows.”

Journal of Computational Physics
355 (2018): 310-326.
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. Sandia
Example: Choosing kernel lsboroies

Hu, Trask, Hu, Pan =
“A spatially adaptive high-order = Sy S SREREYE

meshless methods for fluid- = o e ——

structure interactions” S eweeem e

(In review, CMAME) .




Example: Choosing approximation space ) B

(—vVPu+ Vp = —pe(¢)V¢
V-u=0

u—w

\UZV,'—|—(X—X;) x ;i

0= [y T dA
0= [, 0% (x—X) dA
Electric Field Magnitude '
0.25 05 075 _
T LUl Tl E:—EO(E®E+E2I)+—pI+Z(VU+VuT)
0 P
A compatible Stokes solver provides a
high-order foundation for multiphysics
problems in FSI
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Example: Choosing sampling functional () e

/
\ e VAVAVAV, S A STARAVAVAVAYQY)VAVa Z4TAN
> W s
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M AN Pl 7N AT Ta S Sg&gggg‘
oK)
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B
Vertical Grid | ; L INAVAY. i% ¥
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Example: Choosing target functional rh) e

manifold concentration

= max principle strg
S 0.0357

0.0885

5.83e-07

Bulk concentration
0.4 ‘ 0.4
T

| Il || 1 [L[]]
L LLLLLILLLLLLIT




Why is conservation hard in meshfree?

Generalized Stokes theorem

./ndw:/e;nw 0:

Gauss divergence theorem

] V- -udV= j£ u- dA a . — -7
C FeC d

Two ingredients:
* A chain complex
* A topological structure with a well-defined
boundary operator
* An exterior derivative
A consistent definition of a divergence 17




Quadrature with GMLS ) B

Assume a basis, Vp e V, p=cTP and rewrite GMLS problem as

N
c* = argmin lz (Aj(u) — C*Aj(P})Qw(T; Aj)-
ccRdim(V) =1

T(u) = c*7(P")

Ex: Selecting 7 = [_u dx, and defining the vector

V.= /de

we can see that a quadrature functionals may be represented as a pairing
of the GMLS reconstruction coefficient vector with some vector in its
dual space

IcJu] = vIc*

We seek to similarly define meshfree quadrature functionals with

summation by parts properties.
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Sandia
Ansatz for a meshless Gauss divergence theorem i) feema_

"_’"‘"’ e
1;: . ’ L : - e : - J
Recall classical FVM: -t -
g S S

Vi(Vou),= ) uwij-A

fi; €0C;

Want to define virtual metric information, so that Yu € P!

pi (Vou), = ) cij- i

JEB(x:)
Assume physical metric information on domain boundary, and p;; = —p;i, then
E pi (V-u), = z Cij-pij = [ u-dA
i,jEB(x;) roRd

19




7| Netora

An ansatz for orientable virtual faces

Assume virtual areas p;; may be expressed in terms of virtual area potentials
multiplied by point evaluation of basis function at virtual face

uss = (V5 — 7)) ¢*(xi;)

Conjecture. Let u € C1(Q2), and consider a set of virtual metric information
({ui},{pi;}) that define a Pi-reproducing SBP operator. Assume that the vir-
tual face moments satisfy the scalings, |Y$ — | < C th?™1 and |u;| < C.h? for
all a,i,j3. If Py C 11, then there exists C > 0 such that the following estimate
holds at each virtual cell

where Vi - u =) (0, u®),.




Sandia
How to get the areas? ) foor

For each basis function ¢ € V, plug into ansatz and get

Z (@/)? — ) ¢%(@s5) = pi (V- 9%); — X1e00

J

Assume we have a process for generating volumes satisfying
® > pi=|[Q
e u; >0

then this provides a weighted-graph Laplacian problem for each area moment,
with RHS satisfying Fredholm alternative necessary for singularity.

Solve d + 1 graph Laplacian problems, each with d RHSs, using
AMG for O(N) work.

21




Results: singularly perturbed advection-diffusion i)t

Consider conservation laws
0i¢+V -F(¢)=0

Where we will assume steady state and the following fluxes:

e Darcy:
F=—-uV¢

e Singularly perturbed advection diffusion:

F=—-uVo+ao

Skip lots of details: but we’ll show how we handle benchmarks that challenge
conventional mesh-based methods




Sandia
How to get the volumes? ) foor

Assumed we have a process for generating volumes satisfying
e SVi=l0)
o V;>0

Pose as a constrained quadratic program

V; = argmin ) _ V2w
i

Z% = |Q|
w; = Y ¢(|lzi — x5))
J

With analytic solution

Lemma. Assume a quasi-uniform set of points X. Then there exist C1,Cq > 0
satisfying
C1h* <V; < Cy b 23




Convergence of divergence operator

' h | Unweighted | Weighted

1/16 0.081 0.058
1/32 0.049 0.032
1/64 0.024 0.015

1/128 0.011 0.0072




Results: singularly perturbed advection-diffusion ) e

Consider conservation laws for conserved variable q
%q +V-F=0
Where we will assume steady state and the following fluxes:

e Darcy:
F=—uVe¢

e Singularly perturbed advection diffusion:

F=—-uVo+ag

e Linear elasticity:

F=AXV-u)I+p(Vu+VuT)

All problems will be shown for discontinuous material properties to highlight
flux continuity of approach.
25
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Darcy: jumps in material properties ) fooer

£V -n] =0

Vo —

70

]

1 el
|

[T

AR ARRRR

L L L [ I




Darcy: jumps in material properties

Vo —

20

— Exact

== dx=116
- dx=1/32
- dx=1/64
— dx=1/128




Darcy: 5-spot problem

0

Velocity magnitude

th

o Exact
— h=1/8
— h=1/16
— h=1/32
— h=1/64

| L | L

0.5 1
Length along diagonal

O  Exact

— h=1/8
— h=1/16
— h=1/32
— h=1/64

10

Lo411

Ll

Distance along diagonal

28




Darcy 5-spot problem




Singularly perturbed advection diffusion

n-V¢=20

0
Pe=1

a
—ao+ V- -F=0
Efqb

Single timestep
Co€ {1, 10, 100, 1000, oo}
demonstrating L-stability




Linearly elastic composite materials

4




Sandia
Talk part 2: Non-local models for the mesoscale ) bl

Peridynamics — a continuum theory based on integrals instead of
derivatives

A7
eyl

Horizon of x

o(u) - stress tensor f(u) - force state




Target application: non-local fracture mechanics

Local mechanics: Natural setting u € H*!

(30 (30) = Ll )

Lu](x) = f‘%{ (V’u+VV-u)

Non-local mechanics: Natural setting u € L?

(00 ) = £ )

3. N u(ﬁ 5 x ‘
£2[u](x) = L » neug( (v) — v () dy

In contrast to classical techniques, no need for enrichment/tracking of
free surfacesl/etc

33




Sandia
Where do these models come from? Pl et

= Ansatz: Assume a functional form for pairwise interactions
= Ex: Bond-based peridynamics

= Assume elastic response analogous to Hooke’s law
= Force state is proportional to displacement from reference configuration

= By calculating strain energy, may relate stiffness to classical local properties




Non-local setting and notation ) feiea_

Consider a family of Ls Em] (X)
integral equations of the
form:




Motivation: non-local quadrature on mesh

Define quadrature rule:

Loful(x)= [ K(x,y)u(y)dy
JB(x.0)

L3 [u](x:) = > K(xixj)u(x;) w;
x;€XqCB(xq,6)

= (Challenges in finite element setting:
= Costly geometric intersection

= Singularity in non-local kernel — particularly
hard on unstructured meshes
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Asymptotically compatible discretization ) foor

lim 6
%f@e“_m 0.1

0.01

-
-

lim
&_ﬁg@] 0.001

Seek a discretization that recovers local solution
as nonlocal + local length scales both tend to
Zero at same rate

Tian, Xiaochuan, and Qiang Du. "Asymptotically compatible schemes and applications to robust discretization of nonlocal
models." SIAM Journal on Numerical Analysis 52.4 (2014): 1641-1665.

37




Meshfree generation of quadrature rules on balls

Idea:

- Construct rule just like Gauss quadrature

- Requires knowledge of how to integrate
against each member of reproducing set

38




Sandia
Singular integrals i) feema_

= As reproducing space, select polynomials + integrand of operator

Vh = P, U SK,%,X?
SK,mx e {K(Xa y)f(y) I f S Pﬂu}

Theorem. Consider for fized x a kernel of the form K(x,y) = nMxY) phere

y—x|*’
the numerator n satisfies n(x,y) < C,, for all y € B(x,9). A set lof q;mdmmm
weights obtained from the GMLS process with the choice of Vi = Py, U Sk n x
for u € C™ and m > n satisfies the following pointwise error estimate, with
C > 0 independent of the particle arrangement.

<C 5%—@—5&(14—1

/  K(@,y)uly)dy - ) K@ z;)uw;
B(x,d8) jex,

39




Sandia
Manufactured solution to BVP i) e

] 1 , 1 ' T T T
e éj
E o)
001} = O :
£ - T
-g 3 ?, 001} o .
£0.0001- - E
: g
1e-06 - ] i
0.0001 _
1e-08 o1 ' ' — lol.l E ' 0.01 — B
delta
7] é
@l}h —
) __ pd
—c E Kij(uj —us)wj; = L[u](x;)
jEB(X‘@,(S)
u = {sin z siny, cos £ cos y) lim




Surface effects + implicit transmission conditions

To calculate effective flux and model boundary conditions, postulate:

Flul(x)=C K(x,y)f(y)dy
QeNB(x,8)

For an infinitesimal area element near half-plane boundary, the nonlocal flux
is given by

Q/dA = [ j L e K(x, y)f(y)rdodzdr

s—(—z/r)

s N




Damage modelling

Given a pair (7, 7) in B(x;,d), associate the state of either broken or unbroken

5es — Wik if bond is unbroken
S 0, if bond is broken .

Bonds are either

/

e Broken as a pre-processing step to introduce a crack to the problem

/
e Broken over the course of the simulation if the bond strain [
o o 10— ] — g —
Ix; —xil ’

Exceeds a damage criteria, e.g. s > sg where

Ge —
@\/(Q#+5%,%(N—2M))5’ d =2

30 == Gc; d == 3 .
LY G (D) (=)o




Sandia
Asymptotic convergence to local condition ) bl

-0.02

-0.04 -

0.06

Damage model recovers analytic traction-free local solution as O(4).
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Type-| crack loading

1/32
1/64
1/128

— Exact
h=
h=
h=

I

_ T — T _ T N T T
axd ) i
wmmm
o
Sece
=
—He% L ]
(o}
] . 1 . | . o
vy =) v — 1 1 1
o @ ! a =
n - JuawadedsTp dAR[Y
o
=

Cfo

(=}

A - Juawaoe[dsTp aATR[OY

!

2y/a
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Kalthoff-Winkler experiment ) e

Cylindrical impactor 32 m/s

Mass = 1.57 kg L

Maraging steel plate
ﬁ( Thickness =9 mm

50 mm
50 mm

V—L ié—l.Smm

100 mm

200 mm
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Kalthoff-Winkler experiment




Application driver: Lithiation-induced failure ) e

3D Image Data
(X-ray CT)

Labeling Exodus mesh

Segmentation CDFEM




Sandia
A microstructure framework for transport induced fracture ) foor

Diffusion process

Mechanics process
V-o=f

0 = Omech(1) + €@l

n-o =t
49




Diffusion for heterogeneous materials

E=rsy
- -iappa

C — R=5

B — R=10

- — R=20

S -
-1 = i
L4 =




Inhomogeneous flux condition

Gradients X

-1.1

05 15 25 3 35
LineChartView2 @E]
05 15 25 3 35




Comparison to microstructural data
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Comparison to finite element solution ) e

1

Potential
)
h




Consistent coupling to mechanics

U Magnitude

1.004e-03 2.7 55.5 83.2

1.109e+02

|||||||||lellllllll

Temperature
1.530e+01 -7.15 1 Q.15 1.730e+01

||||||||IIW‘IIIIIIIII

LY

Error Magnitude

3.004e-05 0.031 0.061 0.092 1.22%e-01
Z X

B
B




Pressure loading of cracks

4.000e-01

0.3

02

0.1

~0.000e+00




Conclusions

= GMLS provides a versatile platform for rigorous meshfree
recovery of functionals

* By constructing meshfree analogues to the Gauss divergence
theorem, we provide a topological structure which may be
paired with GMLS to obtain a purely meshfree finite volume
method

= Swap the geometric problem of mesh generation for a scalable
algebraic one

= Same 1deas may be used to restore consistency to nonlocal
models of mechanics

= End result: a flexible and rigorous multiphysics framework
well suited for large deformation problems
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