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Abstract—The modern scientific software ecosystem is instru-
mental to the practice of science. However, software can only
fulfill that role if it is readily usable. In this position paper, we
discuss usability in the context of scientific software development,
how usability engineering can be incorporated into current
practice, and how software engineering research can help satisfy
that objective.

I. INTRODUCTION

The future of the scientific enterprise requires a sustained,
robust, and reliable ecosystem of scientific software. This is
necessary to meet the ever-growing demands for scalable simu-
lation and data analysis, with some authors suggesting that we
are moving towards a paradigm of science that is equal parts
computational, empirical, and theoretical [1]. While progress
has been made, software as an instrument has not yet reached
a level of maturity comparable with the more conventional
tools of empirical and theoretical science. A 2016 report by
the National Strategic Computing Initiative (NSCI) argued
the current “ecosystem of software, hardware, networks, and
workforce is neither widely available nor sufficiently flexible
to support emerging opportunities” [2]; the strategic plan
highlighted the need for “a portfolio of new approaches to
dramatically increase productivity in the development and use
of parallel HPC applications” as a focus for future research.

It is clear that the demand for scientific software can
no longer be met by individuals working in isolation, and
fostering more effective collaboration is a necessity [3].
Modern high-end scientific computing applications rely on
complex software stacks assembled from an ecosystem of
software packages developed by many teams across differ-
ent disciplines. For example, even a barebones PDE code
may draw upon distinct libraries for meshing, discretization,
linear solves, post-processing, and visualization. Researchers
would not be able to affordably develop their application
codes without the support of community software, but using
other’s code is an exercise in trust, trust that the code can
perform its intended function both now and in the future.
Unfortunately, scientists frequently use (and misuse) software
without understanding how that software actually works [4],
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and acquiring sufficient understanding is time-consuming [5].
In other words, becoming a literate user of or contributor
to a scientific software package carries opportunity costs,
yet defering those costs poses a risk to informed trust and,
consequently, the value that the software provides.

As we approach the exascale era and beyond, the scientific
software community faces a crisis created by the confluence
of disruptive changes in computing architectures and demands
for greatly improved simulation capabilities. This crisis brings
with it a unique opportunity to fundamentally change how
scientific software is designed, developed, and supported.
This is especially true for software developed at US national
laboratories. Keyes et al. 2013 observes that present and
future objectives of the DOE require multiphysics solutions
that bring together many different codes, disciplines, and
institutions [6]; accordingly, the need for performance and
correctness must be balanced against the need for ease-of-use
across increasingly complex software stacks. For this reason,
we argue that usability must become a first-class software
software quality moving forward. By usability, we mean the
capability of the software product to be understood, learned,
used and attractive to the use, when used under specified
conditions [7]. Easing the pathway to proficiency by making
the software more accessible and understandable enables users
to make better use of that code and to be more confident in
the results.

II. BACKGROUND

We would like to have scientific software that is correct,
performant, and usable, yet none of these qualities happen
by accident: they require intentional planning and action.
Moreover, usability, like any non-functional software quality,
is not an absolute good. Scientific software is necessarily com-
plicated because the problems they solve are also complicated;
extensive expertise is needed both to write the code and to
use the code. A more usable code may be less capable, less
performant, or less portable. Moreover, deciding to improve
a non-functional quality requires an investment of time and
money, and those resources may be spent more effectively
elsewhere. Indeed, qualities such as correctness must come
first, but we argue that better trade-offs could be made and
that usability must be included in that conversation.

Usability engineering is well-practiced in the conventional
software industry, but it currently represents “the most ig-



nored and unattended phase of scientific software solution
development” [8]; techniques for studying usability are not
as prevalent or mature among scientific software developers
as those that measure correctness or performance. Likewise,
research into usability engineering for scientific software is
still nascent (see [9],[10]). This is where the software engineer-
ing research community can be of great help, by identifying
and demonstrating the effectiveness of tailored strategies for
creating usable scientific software.

While usability is a topic that concerns all stages of the
software lifecycle, the long lifespan of HPC research codes
means that our projects of interest are usually “in the middle”.
For example, within the US Exascale Computing Project, the
median age of an application code is 7 years. An emphasis
must be placed on tools and techniques that are (1) well-
defined, (2) incremental, and (3) accommodating of the reality
that projects have already made significant commitments in
their design and implementation. This is a necessary step to-
wards improving the current state of practice as well as making
the case for funding models that support such activities.

III. ROADMAP

We now present a roadmap for usability research that sat-
isfies those objectives in the short-to-medium term. Usability
engineering is a sufficiently broad and deep topic that ours is
not meant to be exhaustive. For example, given the diversity of
scientific software, there is a need for more exploratory studies
using surveys and ethnographic techniques ala [9]. Likewise,
the community would also benefit from research that covers
usability across the full software lifecycle in the vein of [10].

Our focus, however, is on concrete tools and strategies that
could be immediately applied in the form of team policies and
project deliverables, in particular usability evaluation methods
(UEMs). Borrowing from Fernandez et al., we define UEMs
as “procedures composed by a series of well-defined activities
to collect data related to the interaction between the end user
and a software product, in order to determine how the specific
properties of a particular software contribute to achieving
specific goals” [11]. We have identified two challenge areas
where such UEMs could be applied:

Source Code and APIs: Scientific software users are often
end-user developers, drawing upon libraries written by others
to create their own codes. Much of their time is spent reading
and navigating source codes and APIs to construct a mental
model of the software that they use. The question then is
whether the mental model which the code encourages is one
that is effective for the user and satisfies their needs. This is
a two-way process: a code may be ostensibly well-written (by
some measure) yet fail to provide the information that user
requires, or may put unstated cognitive demands on the user.
Potential solutions include:

o Inspection-based guideline reviews and heuristic evalu-
ation methods for assessing the readability of scientific
source code.

o (Semi-)automated software metrics for API usage pattern
complexity that are applicable to scientific software.

o Task-based interview strategies for user testing.

Learning Resources: Studies have shown that users benefit
from having access to a variety of different learning materials,
and that programmers tend to be highly opportunistic in their
work, engaging in just-in-time learning and adapting existing
resources to solve new problems. Modern projects have a
wealth of options at their disposal including tutorials, example
codes, Q&A repositories, documentation, and training. But
what is the most cost-effective way of creating and maintain-
ing these resources to satisfy that need? Potential solutions
include:

o Needs-based assessments with participation of stakehold-
ers.

o Cognitive walkthroughs, in particular guidelines for cre-
ating personas to model resource usage.

o Developer-driven protocols for reviewing resource and
quality coverage.

IV. CONCLUSION

The value of scientific software is intimately tied to its
usability, the ability to pick it up and put it to work answering
a scientific question. However, fitting usability engineering
into the current state of practice remains an open challenge.
For this reason, our position paper serves as a call to action
and an invitation for dialogue among software engineering
researchers.
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