

Title: Mutation of Mediator subunit *CDK8* counteracts the stunted growth and salicylic acid hyper-accumulation phenotypes of an *Arabidopsis MED5* mutant

Authors: Xiangying Mao^{1,2}, Jeong Im Kim¹, Mitchell T Wheeler¹, Anne K Heintzelman^{1,3}, Vikki M Weake^{1,4,5} and Clint Chapple^{1,2,5}

¹Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA

²Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA

³Northwest Missouri State University, Maryville, MO 64468, USA

⁴Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 7907, USA

⁵Co-corresponding authors

Contact: Clint Chapple (chapple@purdue.edu; Tel: 1-765-494-0494)
Vikki M Weake (vweake@purdue.edu; Tel: 1-765-496-1730)

Running Title: Genetic interaction between plant MED5 and CDK8

ORCIDs: Xiangying Mao, 0000-0003-2748-313X
Jeong Im Kim, 0000-0002-5618-3948
Vikki Weake, 0000-0002-5933-9952
Clint Chapple, 0000-0002-5195-562X

Word Count Summary

Introduction	850
Materials and Methods	547
Results	2832
Discussion	1106
Acknowledgements	55
Total	5390

Figures and Tables Summary

In total, this manuscript includes 9 main figures, 10 supplementary figures and 7 supplementary tables. Except for Figure 9, other main figures are preferred to be published in color.

Associated Twitter names

@ChappleClint @JeongImKim_UF @CandyMao77 @PurdueCPB @PurdueBiochem

35 **Summary**

- 36 • The Mediator complex functions as a hub for transcriptional regulation. MED5, an
37 Arabidopsis Mediator tail subunit, is required for maintaining phenylpropanoid
38 homeostasis. A semi-dominant mutation (*ref4-3*) that causes a single amino acid
39 substitution in MED5b functions as a strong suppressor of the pathway, leading
40 to decreased soluble phenylpropanoid accumulation, reduced lignin content and
41 dwarfism. In contrast, loss of MED5 results in increased levels of
42 phenylpropanoids.
- 43 • We used a reverse genetic approach to identify suppressors of *ref4-3* and found
44 that *ref4-3* requires CDK8, a kinase module subunit of Mediator, to repress plant
45 growth. The genetic interaction between *MED5* and *CDK8* was further
46 characterized using mRNA-sequencing (RNA-seq) and metabolite analysis.
- 47 • Growth inhibition and suppression of phenylpropanoid metabolism can be
48 genetically separated in *ref4-3* by elimination of CDK8 kinase activity; however,
49 the stunted growth of *ref4-3* is not dependent on the phosphorylation event
50 introduced by the G383S mutation. In addition, rather than perturbation of lignin
51 biosynthesis, mis-regulation of *DJC66*, a gene encoding a DNAJ protein, is
52 involved in the dwarfism of the *med5* mutants.
- 53 • Together, our study reveals genetic interactions between Mediator tail and kinase
54 module subunits and enhances our understanding of dwarfing in
55 phenylpropanoid pathway mutants.

56

57 **Keywords:** plant Mediator, phenylpropanoids, dwarfism, CDK8 kinase activity, salicylic acid,
58 *Arabidopsis thaliana*

59 **Introduction**

60 The multiprotein Mediator complex comprises about 30 subunits and serves as an integrative
61 hub for transcription regulation in eukaryotic systems (Malik & Roeder, 2010). The core
62 Mediator complex has been subdivided into head, middle and tail domains and functions as a
63 bridge between transcription factors and the basal transcription machinery (Asturias *et al.*, 1999;
64 Tsai *et al.*, 2014). The CDK8 kinase module, which reversibly associates with the core Mediator
65 complex, differentially regulates Mediator's activity as either a co-activator or co-repressor
66 (Hengartner *et al.*, 1998; Borggrefe *et al.*, 2002). Recently, cryomicroscopy (cryo-EM) structures
67 of yeast and human Mediator revealed that the association between the kinase module and the
68 core Mediator complex is predominantly achieved through the interaction between MED13
69 (kinase module) and MED19 (middle module) (Tsai *et al.*, 2013; Tsai *et al.*, 2014). The high-
70 resolution cryo-EM maps not only demonstrate the interfaces between different modules of
71 Mediator which are critical for proper transcriptional regulation (Nozawa *et al.*, 2017; Tsai *et al.*,
72 2017), but suggest an overall conserved structure of Mediator across different eukaryotic
73 systems as well.

74 As in other eukaryotes (Conaway & Conaway, 2011), the Mediator complex plays a role in
75 many aspects of plant life, including growth, development and responses to stress (Dolan &
76 Chapple, 2017). Despite the critical nature of the complex overall, disruption of some Mediator
77 subunit (MED) genes is not lethal in plants, and in many cases leads to distinctive phenotypes
78 (Yang *et al.*, 2016; Dolan & Chapple, 2017). The ability to knock out specific subunits and study
79 the resulting phenotypes suggests that plants can be valuable eukaryotic systems to
80 mechanistically characterize Mediator and its involvement in plant-specific biological processes.

81 In addition to its role in growth and development, recent studies have demonstrated that
82 Mediator is required for the normal regulation of secondary metabolism in *Arabidopsis*.
83 Specifically, MED5a and MED5b, two MED tail subunits, are required to maintain
84 phenylpropanoid homeostasis (Bonawitz *et al.*, 2012). Three *reduced epidermal fluorescence 4*
85 mutants (*ref4-1*, *ref4-2* and *ref4-3*) characterized by single amino acid substitutions in MED5b
86 (D647N for *ref4-1* and *ref4-2* and G383S for *ref4-3*) were isolated as strong repressors of the
87 phenylpropanoid pathway, indicated by decreased soluble phenylpropanoid metabolite
88 accumulation, reduced lignin content and dwarfism (Stout *et al.*, 2008). In contrast, disruption of
89 *MED5a* and *MED5b* (*med5a/5b*) results in the hyper-accumulation of phenylpropanoids
90 (Bonawitz *et al.*, 2012), indicating that MED5 plays a widespread role in homeostatic repression
91 of phenylpropanoid biosynthesis.

92 A *ref4-3* suppressor screen identified three tail subunits of Mediator, MED2, MED16 and
93 MED23, that are required for the repressive action of *ref4-3* upon phenylpropanoid metabolism
94 and plant growth (Stout *et al.*, 2008; Dolan *et al.*, 2017). Disruption of either MED16 or MED23
95 restores soluble phenylpropanoid accumulation and growth in *ref4-3* background, whereas loss
96 of MED2 rescues only the dwarfism of *ref4-3* (Dolan *et al.*, 2017). Transcriptome analysis of
97 *ref4-3* revealed that genes encoding the enzymes in the phenylpropanoid pathway display only
98 modest changes in expression. In contrast, negative regulators of phenylpropanoid metabolism
99 are up-regulated compared to wild type to an extent that is positively correlated with the level of
100 soluble phenylpropanoid restoration in each of the suppressors (Dolan *et al.*, 2017).

101 In the original *ref4-3* suppressor screen, we isolated multiple alleles of *med23* and *med16*, but
102 only a single allele of *med2*, suggesting that the screen might not have been saturated. In
103 addition to the tail module subunits, the dissociable CDK8 kinase module can regulate the
104 activity of the core Mediator complex during transcription. Although CDK8 is generally
105 recognized as a negative regulator of transcription in yeast (Kuchin *et al.*, 1995; Rickert *et al.*,
106 1999; Gonzalez *et al.*, 2014), studies in mammalian systems indicate that CDK8 contributes to
107 both transcriptional activation and repression (Knuesel *et al.*, 2009; Nemet *et al.*, 2014).
108 Investigations in *Arabidopsis* revealed that CDK8 is necessary for floral organ development
109 (Wang & Chen, 2004), mitochondrial retrograde signaling (Ng *et al.*, 2013), pathogen defense
110 (Zhu *et al.*, 2014) and auxin signaling (Ito *et al.*, 2016). Considering that CDK8 can activate
111 down-stream gene targets in a Mediator-dependent fashion, and in *ref4-3*, negative regulators
112 of the phenylpropanoid pathway show elevated steady state mRNA levels, we tested the
113 hypothesis that CDK8 is required for *ref4-3* to repress phenylpropanoid metabolism and plant
114 growth.

115 Here, we report that *MED5* genetically interacts with *CDK8* in *Arabidopsis*. Our data indicate
116 that CDK8, and specifically its kinase activity, is required for *ref4-3* to repress plant growth. In
117 contrast, the lignin content of *ref4-3 cdk8-1* remained low compared to wild type, indicating that
118 low lignin content is not the cause of dwarfing in *ref4-3*. Although the phytohormone salicylic
119 acid (SA) is hyper-accumulated in *ref4-3* and this phenotype can be suppressed by elimination
120 of CDK8 kinase activity, blocking SA biosynthesis is not sufficient to rescue the stunted growth
121 of *ref4-3*. In contrast, disruption of a gene encoding a plastid-targeted DNAJ protein that is
122 upregulated in *ref4-3* partially suppresses this growth phenotype. Together, our data
123 demonstrate that growth inhibition, suppression of phenylpropanoid metabolism and hyper-
124 accumulation of SA can be genetically separated in *ref4-3* mutants, and that chloroplast
125 localized chaperones might play an unexpected role in regulating plant growth.

126

127 **Materials and Methods**

128 **Plant Material and Growth Conditions**

129 *Arabidopsis thaliana* ecotype Columbia-0 (Col-0) was the wild type in this study. Plants were
130 cultivated at a temperature of 23°C, under a long-day photoperiod (16 hr light/8 hr dark) with a
131 light intensity of 100 $\mu\text{E m}^{-2} \text{s}^{-1}$. Homozygous mutants used in this study were isolated based on
132 previous reports, with the corresponding accession numbers and primers listed in Supporting
133 Information Table S1 (Cao *et al.*, 1997; Kim *et al.*, 2007; Bonawitz *et al.*, 2012; Zhu *et al.*, 2014).

134 **Transgenic Plants**

135 Plant binary vectors (pBA-myc) that carry either *CDK8* or *CDK8^{D176A}* driven by the 35S promoter
136 were transformed into *ref4-3 cdk8-1* mutants by *Agrobacterium tumefaciens*-mediated
137 transformation (Clough & Bent, 1998; Zhu *et al.*, 2014). Similarly, a series of *MED5b^{G383*}* ("*
138 represents amino acids G, S, T, D, E, A and V) constructs were first cloned into pCC0996, a
139 binary vector in which transgene expression is driven by the *Arabidopsis C4H* promoter
140 (Bonawitz *et al.*, 2012), and transformed into *med5* mutants. Transgenic lines were selected
141 based on their resistance to Basta. The homozygous lines identified in the T3 generation were
142 used for phenotypic characterization. To determine the *CDK8* protein levels in the selected
143 transgenic lines, 0.5 g of two-week-old seedlings were harvested and prepared for crude protein
144 extracts in 1 mL Tris-HCl buffer (150 mM, pH 8.0). After centrifugation, 50 μL lysate from each
145 sample was loaded on 10% SDS-page gel and protein gel blotting was performed using anti-
146 MYC antibody (1:1000 dilution, Sigma M4439).

147 **Lignin analysis**

148 Total lignin content was quantified using extractive free cell walls by thioglycolic acid (TGA)
149 lignin analysis, as described previously (Li *et al.*, 2015).

150 **HPLC analysis of secondary metabolites**

151 Sinapoylmalate content of three-week-old whole rosettes was quantified by HPLC as previously
152 reported (Dolan *et al.*, 2017).

153 **High-throughput mRNA sequencing**

154 Samples of wild-type, *ref4-1*, *ref4-3*, *cdk8-1* and *ref4-3 cdk8-1* three-week-old rosettes were
155 harvested in triplicate with a randomized design. Each sample contained five whole rosettes of
156 the same genotype from five individual pots. RNA extraction and whole-transcriptome
157 sequencing were performed as previously described (Dolan *et al.*, 2017). The RNA-seq data of
158 this study have been deposited in NCBI's Gene Expression Omnibus (Edgar *et al.*, 2002) with
159 accession number GSE111290. The previous RNA-seq data of *ref4-3* and its suppressors have

160 been deposited in Gene Expression Omnibus with accession number GSE95574 (Dolan *et al.*,
161 2017).

162 **Differential expression analysis**

163 Count matrices for individual samples were generated for each gene using HTSeq-count
164 (Anders *et al.*, 2015). Differential expression analysis was performed based on the result of
165 expressed genes with greater than one count per million (CPM) reads in at least three samples.
166 The filtered data was then subjected to edgeR (v3.12.1) analysis using generalized linear model
167 (GLM) approach (McCarthy *et al.*, 2012), which was performed using statistical program R
168 (v3.4.1). Significance testing was performed and adjusted using Benjamini-Hochberg method,
169 reported as False Discovery Rate (FDR) with a cut-off at FDR < 0.05. Venn diagrams were
170 created with the online tool Venny (v 2.1, <http://bioinfogp.cnb.csic.es/tools/venny/>) and GO term
171 analysis was performed using the DAVID Bioinformatics Resource (v.6.8,
172 <https://david.ncifcrf.gov/>) (Huang *et al.*, 2008).

173 **Determination of salicylic acid levels**

174 SA extraction and detection was performed as previously described (Rozhon *et al.*, 2005). Both
175 free and total SA were quantified by HPLC using 2-methoxybenzoic acid as an internal
176 standard.

177

178 **Results**

179 **Loss of CDK8 rescues stunted growth in *ref4* mutants**

180 To test whether *ref4*-3 requires CDK8 to repress plant growth, we generated *ref4*-3 *cdk8*-1
181 double mutants by crossing *cdk8* T-DNA insertion mutants (SALK_138675, *cdk8*-1 and
182 SALK_016169, *cdk8*-2) with *ref4*-3. Although *ref4*-3 mutants exhibit a dwarf phenotype, both *ref4*-
183 3 *cdk8*-1 and *ref4*-3 *cdk8*-2 are nearly normal in stature and rosette diameter (Figs 1, S1a).
184 Similarly, loss of CDK8 restores the growth defect in *ref4*-1, another allele identified from the
185 previous *ref* screen (Ruegger & Chapple, 2001) (Fig. S1b). Based on these results, we conclude
186 that there is a genetic interaction between CDK8 and MED5 in *Arabidopsis*, and that CDK8 is
187 required for *ref4*-1 and *ref4*-3 to repress plant growth.

188 We then tested whether the growth repression in *ref4*-3 is dependent on the kinase activity of
189 CDK8 using a transgene encoding a D176A kinase-dead version of the protein (Zhu *et al.*, 2014;
190 Kong & Chang, 2018) to generate *ref4*-3 *cdk8*-1 35S:CDK8-MYC (*ref4*-3 CDK8) and *ref4*-3 *cdk8*-
191 1 35S:CDK8^{D176A}-MYC (*ref4*-3 CDK8^{D176A}) transgenic plants. After five weeks on soil, *ref4*-3 CDK8
192 displayed stunted growth comparable to *ref4*-3, whereas *ref4*-3 CDK8^{D176A} looked identical to *ref4*-
193 3 *cdk8*-1 (Fig. 2a). An anti-MYC blot revealed that CDK8 was expressed at similar levels in *ref4*-

194 3 *CDK8* and *ref4-3 CDK8*^{D176A} (Fig. S2) indicating that these phenotypes were not the result of
195 different levels of transgene expression. The distinct growth phenotype between *ref4-3 CDK8* and
196 *ref4-3 CDK8*^{D176A} indicates that it is the kinase activity of *CDK8* that is essential for growth
197 repression in *ref4-3*.

198 In addition to *CDK8*, the *Arabidopsis* Mediator kinase module consists of C-type cyclin (cycC),
199 *MED12* and *MED13*. *MED12* is necessary for *CDK8* to demonstrate kinase activity (Knuesel *et*
200 *al.*, 2009). To independently evaluate whether *CDK8* kinase activity is required for *ref4-3*
201 phenotypes, we used a T-DNA insertion line in *MED12* (SALK_108241, *med12*) to generate *ref4-3*
202 *med12* double mutants. As with *CDK8*, we found that loss of *MED12* is sufficient to rescue the
203 stunted growth of *ref4-3* in terms of rosette size (Fig. 2b). Notably, the resulting double mutants
204 also exhibited a late flowering phenotype that was not observed in either *ref4-3* or *med12* single
205 mutants under the same growth condition, indicating that the flowering phenotype is a result of a
206 synthetic interaction between *ref4-3* and *med12*.

207 The restored growth of *ref4-3 cdk8-1* raised the question of whether *CDK8* is required for growth
208 repression in other lignin-deficient mutants. Among the *ref* mutants, *ref8-1*, a mutant deficient in
209 the gene encoding the phenylpropanoid biosynthetic enzyme *p*-coumaroyl shikimate 3'-
210 hydroxylase, is similar to *ref4-3* in that its phenylpropanoid metabolism is repressed and it exhibits
211 stunted growth (Bonawitz *et al.*, 2014). Moreover, loss of *MED5* restores the stunted growth and
212 transcriptional reprogramming of *ref8-1*, suggesting that the dwarfism of this other lignin-deficient
213 mutant requires intact Mediator (Bonawitz *et al.*, 2014). To elucidate the relationship between
214 *CDK8* and the stunted growth of *ref8*, we generated *ref8-1 cdk8-1* mutants. Little, if any, growth
215 restoration was observed in the resulting double mutants compared to *ref8-1* at multiple growth
216 stages (Fig. S3). Thus, our observations indicate that *ref8-1* leads to growth repression largely
217 independent of *CDK8*.

218

219 **CDK8 is not required for down-regulation of phenylpropanoids in *ref4-3***

220 Given that *ref4-3* plays a repressive role in phenylpropanoid metabolism that can be
221 suppressed by several Mediator tail subunits (Dolan *et al.*, 2017), we next determined whether
222 loss of *CDK8* also suppresses the phenylpropanoid deficient phenotype of *ref4-3*. Because
223 sinapoylmalate is localized in the upper epidermis, it can be readily visualized *in vivo* under
224 ultraviolet (UV) light. As expected, *ref4-3* displayed a characteristic *ref* phenotype compared to
225 wild type and *cdk8-1* (Fig. 3a), indicating a decreased level of sinapoylmalate in the mutant. *ref4-3*
226 *cdk8-1* was similarly red under UV light even though the growth phenotype of *ref4-3* had been
227 reversed (Fig. 3a). The *ref* phenotype was also observed in *ref4-3 cdk8-2* and *ref4-1 cdk8-1* (Fig.

228 S4a,b). High performance liquid chromatography (HPLC) analysis confirmed these observations
229 (Fig. 3b), indicating that CDK8 is not required for *ref4-3* to repress sinapoylmalate biosynthesis.
230 Similarly, in *ref4-3*, total lignin content was reduced 40% compared to wild-type and *cdk8-1* plants
231 and in spite of the strong growth restoration seen in *ref4-3 cdk8-1*, their total lignin content
232 remained low (Fig. 3c,d). Consistent with the dispensable role of CDK8 in down-regulation of
233 phenylpropanoid metabolism in *ref4-3*, expression of either wild-type or kinase-dead CDK8 in
234 *ref4-3 cdk8-1* background did not cause any difference in sinapoylmalate accumulation compared
235 to *ref4-3 cdk8-1* (Fig. S4c). Taken together with the observation that loss of CDK8 largely rescues
236 the stunted growth of *ref4-3*, these findings indicate that the dwarfism of *ref4-3* is independent of
237 its restricted phenylpropanoid metabolism.

238

239 **The stunted growth of *ref4-3* is not dependent on the phosphorylation event introduced by
240 the G383S mutation**

241 Because the G383S mutation in the *ref4-3* allele introduces a potential phosphorylation site, we
242 wondered if the defects in growth and phenylpropanoid metabolism observed in *ref4-3* plants
243 could result from ectopic/hyper-phosphorylation of MED5 by one or more kinases, possibly
244 including CDK8 (Stout *et al.*, 2008). We also considered whether the increased side-chain size of
245 S383 in *ref4-3* could itself lead to these phenotypes, independent of phosphorylation status. To
246 distinguish between these possibilities, we generated a series of *med5* constructs in which various
247 site-directed mutants were expressed under the control of the *CINNAMATE 4-HYDROXYLASE*
248 (*C4H*) promoter (Bonawitz *et al.*, 2012) such that the transgenes would be expressed in cells
249 involved in phenylpropanoid metabolism. *MED5b* transgene was expressed at similar level across
250 all different transgenic lines, none of which was less than the expression of *MED5b* in wild-type
251 plants (Fig. S5). We then assayed transgenic *med5a/5b* double mutant plants carrying these
252 constructs for sinapoylmalate and lignin content. MED5a and MED5b share semi-redundant
253 function in repression of phenylpropanoid metabolism and *med5a/5b* double mutants have
254 increased sinapoylmalate and lignin content compared to wild type (Bonawitz *et al.*, 2012); thus,
255 expression of *C4H:MED5b* constructs with wild-type function should restore levels to that of the
256 single *med5a* mutant alone. Indeed, the control *MED5b^{G383G}* transgenic displayed normal growth
257 and accumulated sinapoylmalate and lignin content similar to that in *med5a* (Fig. 4). In contrast,
258 the *ref4-3* mimic, *MED5b^{G383S}*, showed similar dwarf phenotypes as compared with *ref4-3* and
259 accumulated less phenylpropanoids compared to *med5a* (Fig. 4). Expression of *MED5b^{G383T}*
260 containing an alternative phosphorylation site, or the phospho-mimics *MED5b^{G383D}* and
261 *MED5b^{G383E}*, also resulted in dwarfing and reduced phenylpropanoid levels (Fig. 4). In contrast,

262 expression of the non-phosphorylatable $MED5b^{G383A}$ and $MED5b^{G383V}$ had differing effects on
263 plant growth and phenylpropanoid metabolism; $MED5b^{G383A}$ was slightly dwarf and showed similar
264 sinapoylmalate levels compared to the $MED5b^{G383G}$ control, but $MED5b^{G383V}$ plants were more
265 stunted and showed sinapoylmalate levels that were intermediate between the $MED5b^{G383G}$
266 control and $MED5b^{G383S}$ (Fig. 4a,b). Because neither A nor V can be phosphorylated, but these
267 showed different plant growth phenotypes and sinapoylmalate levels, we conclude that the G383
268 residue is important to the function of MED5b, and the increased side-chain size at position 383
269 caused by substitution of S for G is likely responsible for the plant growth and phenylpropanoid
270 phenotypes associated with *ref4-3*. In contrast to sinapoylmalate, lignin levels were reduced in
271 both $MED5b^{G383A}$ and $MED5b^{G383V}$ (Fig. 4c). Thus, the reduced phenylpropanoid accumulation in
272 *ref4-3* is likely independent of the phosphorylation event introduced by the G383S mutation. We
273 note that although the D647N mutation in *ref4-1* does not introduce a novel phosphorylation in
274 MED5b, *ref4-1* mutants can also be rescued by loss of CDK8, further suggesting that the *ref4*
275 phenotypes are not dependent upon CDK8-mediated phosphorylation of MED5b.

276

277 **Disruption of CDK8 partially rescues the transcriptional reprogramming of the *ref4-3* 278 mutants**

279 Our observations on *ref4-3 cdk8-1* indicate that the phenotypes of *ref4-3* plants can be
280 genetically separated, and that dwarfism in these plants may result from aberrant gene expression
281 in biological processes other than lignin biosynthesis. we performed messenger RNA sequencing
282 (RNA-seq) using three-week-old rosettes of *ref4-3 cdk8-1* together with wild type, *cdk8-1*, *ref4-1*
283 and *ref4-3*. Principle component analysis (PCA) revealed a clear clustering of samples by
284 genotype (Fig. S6). We next determined the differentially expressed gene set in each mutant
285 compared to wild type, and performed a gene ontology (GO) term analysis focused on biological
286 processes. Compared to *ref4-3*, *ref4-1* is a weaker allele in terms of reduced phenylpropanoid
287 accumulation and stunted growth (Fig. S7a). In *ref4-1*, 2927 genes were differentially expressed
288 (Fig. S7b). More substantial gene expression changes were observed in *ref4-3*, which included
289 7770 mis-regulated genes, representing more than one-third of the expressed genes (count per
290 million (CPM) reads > 1 in 3 or more samples) (Fig. S7b). We noticed that over 90% of the
291 differentially expressed genes in *ref4-1* were also mis-regulated in *ref4-3* but with larger fold
292 change (Fig. S7b,c). This finding not only suggests that the point mutations in *ref4-1* and *ref4-3*
293 lead to a widespread transcriptional reprogramming by similar mechanisms, but also indicates
294 that our RNA-seq analysis captures subtle differences in gene expression between alleles.
295 Consistent with our previous observation (Dolan *et al.*, 2017), GO term analysis of the up-

296 regulated genes in *ref4-3* showed an enrichment of genes involved in different stress responses
297 and transcription regulation (Table S2). Up-regulated genes in *ref4-1* were also enriched for stress
298 responses except for response to UV-B and salt stress, and transcriptional regulation (Table S2).
299 In contrast to the up-regulated genes, genes that were down-regulated in *ref4-1* and *ref4-3* were
300 enriched for those involved in photosynthesis (Table S3). In *ref4-3*, genes related to ribosome
301 biogenesis and cytokinin response were also enriched among the down-regulated genes (Table
302 S3).

303 We identified 4053 genes that were mis-regulated in *cdk8-1*, 60% of which displayed reduced
304 expression compared to wild type (Fig. S8). Among the genes up-regulated in *cdk8-1*, only a
305 limited number of GO terms were enriched, namely response to light, photosynthesis, and
306 microtubule-based movement (Table S2). In contrast, transcripts related to defense response
307 were significantly over-represented among the down-regulated genes (Table S3), which is
308 consistent with the reported function of CDK8 in biotic stress responses (Zhu *et al.*, 2014).

309 Although *ref4-3 cdk8-1* displays wild-type growth, a significant number of genes remained mis-
310 regulated in the double mutant, including 3767 up-regulated genes and 4537 down-regulated
311 genes when compared to wild type. Transcripts associated with response to water deprivation
312 and abscisic acid (ABA) were the most significantly enriched among up-regulated genes (Table
313 S2), whereas the down-regulated genes were enriched for those involved in defense responses
314 (Table S3). Consistent with their *ref* phenotypes, many phenylpropanoid biosynthetic genes were
315 down-regulated in *ref4-3*, and most of them were not rescued in *ref4-3 cdk8-1* (Fig. S9).

316 Our phenotypic analysis revealed that *ref4-3* requires CDK8 to repress plant growth but not
317 phenylpropanoid metabolism. To identify the genes that are associated with the dwarf phenotype
318 of *ref4-3*, we focused on the genes that displayed altered expression in *ref4-3* compared to wild
319 type, but whose expression was rescued in *ref4-3 cdk8-1* (Fig. 5a). In total, 73 genes were
320 significantly down-regulated in *ref4-3* compared to wild type and displayed at least a partially
321 restored expression in the absence of CDK8 (FDR < 0.05, absolute value of \log_2FC > 1) (Fig. 5b,
322 Table S4). GO term analysis revealed that within this gene set, genes associated with regulation
323 of organ growth, photosynthesis and auxin-related signaling pathway were over-represented
324 (Table S5). In contrast, 378 genes were significantly up-regulated in *ref4-3* compared to wild type,
325 the abnormal expression of which was at least partially alleviated in *ref4-3 cdk8-1* (Fig. 5c, Table
326 S6). The most significantly enriched GO categories within this gene set included suberin
327 biosynthesis, lipid transport and defense responses (Table S7).

328

329 **SA biosynthesis and signaling are activated in *ref4-3* but not in *ref4-3 cdk8-1***

330 GO term analysis revealed that genes involved in defense responses, especially those respond
331 to SA, were up-regulated in *ref4-3* in a CDK8-dependent manner (Table S7). Previous studies
332 proposed that hyper-activated SA biosynthesis and signaling leads to dwarfism of
333 hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT)-RNA interference (RNAi)
334 transgenics in both *Arabidopsis* and alfalfa (Gallego-Giraldo *et al.*, 2011a,b). Thus, we wondered
335 if the aberrant activation of SA signaling could be the cause of dwarfism in *ref4-3*. In *ref4-3*, genes
336 encoding proteins involved in SA biosynthesis and storage (Fig. 6a) (Ward *et al.*, 1991; Yang *et*
337 *al.*, 1997; Dempsey *et al.*, 2011) were significantly increased in expression compared to wild type
338 and *cdk8-1* (Fig. 6b). SA signaling marker genes were also up-regulated in *ref4-3* (Fig. 6c). Loss
339 of CDK8 in *ref4-3* eliminated the up-regulation of SA biosynthetic and signaling genes (Fig. 6b,c),
340 indicating that *ref4-3* requires CDK8 to activate SA signaling. Consistent with these observations,
341 there was an enhanced accumulation of both free SA and SA conjugates in *ref4-3*, which was
342 blocked by loss of CDK8 (Fig. 6d,e). Moreover, both free SA and SA conjugates were hyper-
343 accumulated in *ref4-3* CDK8, whereas *ref4-3* CDK8^{D176A} plants accumulated wild-type level of SA
344 (Fig. 6d,e), indicating that over-accumulation of SA in *ref4-3* is dependent on the kinase activity
345 of CDK8. Taken together, our RNA-seq analysis and SA measurement demonstrate that CDK8
346 and its kinase activity is necessary for the hyper-accumulation of SA in *ref4-3*.

347 To test whether SA accumulation in *ref4-3* leads to the growth defects in these plants, we
348 crossed *ref4-3* with *salicylic acid induction deficient 2 (sid2-4)*, a mutant defective in isochorismate
349 synthase 1. We found that the growth phenotype of *ref4-3 sid2-4* was unchanged relative to *ref4-3*
350 (Fig. 6f), even though HPLC analyses revealed that both free SA and total SA levels were
351 reduced to below wild-type levels in *ref4-3 sid2-4* (Fig. 6g). We also used a mutant line with
352 disruption in *NPR1* (CS_3726, *npr1-1*) (Cao *et al.*, 1997), an essential regulator of SA signaling,
353 to generate a *ref4-3 npr1-1* double mutant. Whereas *npr1-1* mutants displayed wild-type growth,
354 *ref4-3 npr1-1* was indistinguishable from *ref4-3* (Fig. S10). These data indicate that SA
355 accumulation is not the cause of dwarfing in the mutant.

356

357 **Enhanced auxin accumulation is not sufficient to restore the stunted growth of *ref4-3***

358 Our GO term analysis suggested that auxin signaling is perturbed in *ref4-3* and rescued in *ref4-3*
359 *cdk8-1* (Table S5). Multiple genes involved in auxin signaling, including indole-3-acetic acid
360 (IAA) induced genes such as *IAA1*, *IAA7* and *IAA29*, as well as small auxin up RNA (SAUR)
361 genes including *SAUR20*, *SAUR22* and *AT5G18010* were down-regulated in *ref4-3* compared to
362 wild type (Fig. 7a). In contrast, disruption of CDK8 resulted in up-regulation of all the genes
363 mentioned above, which is consistent with a previous finding that CDK8 kinase module plays a

364 repressive role in auxin transcriptional responses (Ito *et al.*, 2016). Except for *IAA29*, which was
365 up-regulated in *ref4-3 cdk8-1* compared to wild type, the other five genes displayed wild-type
366 expression in the absence of CDK8 in the *ref4-3* background, suggesting that *ref4-3* represses
367 auxin signaling in a CDK8-dependent fashion.

368 Given that auxin plays a critical role in plant growth (Teale *et al.*, 2006), we next aimed to
369 determine whether repressed auxin signaling contributes to the dwarfism of *ref4-3*. A previous
370 study demonstrated that YUCCA6 (YUC6) functions in tryptophan-dependent auxin
371 biosynthesis, and the dominant mutant *yuc6-1D* is sufficient to cause hyperaccumulation of
372 auxin (Kim *et al.*, 2007). We therefore constructed a *ref4-3 yuc6-1D* double mutant and
373 evaluated its growth phenotype. Although introduction of *yuc6-1D* into *ref4-3* led to activation of
374 the auxin-responsive gene *At4g02520* (Fig. 7b) (Smith *et al.*, 2003) as well as high-auxin
375 developmental phenotypes including elongated petioles and narrow leaves (Fig. 7c), *ref4-3*
376 *yuc6-1D* was as dwarf as *ref4-3* (Fig. 7d), indicating that repressed auxin signaling in *ref4-3* is
377 probably not the leading cause for its stunted growth.

378

379 **Disruption of a DNA J PROTEIN C66 (DJC66) partially restores the growth deficiency of**
380 ***ref4-3***

381 Among the genes that showed greatest mis-regulation in *ref4-3*, *DJC66*, a gene encoding a
382 small J-domain containing protein, was up-regulated more than 23-fold in *ref4-3* compared to wild
383 type, and its expression was partially rescued in all *ref4-3* suppressors including *ref4-3 cdk8-1*
384 (Fig. 8a,b). While *DJC66* has not been functionally characterized, it was proposed to be critical
385 for leaf growth because of its interaction with anaphase-promoting complex subunit 8 (APC8)
386 (Arabidopsis Interactome Mapping Consortium, 2011; Schulz *et al.*, 2014), a protein involved in
387 cell cycle progression (Eloy *et al.*, 2015). To test whether *DJC66* is required for the dwarfism of
388 *ref4-3*, we crossed *ref4-3* to a T-DNA insertion line in *DJC66* (SALK_149745C, *djc66*) and
389 generated *ref4-3 djc66* double mutants. Compared to *ref4-3*, *ref4-3 djc66* displayed modest but
390 significant growth restoration (Fig. 8c,d,e,f), suggesting that the stunted growth of *ref4-3* is
391 partially dependent on *DJC66*. Moreover, like *ref4-3*, *ref4-3 djc66* had lower levels of
392 sinapoylmalate and lignin compared to wild type, indicating that the protein is not involved in the
393 suppression of phenylpropanoid metabolism and may function specifically in the dwarfing
394 phenotype of the mutant (Fig. 8g,h). Taken together, our data reveal that *DJC66* is a novel
395 suppressor that partially suppresses the stunted growth of *ref4-3*. Further, unlike all previous *ref4-*
396 *3* suppressors, *DJC66* presumably functions independent of Mediator's role in transcriptional
397 regulation because it is localized to the plastid, rather than the nucleus (Chiu *et al.*, 2013).

398

399 **Discussion**

400 In this study, we used the *Arabidopsis ref4-3* mutant to examine the function of MED5 in the
401 context of Mediator. *ref4-3* carries a missense mutation in *MED5b*, and exhibits dwarfism and
402 reduced phenylpropanoids (Stout *et al.*, 2008; Bonawitz *et al.*, 2012). Loss of MED5 leads to
403 increased phenylpropanoid accumulation in an otherwise wild-type genetic background
404 (Bonawitz *et al.*, 2012), and disruption of *MED5a* and *MED5b* can restore the phenylpropanoid-
405 deficient phenotypes of other *ref* mutants (Anderson *et al.*, 2015; Kim *et al.*, 2015). Thus, our
406 data suggest that the proteins encoded by semi-dominant *ref4* alleles mimic the action of wild-
407 type MED5 in homeostatic repression of phenylpropanoid biosynthesis, and thus provide
408 genetic tools that are complementary to biochemical approaches to investigate the interaction
409 between MED5 and other transcriptional regulators.

410 We previously reported that loss of Mediator tail module subunits MED2, MED16 or MED23
411 relieves the growth defects of *ref4-3* (Dolan *et al.*, 2017). Here, we show that loss of CDK8, a
412 kinase module subunit, has a similar effect. Unlike disruption of MED16 or MED23, loss of
413 CDK8 does not restore the restricted lignin biosynthesis in *ref4-3*, which again demonstrates
414 that the stunted growth and reduced lignin content of *ref4-3* can be genetically disentangled as
415 was found for MED2 (Dolan *et al.*, 2017).

416 The identification of CDK8 as a novel *ref4-3* suppressor also provides new evidence for the
417 functional/genetic, and potentially physical, interaction between the tail and kinase modules of
418 Mediator. *Arabidopsis* CDK8 functions together with MED25 to activate the pathogen defense
419 marker gene *PDF1.2* (Zhu *et al.*, 2014), and physical interaction between MED5 and the kinase
420 module has been suggested by several studies in mammalian cells (Ito *et al.*, 2002; Kneusel *et*
421 *al.*, 2009). Our study suggests that the interaction between MED5 and CDK8 may be preserved
422 in the *Arabidopsis* Mediator complex. Alternatively, the genetic interaction between CDK8 and
423 MED5 may reflect a functional but indirect interaction between these two subunits. Recent cryo-
424 EM structures of yeast Mediator complex revealed that the CDK8 kinase module can reversibly
425 associate with the head and middle module through the interaction between MED13 (kinase
426 module) and MED19 (middle module) (Tsai *et al.*, 2013), whereas MED5, embedded in the tail,
427 is located distal to those two modules (Tsai *et al.*, 2014). Given that the overall structure of
428 Mediator is conserved in eukaryotic systems (Tsai *et al.*, 2014), the available high-resolution
429 map of yeast Mediator (Tsai *et al.*, 2013; Tsai *et al.*, 2014) suggests that MED5 and CDK8 do
430 not physically interact with each other. Nevertheless, the potential physical interaction between
431 different Mediator subunits in plants still needs to be evaluated by future studies.

432 Although some genetic studies have shown that CDK8 has functions independent of its
433 kinase activity (Zhu *et al.*, 2014), our data demonstrate that CDK8 kinase activity is required for
434 both growth deficiency and increased SA accumulation in *ref4-3*, consistent with the critical role
435 of CDK8 with intact kinase activity in retrograde signaling and stress response (Ng *et al.*, 2013;
436 Zhu *et al.*, 2014). Because CDK8 is dispensable for normal phenylpropanoid accumulation
437 whereas MED5 is critical for this process, it is unlikely that wild-type MED5 is a general
438 substrate of CDK8, and that the phosphorylation of MED5 by CDK8 is required for
439 phenylpropanoid homeostasis.

440 The interacting partners and/or substrates of *Arabidopsis* CDK8 remain to be identified, but in
441 other eukaryotes include the C-terminal domain of Pol II, histone proteins, individual Mediator
442 tail subunits including MED2 and MED3 (Hallberg *et al.*, 2004; Gonzalez *et al.*, 2014) and
443 various transcription factors (Rzymski *et al.*, 2015; Poss *et al.*, 2016). Notably, a recent study in
444 common wheat revealed that CDK8 can phosphorylate the transcription factor wax inducer 1
445 (TaWIN1), which thereby activates TaWIN1-targeted genes and promotes very-long-chain
446 aldehyde biosynthesis (Kong & Chang, 2018). The identification of TaWIN1 as a target of CDK8
447 suggests that besides substrates of CDK8 common to all eukaryotes, CDK8 may phosphorylate
448 plant-specific transcription factors, possibly including those that are necessary for growth
449 inhibition of *ref4-3*.

450 Many plant hormones including SA and auxin play critical roles in the cross-talk between
451 growth and immunity (Kazan & Manners, 2009; Huot *et al.*, 2014). Although the stunted *ref4-3*
452 mutant hyper-accumulates SA, our data suggest that the SA content of the mutant is unrelated
453 to its dwarfism. Similarly, dwarfism of *ref8-1*, another lignin-deficient mutant, is also independent
454 of its SA accumulation (Bonawitz *et al.*, 2014). Thus, hyper-accumulation of SA is not a
455 universal mechanism underpinning dwarfism in lignin-deficient mutants. Moreover, our data
456 further show that the repressed growth in *ref4-3* is likely independent of auxin signaling.
457 Together, we conclude that perturbation of hormone signaling is not the underlying cause for
458 dwarfism associated with lignin deficiency.

459 Although *ref4-3* and *ref8-1* show multiple similarities including repressed phenylpropanoid
460 metabolism, significant changes in their transcriptome and growth deficiency independent of SA,
461 CDK8 is a suppressor of *ref4-3*, but not of *ref8-1*. In fact, while multiple MED subunits were
462 identified as suppressors of *ref4-3* (Dolan *et al.*, 2017), MED5 is the only characterized
463 suppressor that can fully restore the growth of *ref8-1* (Bonawitz *et al.*, 2014). The difference
464 between *ref4-3* and *ref8-1*, as well as previously identified low-lignin mutants, indicates that
465 multiple mechanisms exist for dwarfing in plants that co-occur with perturbed phenylpropanoid

466 metabolic phenotypes. Specifically, the dwarfism of *ref4-3* may result from abnormal
467 transcriptional reprogramming achieved by mutated MED5b itself, whereas the stunted growth
468 of *ref8-1* is due to restricted flux through phenylpropanoid pathway or an abnormal response
469 triggered by over-accumulation of phenylpropanoid pathway intermediates that requires wild-
470 type MED5 for perception.

471 Our study raises the possibility that an alternative mechanism involving chaperone pathways
472 might be involved in *ref4-3* associated dwarfism. We identified *DJC66*, encoding a co-
473 chaperone DnaJ protein, as a highly-upregulated gene in *ref4-3* that was partially rescued by
474 loss of CDK8. Similar to elimination of CDK8, loss of *DJC66* suppresses the stunted growth of
475 *ref4-3* but does not affect phenylpropanoid biosynthesis. *DJC66* interacts with the anaphase-
476 promoting complex subunit APC8, suggesting its potential role in cell cycle regulation and plant
477 growth (Schulz *et al.*, 2014; Eloy *et al.*, 2015). In addition, *DJC66* can be targeted to
478 chloroplasts, and its expression is significantly induced under heat and cold stresses (Chiu *et*
479 *al.*, 2013). Given that CDK8 is essential for retrograde signaling and general abiotic stress
480 responses (Ng *et al.*, 2013), it is likely that *DJC66* functions downstream of CDK8 in growth
481 repression of *ref4-3* (Fig. 9). Moreover, the partial growth restoration in *ref4-3 djc66* and the fact
482 that *DJC66* is only one of the DnaJ cochaperones (Chiu *et al.*, 2013) suggest that other DnaJ
483 proteins may share redundant function with *DJC66* and contribute to the stunted growth of *ref4-3*
484 as well.

485

486 **Acknowledgements**

487 This work was supported by the U.S. Department of Energy under Award DE-FG02-
488 07ER15905 and Stanford University's Global Climate and Energy Project (GCEP). We
489 acknowledge Dr. Natalia Dudareva and her group for kindly sharing their instruments and
490 providing instructions on SA measurement. We also thank Dr. Tesfaye Mengiste and Dr.
491 Yingfang Zhu for providing CDK8 constructs.

492

493 **Author Contributions**

494 X.M., V.M.W. and C.C. designed the research project; X.M., J.I. K., M.T.W. and A.K.H.
495 performed the experiments; X.M., M.T.W., V.M.W. and C.C. analyzed the data; X.M., V.M.W.
496 and C.C. wrote the manuscript.

497

498

499 **References**

500 1. **Anders S, Pyl PT, Huber W. 2015.** HTSeq—a Python framework to work with high-
501 throughput sequencing data. *Bioinformatics* **31**: 166-169.

502 2. **Anderson N, Nicholas DB, Kayleigh EN, Chapple C. 2015.** Loss of ferulate 5-hydroxylase
503 leads to Mediator-dependent inhibition of soluble phenylpropanoid biosynthesis in
504 Arabidopsis. *Plant Physiology* **169**: 1557-1567.

505 3. **Arabidopsis Interactome Mapping Consortium. 2011.** Evidence for network evolution in
506 an Arabidopsis interactome map. *Science* **333**: 601-607.

507 4. **Asturias FJ, Jiang YW, Myers LC, Gustafsson CM, Kornberg RD. 1999.** Conserved
508 structures of mediator and RNA polymerase II holoenzyme. *Science* **283**: 985-987.

509 5. **Bonawitz ND, Soltau WL, Blatchley MR, Powers BL, Hurlock AK, Seals LA, Weng J-K
510 Stout, J, Chapple C. 2012.** REF4 and RFR1, subunits of the transcriptional coregulatory
511 complex mediator, are required for phenylpropanoid homeostasis in Arabidopsis. *Journal of
512 Biological Chemistry* **287**: 5434-5445.

513 6. **Bonawitz ND, Kim JI, Tobimatsu Y, Ciesielski PN, Anderson NA, Ximenes E, Maeda J,
514 Ralph J, Donohoe BS, Ladisch M et al. 2014.** Disruption of Mediator rescues the stunted
515 growth of a lignin-deficient Arabidopsis mutant. *Nature* **509**: 376-380.

516 7. **Borggrefe T, Davis R, Erdjument-Bromage H, Tempst P, Kornberg RD. 2002.** A complex
517 of the Srb8,-9,-10, and-11 transcriptional regulatory proteins from yeast. *Journal of
518 Biological Chemistry* **277**: 44202-44207.

519 8. **Cao H, Glazebrook J, Clarke JD, Volko S, Dong X. 1997.** The Arabidopsis NPR1 gene
520 that controls systemic acquired resistance encodes a novel protein containing ankyrin
521 repeats. *Cell* **88**: 57-63.

522 9. **Chiu CC, Chen LJ, Su PH, Li HM. 2013.** Evolution of chloroplast J proteins. *PLoS ONE* **8**:
523 e70384.

524 10. **Clough SJ, Bent AF. 1998.** Floral dip: a simplified method for Agrobacterium-mediated
525 transformation of *Arabidopsis thaliana*. *Plant Journal* **16**: 735-743.

526 11. **Conaway RC, Conaway JW. 2011.** Function and regulation of the Mediator
527 complex. *Current Opinion in Genetics & Development* **21**: 225-230.

528 12. **Dempsey DMA, Vlot AC, Wildermuth MC, Klessig DF. 2011.** Salicylic acid biosynthesis
529 and metabolism. *The Arabidopsis Book* **9**: e0156.

530 13. **Dolan WL, Chapple C. 2017.** Conservation and divergence of Mediator structure and
531 function: insights from plants. *Plant Cell Physiology* **58**: 04-21.

532 **14. Dolan WL, Dilkes BP, Stout JM, Bonawitz ND, Chapple C. 2017.** Mediator Complex
533 Subunits MED2, MED5, MED16, and MED23 Genetically Interact in the Regulation of
534 Phenylpropanoid Biosynthesis. *Plant Cell* **29**: 3269-3285.

535 **15. Edgar R, Domrachev M, Lash AE. 2002.** Gene Expression Omnibus: NCBI gene
536 expression and hybridization array data repository. *Nucleic Acids Research* **30**: 207-210.

537 **16. Eloy NB, de Freitas Lima M, Ferreira PC, Inzé D. 2015.** The role of the anaphase-
538 promoting complex/cyclosome in plant growth. *Critical reviews in plant sciences* **34**: 487-
539 505.

540 **17. Gallego-Giraldo L, Jikumaru Y, Kamiya Y, Tang Y, Dixon RA. 2011.** Selective lignin
541 downregulation leads to constitutive defense response expression in alfalfa (*Medicago*
542 *sativa* L.). *New Phytologist* **190**: 627-639.

543 **18. Gallego-Giraldo L, Escamilla-Trevino L, Jackson LA, Dixon RA. 2011.** Salicylic acid
544 mediates the reduced growth of lignin down-regulated plants. *Proceedings of the National*
545 *Academy of Sciences, USA* **108**: 20814-20819.

546 **19. Gonzalez D, Hamidi N, Del Sol R, Benschop JJ, Nancy T, Li C, Francis L, Tzouros M,**
547 **Krijgsveld J, Holstege FCP, Conlan RS. 2014.** Suppression of Mediator is regulated by
548 Cdk8-dependent Grr1 turnover of the Med3 coactivator. *Proceedings of the National*
549 *Academy of Sciences, USA* **111**: 2500-2505.

550 **20. 41. Hallberg M, Polozkov GV, Hu GZ, Beve J, Gustafsson CM, Ronne H, Björklund S.**
551 **2004.** Site-specific Srb10-dependent phosphorylation of the yeast Mediator subunit Med2
552 regulates gene expression from the 2-μm plasmid. *Proceedings of the National Academy of*
553 *Sciences, USA* **101**: 3370-3375.

554 **21. Hengartner CJ, Myer VE, Liao SM, Wilson CJ, Koh SS, Young RA. 1998.** Temporal
555 regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. *Molecular*
556 *Cell* **2**: 43-53.

557 **22. Huang DW, Sherman BT, Lempicki RA. 2008.** Systematic and integrative analysis of large
558 gene lists using DAVID bioinformatics resources. *Nature Protocols* **4**: 44-57.

559 **23. Huot B, Yao J, Montgomery BL, He SY. 2014.** Growth-defense tradeoffs in plants: a
560 balancing act to optimize fitness. *Molecular Plant* **7**: 1267-1287.

561 **24. Ito J, Fukaki H, Onoda M, Li L, Li C, Tasaka M, Furutani M. 2016.** Auxin-dependent
562 compositional change in Mediator in ARF7-and ARF19-mediated transcription. *Proceedings*
563 *of the National Academy of Sciences, USA* **113**: 6562-6567.

564 **25. Ito M, Okano HJ, Darnell RB, Roeder RG. 2002.** The TRAP100 component of the
565 TRAP/Mediator complex is essential in broad transcriptional events and development. *The*
566 *EMBO Journal* **21**: 3464-3475.

567 **26. Kazan K, Manners JM. 2009.** Linking development to defense: auxin in plant-pathogen
568 interactions. *Trends in Plant Science* **14**: 373-382.

569 **27. Kim JI, Dolan WL, Anderson NA, Chapple C. 2015.** Indole glucosinolate biosynthesis
570 limits phenylpropanoid accumulation in *Arabidopsis thaliana*. *Plant Cell* **27**: 1529-1546.

571 **28. Kim JI, Sharkhuu A, Jin JB, Li P, Jeong JC, Baek D, Lee SY, Blakeslee JJ, Murphy AS,**
572 **Bohnert HJ, et al. 2007.** *yucca6*, a dominant mutation in *Arabidopsis*, affects auxin
573 accumulation and auxin-related phenotypes. *Plant Physiology* **145**: 722-735.

574 **29. Knuesel MT, Meyer KD, Bernecke C, Taatjes DJ. 2009.** The human CDK8 subcomplex is
575 a molecular switch that controls Mediator coactivator function. *Genes & Development* **23**:
576 439-451.

577 **30. Kong L, Chang C. 2018.** Suppression of wheat TaCDK8/TaWIN1 interaction negatively
578 affects germination of *Blumeria graminis* f. sp. *tritici* by interfering with very-long-chain
579 aldehyde biosynthesis. *Plant Molecular Biology* **96**: 165-178.

580 **31. Kuchin S, Yeghiyan P, Carlson M. 1995.** Cyclin-dependent protein kinase and cyclin
581 homologs SSN3 and SSN8 contribute to transcriptional control in yeast. *Proceedings of the*
582 *National Academy of Sciences, USA* **92**: 4006-4010.

583 **32. Li Y, Kim JI, Pysh L, Chapple C. 2015.** Four isoforms of *Arabidopsis thaliana* 4-coumarate:
584 CoA ligase (4CL) have overlapping yet distinct roles in phenylpropanoid metabolism. *Plant*
585 *Physiology* **169**: 2409-2421.

586 **33. Malik S, Roeder RG. 2010.** The metazoan Mediator co-activator complex as an integrative
587 hub for transcriptional regulation. *Nature Reviews Genetics* **11**: 761-773.

588 **34. McCarthy DJ, Chen Y, Smyth GK. 2012.** Differential expression analysis of multifactor
589 RNA-Seq experiments with respect to biological variation. *Nucleic Acids Research* **40**: 4288-
590 4297.

591 **35. Nemet J, Jelicic B, Rubelj I, Sopota M. 2014.** The two faces of Cdk8, a positive/negative
592 regulator of transcription. *Biochimie* **97**: 22-27.

593 **36. Ng S, Giraud E, Duncan O, Law SR, Wang Y, Xu L, Narsai R, Carrie C, Walker H, Day**
594 **DA et al. 2013.** Cyclin-dependent kinase E1 (CDKE1) provides a cellular switch in plants
595 between growth and stress responses. *Journal of Biological Chemistry* **288**: 3449-3459.

596 **37. Nozawa K, Schneider TR, & Cramer P. 2017.** Core Mediator structure at 3.4 Å extends
597 model of transcription initiation complex. *Nature* **545**: 248.

598 **38. Poss ZC, Ebmeier CC, Odell AT, Tangpeerachaikul A, Lee T, Pelish HE, Shair MD,**
599 **Dowell RD, Old WM, Taatjes DJ. 2016.** Identification of mediator kinase substrates in
600 human cells using cortistatin A and quantitative phosphoproteomics. *Cell Report* **15**: 436-
601 450.

602 **39. Rickert P, Corden JL, Lees E. 1999.** Cyclin C/CDK8 and cyclin H/CDK7/p36 are
603 biochemically distinct CTD kinases. *Oncogene* **18**: 1093-1102.

604 **40. Rozhon W, Petutschnig E, Wrzaczek M, Jonak C. 2005.** Quantification of free and total
605 salicylic acid in plants by solid-phase extraction and isocratic high-performance anion-
606 exchange chromatography. *Analytical and Bioanalytical Chemistry* **382**: 1620-1627.

607 **41. Ruegger M, Chapple C. 2001.** Mutations that reduce sinapoylmalate accumulation in
608 *Arabidopsis thaliana* define loci with diverse roles in phenylpropanoid
609 metabolism. *Genetics* **159**: 1741-1749.

610 **42. Rzymski T, Mikula M, Wiklik K, Brzózka K. 2015.** CDK8 kinase—An emerging target in
611 targeted cancer therapy. *Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics*
612 **1854**: 1617-1629.

613 **43. Schulz P, Jansseune K, Degenkolbe T, Méret M, Claeys H, Skirycz A, Teige M,**
614 **Willmitzer L, Hannah MA. 2014.** Poly (ADP-ribose) polymerase activity controls plant
615 growth by promoting leaf cell number. *PLoS ONE* **9**: e90322.

616 **44. Smith AP, Nourizadeh SD, Peer WA, XU J, Bandyopadhyay A, Murphy AS,**
617 **Goldsborough P. 2003.** *Arabidopsis AtGSTF2* is regulated by ethylene and auxin, and
618 encodes a glutathione S-transferase that interacts with flavonoids. *Plant Journal* **36**: 433-
619 442.

620 **45. Stout J, Romero-Severson E, Ruegger MO, Chapple C. 2008.** Semidominant mutations in
621 reduced epidermal fluorescence 4 reduce phenylpropanoid content in
622 *Arabidopsis*. *Genetics* **178**: 2237-2251.

623 **46. Teale WD, Paponov IA, Palme K. 2006.** Auxin in action: signalling, transport and the
624 control of plant growth and development. *Nature Reviews Molecular Cell Biology* **7**: 847-
625 859.

626 **47. Tsai KL, Sato S, Tomomori-Sato C, Conaway RC, Conaway JW, Asturias FJ. 2013.** A
627 conserved Mediator–CDK8 kinase module association regulates Mediator–RNA polymerase
628 II interaction. *Nature structural & molecular biology* **20**: 611-619.

629 **48. Tsai KL, Tomomori-Sato C, Sato S, Conaway RC, Conaway JW, Asturias FJ. 2014.**
630 Subunit architecture and functional modular rearrangements of the transcriptional mediator
631 complex. *Cell* **157**: 1430-1444.

632 **49. Tsai KL, Yu X, Gopalan S, Chao TC, Zhang Y, Florens L, Washburn MP, Murakami K,**
633 **Conaway RC, Conaway JD et al. 2017.** Mediator structure and rearrangements required
634 for holoenzyme formation. *Nature* **544**: 196-201.

635 **50. Wang W, Chen X. 2004.** HUA ENHANCER3 reveals a role for a cyclin-dependent protein
636 kinase in the specification of floral organ identity in *Arabidopsis*. *Development* **131**: 3147-
637 3156.

638 **51. Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy**
639 **P, Metraux JP, Ryals JA. 1991.** Coordinate gene activity in response to agents that induce
640 systemic acquired resistance. *Plant Cell* **3**: 1085-1094.

641 **52. Yang Y, Li L, Qu LJ. 2016.** Plant Mediator complex and its critical functions in transcription
642 regulation. *Journal of Integrative Plant Biology* **58**: 106-118.

643 **53. Yang Y, Shah J, Klessig DF. 1997.** Signal perception and transduction in plant defense
644 responses. *Genes & Development* **11**: 1621-1639.

645 **54. Zhu Y, Schluttenhoffer CM, Wang P, Fu F, Thimmapuram J, Zhu JK, Lee SY, Yun DJ,**
646 **Mengiste T. 2014.** CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity
647 to fungal pathogens through kinase-dependent and-independent functions in
648 *Arabidopsis*. *Plant Cell* **26**: 4149-4170.

649 **Supporting Information**

650 **Fig. S1** CDK8 is required for growth repression in *ref4* mutants.

651 **Fig. S2** Wild-type and kinase-dead CDK8 are expressed at similar levels in the *ref4-3*
652 *cdk8-1* background.

653 **Fig. S3** CDK8 is not necessary for *ref8-1* to repress plant growth.

654 **Fig. S4** CDK8 is dispensable for reduced phenylpropanoid accumulation in *ref4*
655 mutants.

656 **Fig. S5** *MED5b* transgene is expressed at similar level in the selected transgenic
657 mutants, all of which are comparable or more than expression of *MED5b* in wild type.

658 **Fig. S6** Principle component analysis (PCA) of the RNA-seq samples.

659 **Fig. S7** Transcriptional reprogramming in *ref4* mutants reflects the severity of alleles.

660 **Fig. S8** Comparison between wild type and *cdk8* mutants.

661 **Fig. S9** Phenylpropanoid biosynthetic genes are generally repressed in *ref4-3* and *ref4-3*
662 *cdk8-1*.

663 **Fig. S10** The stunted growth of *ref4-3* is independent of NPR1.

664 **Table S1.** Primers used in this study.

665 **Table S2.** GO term analysis of the genes that are up-regulated in *ref4-1*, *ref4-3*, *cdk8-1* and
666 *ref4-3 cdk8-1* compared to wild type respectively.

667 **Table S3.** GO term analysis of the genes that are down-regulated in *ref4-1*, *ref4-3*, *cdk8-1* and
668 *ref4-3 cdk8-1* compared to wild type respectively.

669 **Table S4.** A full list of the genes that are down-regulated in *ref4-3* and with restored expression
670 in *ref4-3 cdk8-1* (FDR < 0.05, absolute value of \log_2FC > 1).

671 **Table S5.** Gene ontology analysis for the genes that are down-regulated in *ref4-3* and that have
672 restored expression in *ref4-3 cdk8-1*.

673 **Table S6.** A full list of the genes that are up-regulated in *ref4-3* and with restored expression in
674 *ref4-3 cdk8-1* (FDR < 0.05, absolute value of \log_2FC > 1).

675 **Table S7.** Gene ontology analysis for the genes that are up-regulated in *ref4-3* and that have
676 restored expression in *ref4-3 cdk8-1*.

677 **Figure legends**

678

679 **Figure 1. CDK8 is required for *ref4-3* to repress plant growth.**

680 **(a-b)** Representative photographs of *ref4-3 cdk8-1* compared to wild-type *Arabidopsis thaliana*
681 (Columbia-0, Col-0), *ref4-3* and *cdk8-1*. *cdk8-1* is a T-DNA insertion line of CDK8, a subunit of
682 the Mediator kinase module. Soil-grown plants were compared three weeks (a) or six weeks (b)
683 after planting.

684 **(c-d)** Height (c) and rosette diameter (d) measurement of *ref4-3 cdk8-1* together with wild type,
685 *ref4-3* and *cdk8-1* after growth on soil for six weeks. Data represent mean \pm standard deviation
686 (SD) (n=10). The means were compared by one-way ANOVA, and statistically significant
687 differences ($p < 0.05$) were identified by Tukey's test and are indicated by a to c to represent
688 difference between groups.

689

690 **Figure 2. Elimination of CDK8 kinase activity is sufficient to suppress the dwarfism of**
691 ***ref4-3*.**

692 **(a)** Five-week-old soil-grown *Arabidopsis thaliana* transgenic lines overexpressing *CDK8* in a
693 *ref4-3 cdk8-1* background (*ref4-3 cdk8-1 CDK8*) together wild type, *ref4-3*, *cdk8-1* and *ref4-3*
694 *cdk8-1* respectively. *CDK8*^{D176A} indicates a kinase-dead version of CDK8 which carries a D to A
695 mutation at residue 176.

696 **(b)** Five-week-old soil-grown *ref4-3 med12* compared to wild type, *ref4-3* and *med12*
697 respectively.

698

699 **Figure 3. *ref4-3* represses phenylpropanoid metabolism independent of CDK8.**

700 **(a)** Representative photograph of wild type, *ref4-3*, *cdk8-1* and *ref4-3 cdk8-1* under ultraviolet
701 (UV) light. Plants were compared three weeks after planting.

702 **(b)** Sinapoylmalate content of three-week-old plants from each genotype determined by high-
703 performance liquid chromatography (HPLC).

704 **(c)** Total lignin content in seven-week-old stem tissues quantified by thioglycolic acid (TGA)
705 lignin analysis.

706 **(d)** Lignin monomer composition in seven-week-old stem tissues determined by the
707 derivatization followed by reductive cleavage (DFRC) method. The p-hydroxyphenyl (H),
708 guaiacyl (G) and syringyl (S) lignin subunit contents were quantified and normalized to the
709 weight of dried cell wall samples.

710 For panels b-d, data represent mean \pm SD (n=3). The means were compared by one-way
711 ANOVA, and statistically significant differences ($p < 0.05$) were identified by Tukey's test and
712 are indicated by a to b.

713

714 **Figure 4. The stunted growth and reduced phenylpropanoids of *ref4-3* is not dependent**
715 **on the phosphorylation event introduced by the G383S mutation.**

716 (a) Representative photograph of wild type, *ref4-3*, *med5a/5b*, *med5a* and *C4H* promoter-driven
717 site-directed *MED5b* mutants at G383 site in *med5a/5b* background (*med5a/5b C4H*:
718 *MED5b*^{G383*}). Plants were compared six weeks after planting. ^{**} represents the amino acid
719 substitution including G, S, T, D, E, A and V.

720 (b) Quantification of sinapoylmalate content in three-week-old wild type, *ref4-3*, *med5a/5b*,
721 *med5a* and *MED5b*^{G383*} mutants.

722 (c) Quantification of lignin content in seven-week-old wild type, *ref4-3*, *med5a/5b*, *med5a* and
723 *MED5b*^{G383*} transgenics.

724 For panels B-C, data represent the mean \pm SD (n = 3). \ddagger and $*$ indicate $p < 0.05$ (Dunnett's test)
725 when compared to *MED5b*^{G383G} and *MED5b*^{G383S}, respectively.

726

727 **Figure 5. Disruption of CDK8 rescues gene expression changes in the *ref4-3* mutant.**

728 (a) idealized histograms demonstrating the criteria for growth-related gene targets of interest.
729 The potential gene targets should either be down-regulated in *ref4-3* compared to wild type with
730 at least partial restoration of expression in *ref4-3 cdk8-1* compared to *ref4-3* (left), or up-
731 regulated in *ref4-3* compared to wild type and at least partially repressed in *ref4-3 cdk8-1*
732 compared to *ref4-3* (right). ^{**} represents the significant difference of gene expression in two
733 genotypes (FDR < 0.05, absolute value of $\log_2\text{FC} > 1$).

734 (b) The number of genes with significantly decreased expression in *ref4-3* compared to wild
735 type is represented by the left Venn diagram, while the number of genes with significantly
736 decreased expression in *ref4-3* compared to *ref4-3 cdk8-1* is represented by the right Venn
737 diagram (FDR < 0.05, absolute value of $\log_2\text{FC} > 1$).

738 (c) The number of genes with significantly increased expression in *ref4-3* compared to wild type
739 is represented by the left Venn diagram, while the number of genes with significantly decreased
740 expression in *ref4-3* compared to *ref4-3 cdk8-1* is represented by the right Venn diagram (FDR
741 < 0.05, absolute value of $\log_2\text{FC} > 1$).

742 For panels b-c, the overlapping region represents the genes that fit the criteria in the left
743 histogram and the right one in (a) respectively.

744

745 **Figure 6. Hyper-accumulation of SA in *ref4-3* is dependent on CDK8, but it is not the**
746 **major cause of dwarfing in *ref4-3*.**

747 **(a)** The SA biosynthesis and signaling pathways. SA is synthesized from the precursor
748 chorismate via isochorismate synthase 1 (ICS1). Phenylalanine ammonia lyase (PAL) catalyzes
749 the first step in a less significant SA biosynthetic pathway which has yet to be fully elucidated.
750 SA can either be converted to its glucoside form for storage by UDP-glucose dependent
751 glucosyltransferases (UGT) UGT74F1 or UGT74F2, or serve as signal molecules for plant
752 development and stress responses. The *pathogenesis-related (PR)* genes including *PR1*, *PR2*
753 and *PR5* are marker genes for SA signaling.

754 **(b-c)** Expression level (fragments per kilobase per million, FPKM) of SA biosynthetic genes (b)
755 and SA signaling marker genes (c) in wild type, *ref4-3*, *cdk8-1* and *ref4-3 cdk8-1*, determined by
756 RNA-seq analysis. Data represent mean \pm SD (n=3). ** indicates FDR < 0.05 compared to wild
757 type.

758 **(d-e)** Free SA (d) and total SA (e) in wild type, *ref4-3*, *cdk8-1* and *ref4-3 cdk8-1*, *ref4-3 cdk8-1*
759 *CDK8* and *ref4-3 cdk8-1 CDK8 D176A* quantified by HPLC using fluorescence detection. Rosettes
760 from three-week-old plants were used to perform quantification. Data represent mean \pm SD
761 (n=3). The means were compared by one-way ANOVA, and statistically significant differences
762 ($p < 0.05$) were identified by Tukey's test and are indicated by a to c.

763 **(f)** Five-week-old soil-grown *ref4-3 sid2-4* compared to wild type, *ref4-3* and *sid2-4* respectively.

764 **(g)** Free SA and total SA in wild-type, *ref4-3*, *sid2-4* and *ref4-3 sid2-4* quantified by HPLC using
765 fluorescence detection. Rosettes from three-week-old plants were used to perform
766 quantification. Data represent mean \pm SD (n=3). ** indicates $p < 0.05$ compared to wild type
767 according to Student's t-test.

768

769 **Figure 7. Enhanced auxin accumulation does not restore the stunted growth of *ref4-3*.**

770 **(a)** Expression level (FPKM) of major auxin signaling genes in wild type, *ref4-3*, *cdk8-1* and *ref4-3*
771 *cdk8-1*, determined by RNA-seq analysis. Data represent mean \pm SD (n=3). ** indicates FDR
772 < 0.05 compared to wild type using EdgeR analysis.

773 **(b)** Expression of *At4g02520* normalized to the reference gene *At1g13220* in wild type, *ref4-3*,
774 *yuc6-1D* and *ref4-3 yuc6-1D*, determined by quantitative PCR analysis. Data represent mean \pm
775 SD (n=3). The expression of *At4g02520* is not detectable (n.d.) in wild type and *ref4-3*.

776 **(c-d)** Representative photographs of three-week-old (c) and five-week-old (d) soil-grown *ref4-3*
777 *yuc6-1D* compared to wild type, *ref4-3* and *yuc6-1D*.

778

779 **Figure 8. Disruption of DJC66 partially restores the dwarfism of *ref4-3*.**

780 **(a)** Expression level (FPKM) of *DJC66* in wild type, *ref4-3*, *cdk8-1* and *ref4-3 cdk8-1*. Data
781 represent mean \pm SD (n=3). Statistically significant differences (FDR < 0.05) were indicated by
782 a to c.

783 **(b)** Expression level (FPKM) of *DJC66* in wild type, *ref4-3*, *med* T-DNA lines and *med ref4-3*
784 double mutants determined by a previous RNA-seq analysis (Dolan et al., 2017). Data represent
785 mean \pm SD (n = 3). \ddagger and $*$ indicate $p < 0.05$ (EdgeR analysis) when compared to Col-0 and
786 *ref4-3*, respectively.

787 **(c-d)** Three-week-old (c) and six-week-old (d) soil-grown *ref4-3 djc66* together with wild type,
788 *ref4-3* and *djc66*.

789 **(e-f)** Height (e) and rosette diameter (f) measurement of *ref4-3 djc66* together with wild type,
790 *ref4-3* and *djc66* after growth on soil for three weeks and six weeks respectively.

791 **(g)** Sinapoylmalate content of three-week-old wild-type, *ref4-3*, *djc66* and *ref4-3 djc66* plants
792 determined by HPLC.

793 **(h)** Total lignin content in six-week-old stem tissues quantified by TGA lignin analysis.
794 For panel e-f, Data represent mean \pm SD (n=10). For panel g-h, Data represent mean \pm SD
795 (n=3). The means were compared by one-way ANOVA, and statistically significant differences
796 ($p < 0.05$) were identified by Tukey's test and are indicated by a to c.

797

798 **Figure 9. A model of the genetic interaction between CDK8 and *ref4-3*.**

799 The findings of this study are summarized into the genetic interaction between *ref4-3* and CDK8
800 in the Mediator complex (white background), mis-regulated gene targets (light grey background)
801 and the resulting phenotypes (dark grey background). Particularly, *ref4-3* requires CDK8 with
802 intact kinase activity (indicated by CDK8^{ATP}) to activate genes involved in SA biosynthesis and
803 therefore leads to enhanced SA signaling. The kinase activity of CDK8 is required for growth
804 repression of *ref4-3*; however, elimination of the kinase activity of CDK8 does not rescue the
805 down-regulated phenylpropanoid metabolism in *ref4-3*. *DJC66* is one of the targets that are
806 related to the dwarfism of *ref4-3*, which could be downstream of CDK8.

807

808