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Summary

The Mediator complex functions as a hub for transcriptional regulation. MEDS, an
Arabidopsis Mediator tail subunit, is required for maintaining phenylpropanoid
homeostasis. A semi-dominant mutation (ref4-3) that causes a single amino acid
substitution in MED5b functions as a strong suppressor of the pathway, leading
to decreased soluble phenylpropanoid accumulation, reduced lignin content and
dwarfism. In contrast, loss of MEDS5 results in increased levels of
phenylpropanoids.

We used a reverse genetic approach to identify suppressors of ref4-3 and found
that ref4-3 requires CDK8, a kinase module subunit of Mediator, to repress plant
growth. The genetic interaction between MEDS and CDK8 was further
characterized using mRNA-sequencing (RNA-seq) and metabolite analysis.
Growth inhibition and suppression of phenylpropanoid metabolism can be
genetically separated in ref4-3 by elimination of CDK8 kinase activity; however,
the stunted growth of ref4-3 is not dependent on the phosphorylation event
introduced by the G383S mutation. In addition, rather than perturbation of lignin
biosynthesis, mis-regulation of DJC66, a gene encoding a DNAJ protein, is
involved in the dwarfism of the med5 mutants.

Together, our study reveals genetic interactions between Mediator tail and kinase
module subunits and enhances our understanding of dwarfing in

phenylpropanoid pathway mutants.

Keywords: plant Mediator, phenylpropanoids, dwarfism, CDK8 kinase activity, salicylic acid,

Arabidopsis thaliana
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Introduction

The multiprotein Mediator complex comprises about 30 subunits and serves as an integrative
hub for transcription regulation in eukaryotic systems (Malik & Roeder, 2010). The core
Mediator complex has been subdivided into head, middle and tail domains and functions as a
bridge between transcription factors and the basal transcription machinery (Asturias et al., 1999;
Tsai et al., 2014). The CDK8 kinase module, which reversibly associates with the core Mediator
complex, differentially regulates Mediator’s activity as either a co-activator or co-repressor
(Hengartner et al., 1998; Borggrefe et al., 2002). Recently, cryomicroscopy (cryo-EM) structures
of yeast and human Mediator revealed that the association between the kinase module and the
core Mediator complex is predominantly achieved through the interaction between MED13
(kinase module) and MED19 (middle module) (Tsai et al., 2013; Tsai et al., 2014). The high-
resolution cryo-EM maps not only demonstrate the interfaces between different modules of
Mediator which are critical for proper transcriptional regulation (Nozawa et al., 2017; Tsai et al.,
2017), but suggest an overall conserved structure of Mediator across different eukaryotic
systems as well.

As in other eukaryotes (Conaway & Conaway, 2011), the Mediator complex plays a role in
many aspects of plant life, including growth, development and responses to stress (Dolan &
Chapple, 2017). Despite the critical nature of the complex overall, disruption of some Mediator
subunit (MED) genes is not lethal in plants, and in many cases leads to distinctive phenotypes
(Yang et al., 2016; Dolan & Chapple, 2017). The ability to knock out specific subunits and study
the resulting phenotypes suggests that plants can be valuable eukaryotic systems to
mechanistically characterize Mediator and its involvement in plant-specific biological processes.

In addition to its role in growth and development, recent studies have demonstrated that
Mediator is required for the normal regulation of secondary metabolism in Arabidopsis.
Specifically, MED5a and MEDS5b, two MED tail subunits, are required to maintain
phenylpropanoid homeostasis (Bonawitz et al., 2012). Three reduced epidermal fluorescence 4
mutants (ref4-1, ref4-2 and ref4-3) characterized by single amino acid substitutions in MED5b
(DB47N for ref4-1 and ref4-2 and G383S for ref4-3) were isolated as strong repressors of the
phenylpropanoid pathway, indicated by decreased soluble phenylpropanoid metabolite
accumulation, reduced lignin content and dwarfism (Stout et al., 2008). In contrast, disruption of
MED5a and MED5b (med5a/5b) results in the hyper-accumulation of phenylpropanoids
(Bonawitz et al., 2012), indicating that MED5 plays a widespread role in homeostatic repression

of phenylpropanoid biosynthesis.
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A ref4-3 suppressor screen identified three tail subunits of Mediator, MED2, MED16 and
MED23, that are required for the repressive action of ref4-3 upon phenylpropanoid metabolism
and plant growth (Stout et al., 2008; Dolan et al., 2017). Disruption of either MED16 or MED23
restores soluble phenylpropanoid accumulation and growth in ref4-3 background, whereas loss
of MED2 rescues only the dwarfism of ref4-3 (Dolan et al., 2017). Transcriptome analysis of
ref4-3 revealed that genes encoding the enzymes in the phenylpropanoid pathway display only
modest changes in expression. In contrast, negative regulators of phenylpropanoid metabolism
are up-regulated compared to wild type to an extent that is positively correlated with the level of
soluble phenylpropanoid restoration in each of the suppressors (Dolan et al., 2017).

In the original ref4-3 suppressor screen, we isolated multiple alleles of med23 and med16, but
only a single allele of med2, suggesting that the screen might not have been saturated. In
addition to the tail module subunits, the dissociable CDK8 kinase module can regulate the
activity of the core Mediator complex during transcription. Although CDKS is generally
recognized as a negative regulator of transcription in yeast (Kuchin et al., 1995; Rickert et al.,
1999; Gonzalez et al., 2014), studies in mammalian systems indicate that CDK8 contributes to
both transcriptional activation and repression (Knuesel et al., 2009; Nemet et al., 2014).
Investigations in Arabidopsis revealed that CDK8 is necessary for floral organ development
(Wang & Chen, 2004), mitochondrial retrograde signaling (Ng et al., 2013), pathogen defense
(Zhu et al., 2014) and auxin signaling (Ito et al., 2016). Considering that CDK8 can activate
down-stream gene targets in a Mediator-dependent fashion, and in ref4-3, negative regulators
of the phenylpropanoid pathway show elevated steady state mRNA levels, we tested the
hypothesis that CDKS8 is required for ref4-3 to repress phenylpropanoid metabolism and plant
growth.

Here, we report that MEDS genetically interacts with CDK8 in Arabidopsis. Our data indicate
that CDKS8, and specifically its kinase activity, is required for ref4-3 to repress plant growth. In
contrast, the lignin content of ref4-3 cdk8-1 remained low compared to wild type, indicating that
low lignin content is not the cause of dwarfing in ref4-3. Although the phytohormone salicylic
acid (SA) is hyper-accumulated in ref4-3 and this phenotype can be suppressed by elimination
of CDK8 kinase activity, blocking SA biosynthesis is not sufficient to rescue the stunted growth
of ref4-3. In contrast, disruption of a gene encoding a plastid-targeted DNAJ protein that is
upregulated in ref4-3 partially suppresses this growth phenotype. Together, our data
demonstrate that growth inhibition, suppression of phenylpropanoid metabolism and hyper-
accumulation of SA can be genetically separated in ref4-3 mutants, and that chloroplast

localized chaperones might play an unexpected role in regulating plant growth.
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Materials and Methods

Plant Material and Growth Conditions

Arabidopsis thaliana ecotype Columbia-0 (Col-0) was the wild type in this study. Plants were
cultivated at a temperature of 23°C, under a long-day photoperiod (16 hr light/8 hr dark) with a
light intensity of 100 uE m™2s™". Homozygous mutants used in this study were isolated based on
previous reports, with the corresponding accession numbers and primers listed in Supporting
Information Table S1 (Cao et al., 1997; Kim et al., 2007; Bonawitz et al., 2012; Zhu et al., 2014).
Transgenic Plants

Plant binary vectors (pBA-myc) that carry either CDK8 or CDK8P'7%* driven by the 35S promoter
were transformed into ref4-3 cdk8-1 mutants by Agrobacterium tumefaciens-mediated
transformation (Clough & Bent, 1998; Zhu et al., 2014). Similarly, a series of MED5b®3% (**’
represents amino acids G, S, T, D, E, A and V) constructs were first cloned into pCC0996, a
binary vector in which transgene expression is driven by the Arabidopsis C4H promoter
(Bonawitz et al., 2012), and transformed into med5 mutants. Transgenic lines were selected
based on their resistance to Basta. The homozygous lines identified in the T3 generation were
used for phenotypic characterization. To determine the CDKS8 protein levels in the selected
transgenic lines, 0.5 g of two-week-old seedlings were harvested and prepared for crude protein
extracts in 1 mL Tris-HCI buffer (150 mM, pH 8.0). After centrifugation, 50 pL lysate from each
sample was loaded on 10% SDS-page gel and protein gel blotting was performed using anti-
MYC antibody (1:1000 dilution, Sigma M4439).

Lignin analysis

Total lignin content was quantified using extractive free cell walls by thioglycolic acid (TGA)
lignin analysis, as described previously (Li et al., 2015).

HPLC analysis of secondary metabolites

Sinapoylmalate content of three-week-old whole rosettes was quantified by HPLC as previously
reported (Dolan et al., 2017).

High-throughput mRNA sequencing

Samples of wild-type, ref4-1, ref4-3, cdk8-1 and ref4-3 cdk8-1 three-week-old rosettes were
harvested in triplicate with a randomized design. Each sample contained five whole rosettes of
the same genotype from five individual pots. RNA extraction and whole-transcriptome
sequencing were performed as previously described (Dolan et al., 2017). The RNA-seq data of
this study have been deposited in NCBI's Gene Expression Omnibus (Edgar et al., 2002) with

accession number GSE111290. The previous RNA-seq data of ref4-3 and its suppressors have
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been deposited in Gene Expression Omnibus with accession number GSE95574 (Dolan et al.,
2017).

Differential expression analysis

Count matrices for individual samples were generated for each gene using HTSeq-count
(Anders et al., 2015). Differential expression analysis was performed based on the result of
expressed genes with greater than one count per million (CPM) reads in at least three samples.
The filtered data was then subjected to edgeR (v3.12.1) analysis using generalized linear model
(GLM) approach (McCarthy et al., 2012), which was performed using statistical program R
(v3.4.1). Significance testing was performed and adjusted using Benjamini-Hochberg method,
reported as False Discovery Rate (FDR) with a cut-off at FDR < 0.05. Venn diagrams were
created with the online tool Venny (v 2.1, http://bioinfogp.cnb.csic.es/tools/venny/) and GO term
analysis was performed using the DAVID Bioinformatics Resource (v.6.8,
https://david.ncifcrf.gov/) (Huang et al., 2008).

Determination of salicylic acid levels

SA extraction and detection was performed as previously described (Rozhon et al., 2005). Both
free and total SA were quantified by HPLC using 2-methoxybenzoic acid as an internal

standard.

Results
Loss of CDKS8 rescues stunted growth in ref4 mutants

To test whether ref4-3 requires CDK8 to repress plant growth, we generated ref4-3 cdk8-1
double mutants by crossing cdk8 T-DNA insertion mutants (SALK_ 138675, cdk8-1 and
SALK 016169, cdk8-2) with ref4-3. Although ref4-3 mutants exhibit a dwarf phenotype, both ref4-
3 cdk8-1 and ref4-3 cdk8-2 are nearly normal in stature and rosette diameter (Figs 1, S1a).
Similarly, loss of CDK8 restores the growth defect in ref4-1, another allele identified from the
previous ref screen (Ruegger & Chapple, 2001) (Fig. S1b). Based on these results, we conclude
that there is a genetic interaction between CDK8 and MEDS5 in Arabidopsis, and that CDKS is
required for ref4-1 and ref4-3 to repress plant growth.

We then tested whether the growth repression in ref4-3 is dependent on the kinase activity of
CDKS8 using a transgene encoding a D176A kinase-dead version of the protein (Zhu et al., 2014;
Kong & Chang, 2018) to generate ref4-3 cdk8-1 35S:CDK8-MYC (ref4-3 CDK8) and ref4-3 cdk8-
1 35S:CDK8P'8A-MYC (ref4-3 CDK8P'"®A) transgenic plants. After five weeks on soil, ref4-3 CDK8
displayed stunted growth comparable to ref4-3, whereas ref4-3 CDK8P'"%* looked identical to ref4-
3 cdk8-1 (Fig. 2a). An anti-MYC blot revealed that CDK8 was expressed at similar levels in ref4-
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3 CDK8 and ref4-3 CDK8P'®A (Fig. S2) indicating that these phenotypes were not the result of
different levels of transgene expression. The distinct growth phenotype between ref4-3 CDK8 and
ref4-3 CDK8P'"®A indicates that it is the kinase activity of CDK8 that is essential for growth
repression in ref4-3.

In addition to CDKS8, the Arabidopsis Mediator kinase module consists of C-type cyclin (cycC),
MED12 and MED13. MED12 is necessary for CDK8 to demonstrate kinase activity (Knuesel et
al.,, 2009). To independently evaluate whether CDK8 kinase activity is required for ref4-3
phenotypes, we used a T-DNA insertion line in MED12 (SALK_108241, med12) to generate ref4-
3 med12 double mutants. As with CDK8, we found that loss of MED12 is sufficient to rescue the
stunted growth of ref4-3 in terms of rosette size (Fig. 2b). Notably, the resulting double mutants
also exhibited a late flowering phenotype that was not observed in either ref4-3 or med12 single
mutants under the same growth condition, indicating that the flowering phenotype is a result of a
synthetic interaction between ref4-3 and med12.

The restored growth of ref4-3 cdk8-1 raised the question of whether CDK8 is required for growth
repression in other lignin-deficient mutants. Among the ref mutants, ref8-1, a mutant deficient in
the gene encoding the phenylpropanoid biosynthetic enzyme p-coumaroyl shikimate 3'-
hydroxylase, is similar to ref4-3 in that its phenylpropanoid metabolism is repressed and it exhibits
stunted growth (Bonawitz et al., 2014). Moreover, loss of MED5 restores the stunted growth and
transcriptional reprogramming of ref8-1, suggesting that the dwarfism of this other lignin-deficient
mutant requires intact Mediator (Bonawitz et al., 2014). To elucidate the relationship between
CDKS8 and the stunted growth of ref8, we generated ref8-1 cdk8-1 mutants. Little, if any, growth
restoration was observed in the resulting double mutants compared to ref8-1 at multiple growth
stages (Fig. S3). Thus, our observations indicate that ref8-1 leads to growth repression largely
independent of CDKS.

CDKa8 is not required for down-regulation of phenylpropanoids in ref4-3

Given that ref4-3 plays a repressive role in phenylpropanoid metabolism that can be
suppressed by several Mediator tail subunits (Dolan et al., 2017), we next determined whether
loss of CDK8 also suppresses the phenylpropanoid deficient phenotype of ref4-3. Because
sinapoylmalate is localized in the upper epidermis, it can be readily visualized in vivo under
ultraviolet (UV) light. As expected, ref4-3 displayed a characteristic ref phenotype compared to
wild type and cdk8-1 (Fig. 3a), indicating a decreased level of sinapoylmalate in the mutant. ref4-
3 cdk8-1 was similarly red under UV light even though the growth phenotype of ref4-3 had been
reversed (Fig. 3a). The ref phenotype was also observed in ref4-3 cdk8-2 and ref4-1 cdk8-1 (Fig.
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S4a,b). High performance liquid chromatography (HPLC) analysis confirmed these observations
(Fig. 3b), indicating that CDK8 is not required for ref4-3 to repress sinapoylmalate biosynthesis.
Similarly, in ref4-3, total lignin content was reduced 40% compared to wild-type and cdk8-1 plants
and in spite of the strong growth restoration seen in ref4-3 cdk8-1, their total lignin content
remained low (Fig. 3c,d). Consistent with the dispensable role of CDK8 in down-regulation of
phenylpropanoid metabolism in ref4-3, expression of either wild-type or kinase-dead CDK8 in
ref4-3 cdk8-1 background did not cause any difference in sinapoylmalate accumulation compared
to ref4-3 cdk8-1 (Fig. S4c). Taken together with the observation that loss of CDK8 largely rescues
the stunted growth of ref4-3, these findings indicate that the dwarfism of ref4-3 is independent of

its restricted phenylpropanoid metabolism.

The stunted growth of ref4-3 is not dependent on the phosphorylation event introduced by
the G383S mutation

Because the G383S mutation in the ref4-3 allele introduces a potential phosphorylation site, we
wondered if the defects in growth and phenylpropanoid metabolism observed in ref4-3 plants
could result from ectopic/hyper-phosphorylation of MED5 by one or more kinases, possibly
including CDKS8 (Stout et al., 2008). We also considered whether the increased side-chain size of
S383 in ref4-3 could itself lead to these phenotypes, independent of phosphorylation status. To
distinguish between these possibilities, we generated a series of med5 constructs in which various
site-directed mutants were expressed under the control of the CINNAMATE 4-HYDROXYLASE
(C4H) promoter (Bonawitz et al., 2012) such that the transgenes would be expressed in cells
involved in phenylpropanoid metabolism. MED5b transgene was expressed at similar level across
all different transgenic lines, none of which was less than the expression of MEDSb in wild-type
plants (Fig. S5). We then assayed transgenic medba/5b double mutant plants carrying these
constructs for sinapoylmalate and lignin content. MED5a and MEDSb share semi-redundant
function in repression of phenylpropanoid metabolism and medba/5b double mutants have
increased sinapoylmalate and lignin content compared to wild type (Bonawitz et al., 2012); thus,
expression of C4H:MED5b constructs with wild-type function should restore levels to that of the
single med5a mutant alone. Indeed, the control MED5b%3%3€ transgenic displayed normal growth
and accumulated sinapoylmalate and lignin content similar to that in medba (Fig. 4). In contrast,
the ref4-3 mimic, MED5b®%3, showed similar dwarf phenotypes as compared with ref4-3 and
accumulated less phenylpropanoids compared to med5a (Fig. 4). Expression of MED5bC383T
containing an alternative phosphorylation site, or the phospho-mimics MED5b%#P and

MED5b%38E, also resulted in dwarfing and reduced phenylpropanoid levels (Fig. 4). In contrast,
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expression of the non-phosphorylatable MED5b%%%* and MED5b®*®% had differing effects on
plant growth and phenylpropanoid metabolism; MED5b%8%*A was slightly dwarf and showed similar
sinapoylmalate levels compared to the MED5b%383C control, but MED5b®%3 plants were more
stunted and showed sinapoylmalate levels that were intermediate between the MED5b®383¢
control and MED5b%3#3S (Fig. 4a,b). Because neither A nor V can be phosphorylated, but these
showed different plant growth phenotypes and sinapoylmalate levels, we conclude that the G383
residue is important to the function of MED5b, and the increased side-chain size at position 383
caused by substitution of S for G is likely responsible for the plant growth and phenylpropanoid
phenotypes associated with ref4-3. In contrast to sinapoylmalate, lignin levels were reduced in
both MED5b®383* and MED5b%*8%V (Fig. 4c). Thus, the reduced phenylpropanoid accumulation in
ref4-3 is likely independent of the phosphorylation event introduced by the G383S mutation. We
note that although the D647N mutation in ref4-1 does not introduce a novel phosphorylation in
MEDSb, ref4-1 mutants can also be rescued by loss of CDKS8, further suggesting that the ref4
phenotypes are not dependent upon CDK8-mediated phosphorylation of MED5b.

Disruption of CDK8 partially rescues the transcriptional reprogramming of the ref4-3
mutants

Our observations on ref4-3 cdk8-1 indicate that the phenotypes of ref4-3 plants can be
genetically separated, and that dwarfism in these plants may result from aberrant gene expression
in biological processes other than lignin biosynthesis. we performed messenger RNA sequencing
(RNA-seq) using three-week-old rosettes of ref4-3 cdk8-1 together with wild type, cdk8-1, ref4-1
and ref4-3. Principle component analysis (PCA) revealed a clear clustering of samples by
genotype (Fig. S6). We next determined the differentially expressed gene set in each mutant
compared to wild type, and performed a gene ontology (GO) term analysis focused on biological
processes. Compared to ref4-3, ref4-1 is a weaker allele in terms of reduced phenylpropanoid
accumulation and stunted growth (Fig. S7a). In ref4-1, 2927 genes were differentially expressed
(Fig. S7b). More substantial gene expression changes were observed in ref4-3, which included
7770 mis-regulated genes, representing more than one-third of the expressed genes (count per
million (CPM) reads > 1 in 3 or more samples) (Fig. S7b). We noticed that over 90% of the
differentially expressed genes in ref4-1 were also mis-regulated in ref4-3 but with larger fold
change (Fig. S7b,c). This finding not only suggests that the point mutations in ref4-1 and ref4-3
lead to a widespread transcriptional reprogramming by similar mechanisms, but also indicates
that our RNA-seq analysis captures subtle differences in gene expression between alleles.

Consistent with our previous observation (Dolan et al., 2017), GO term analysis of the up-
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regulated genes in ref4-3 showed an enrichment of genes involved in different stress responses
and transcription regulation (Table S2). Up-regulated genes in ref4-1 were also enriched for stress
responses except for response to UV-B and salt stress, and transcriptional regulation (Table S2).
In contrast to the up-regulated genes, genes that were down-regulated in ref4-1 and ref4-3 were
enriched for those involved in photosynthesis (Table S3). In ref4-3, genes related to ribosome
biogenesis and cytokinin response were also enriched among the down-regulated genes (Table
S3).

We identified 4053 genes that were mis-regulated in cdk8-1, 60% of which displayed reduced
expression compared to wild type (Fig. S8). Among the genes up-regulated in cdk8-1, only a
limited number of GO terms were enriched, namely response to light, photosynthesis, and
microtubule-based movement (Table S2). In contrast, transcripts related to defense response
were significantly over-represented among the down-regulated genes (Table S3), which is
consistent with the reported function of CDK8 in biotic stress responses (Zhu et al., 2014).

Although refd4-3 cdk8-1 displays wild-type growth, a significant number of genes remained mis-
regulated in the double mutant, including 3767 up-regulated genes and 4537 down-regulated
genes when compared to wild type. Transcripts associated with response to water deprivation
and abscisic acid (ABA) were the most significantly enriched among up-regulated genes (Table
S2), whereas the down-regulated genes were enriched for those involved in defense responses
(Table S3). Consistent with their ref phenotypes, many phenylpropanoid biosynthetic genes were
down-regulated in ref4-3, and most of them were not rescued in ref4-3 cdk8-1 (Fig. S9).

Our phenotypic analysis revealed that ref4-3 requires CDKS8 to repress plant growth but not
phenylpropanoid metabolism. To identify the genes that are associated with the dwarf phenotype
of ref4-3, we focused on the genes that displayed altered expression in ref4-3 compared to wild
type, but whose expression was rescued in ref4-3 cdk8-1 (Fig. 5a). In total, 73 genes were
significantly down-regulated in ref4-3 compared to wild type and displayed at least a partially
restored expression in the absence of CDK8 (FDR < 0.05, absolute value of log.FC > 1) (Fig. 5b,
Table S4). GO term analysis revealed that within this gene set, genes associated with regulation
of organ growth, photosynthesis and auxin-related signaling pathway were over-represented
(Table S5). In contrast, 378 genes were significantly up-regulated in ref4-3 compared to wild type,
the abnormal expression of which was at least partially alleviated in ref4-3 cdk8-1 (Fig. 5c, Table
S6). The most significantly enriched GO categories within this gene set included suberin

biosynthesis, lipid transport and defense responses (Table S7).

SA biosynthesis and signaling are activated in ref4-3 but not in ref4-3 cdk8-1

10
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GO term analysis revealed that genes involved in defense responses, especially those respond
to SA, were up-regulated in ref4-3 in a CDK8-dependent manner (Table S7). Previous studies
proposed that hyper-activated SA biosynthesis and signaling leads to dwarfism of
hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT)-RNA interference (RNAI)
transgenics in both Arabidopsis and alfalfa (Gallego-Giraldo et al., 2011a,b). Thus, we wondered
if the aberrant activation of SA signaling could be the cause of dwarfism in ref4-3. In ref4-3, genes
encoding proteins involved in SA biosynthesis and storage (Fig. 6a) (Ward et al., 1991; Yang et
al., 1997; Dempsey et al., 2011) were significantly increased in expression compared to wild type
and cdk8-1 (Fig. 6b). SA signaling marker genes were also up-regulated in ref4-3 (Fig. 6¢). Loss
of CDKS8 in ref4-3 eliminated the up-regulation of SA biosynthetic and signaling genes (Fig. 6b,c),
indicating that ref4-3 requires CDKS8 to activate SA signaling. Consistent with these observations,
there was an enhanced accumulation of both free SA and SA conjugates in ref4-3, which was
blocked by loss of CDK8 (Fig. 6d,e). Moreover, both free SA and SA conjugates were hyper-
accumulated in ref4-3 CDK8, whereas ref4-3 CDK8P'7* plants accumulated wild-type level of SA
(Fig. 6d,e), indicating that over-accumulation of SA in ref4-3 is dependent on the kinase activity
of CDK8. Taken together, our RNA-seq analysis and SA measurement demonstrate that CDK8
and its kinase activity is necessary for the hyper-accumulation of SA in ref4-3.

To test whether SA accumulation in ref4-3 leads to the growth defects in these plants, we
crossed ref4-3 with salicylic acid induction deficient 2 (sid2-4), a mutant defective in isochorismate
synthase 1. We found that the growth phenotype of ref4-3 sid2-4 was unchanged relative to ref4-
3 (Fig. 6f), even though HPLC analyses revealed that both free SA and total SA levels were
reduced to below wild-type levels in ref4-3 sid2-4 (Fig. 6g). We also used a mutant line with
disruption in NPR1 (CS_3726, npr1-1) (Cao et al., 1997), an essential regulator of SA signaling,
to generate a ref4-3 npr1-1 double mutant. Whereas npr1-1 mutants displayed wild-type growth,
ref4-3 npri1-1 was indistinguishable from ref4-3 (Fig. S10). These data indicate that SA

accumulation is not the cause of dwarfing in the mutant.

Enhanced auxin accumulation is not sufficient to restore the stunted growth of ref4-3

Our GO term analysis suggested that auxin signaling is perturbed in ref4-3 and rescued in ref4-
3 cdk8-1 (Table S5). Multiple genes involved in auxin signaling, including indole-3-acetic acid
(IAA) induced genes such as IAA1, IAA7 and IAA29, as well as small auxin up RNA (SAUR)
genes including SAUR20, SAUR22 and AT5G 18010 were down-regulated in ref4-3 compared to
wild type (Fig. 7a). In contrast, disruption of CDK8 resulted in up-regulation of all the genes

mentioned above, which is consistent with a previous finding that CDK8 kinase module plays a
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repressive role in auxin transcriptional responses (lto et al., 2016). Except for IAA29, which was
up-regulated in ref4-3 cdk8-1 compared to wild type, the other five genes displayed wild-type
expression in the absence of CDK8 in the ref4-3 background, suggesting that ref4-3 represses
auxin signaling in a CDK8-dependent fashion.

Given that auxin plays a critical role in plant growth (Teale et al., 2006), we next aimed to
determine whether repressed auxin signaling contributes to the dwarfism of ref4-3. A previous
study demonstrated that YUCCAG (YUCB) functions in tryptophan-dependent auxin
biosynthesis, and the dominant mutant yuc6-1D is sufficient to cause hyperaccumulation of
auxin (Kim et al., 2007). We therefore constructed a ref4-3 yuc6-1D double mutant and
evaluated its growth phenotype. Although introduction of yuc6-1D into ref4-3 led to activation of
the auxin-responsive gene At4g02520 (Fig. 7b) (Smith et al., 2003) as well as high-auxin
developmental phenotypes including elongated petioles and narrow leaves (Fig. 7c), ref4-3
yuc6-1D was as dwarf as ref4-3 (Fig. 7d), indicating that repressed auxin signaling in ref4-3 is

probably not the leading cause for its stunted growth.

Disruption of a DNA J PROTEIN C66 (DJC66) partially restores the growth deficiency of
ref4-3

Among the genes that showed greatest mis-regulation in ref4-3, DJC66, a gene encoding a
small J-domain containing protein, was up-regulated more than 23-fold in ref4-3 compared to wild
type, and its expression was partially rescued in all ref4-3 suppressors including ref4-3 cdk8-1
(Fig. 8a,b). While DJC66 has not been functionally characterized, it was proposed to be critical
for leaf growth because of its interaction with anaphase-promoting complex subunit 8 (APC8)
(Arabidopsis Interactome Mapping Consortium, 2011; Schulz et al., 2014), a protein involved in
cell cycle progression (Eloy et al., 2015). To test whether DJC66 is required for the dwarfism of
ref4-3, we crossed ref4-3 to a T-DNA insertion line in DJC66 (SALK 149745C, djc66) and
generated ref4-3 djc66 double mutants. Compared to ref4-3, ref4-3 djc66 displayed modest but
significant growth restoration (Fig. 8c,d,e,f), suggesting that the stunted growth of ref4-3 is
partially dependent on DJC66. Moreover, like ref4-3, ref4-3 djc66 had lower levels of
sinapoylmalate and lignin compared to wild type, indicating that the protein is not involved in the
suppression of phenylpropanoid metabolism and may function specifically in the dwarfing
phenotype of the mutant (Fig. 8g,h). Taken together, our data reveal that DJC66 is a novel
suppressor that partially suppresses the stunted growth of ref4-3. Further, unlike all previous ref4-
3 suppressors, DJC66 presumably functions independent of Mediator’s role in transcriptional

regulation because it is localized to the plastid, rather than the nucleus (Chiu et al., 2013).
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Discussion

In this study, we used the Arabidopsis ref4-3 mutant to examine the function of MEDS5 in the
context of Mediator. ref4-3 carries a missense mutation in MED5b, and exhibits dwarfism and
reduced phenylpropanoids (Stout et al., 2008; Bonawitz et al., 2012). Loss of MEDS5 leads to
increased phenylpropanoid accumulation in an otherwise wild-type genetic background
(Bonawitz et al., 2012), and disruption of MEDba and MEDS5b can restore the phenylpropanoid-
deficient phenotypes of other ref mutants (Anderson et al., 2015; Kim et al., 2015). Thus, our
data suggest that the proteins encoded by semi-dominant ref4 alleles mimic the action of wild-
type MEDS5 in homeostatic repression of phenylpropanoid biosynthesis, and thus provide
genetic tools that are complementary to biochemical approaches to investigate the interaction
between MEDS5 and other transcriptional regulators.

We previously reported that loss of Mediator tail module subunits MED2, MED16 or MED23
relieves the growth defects of ref4-3 (Dolan et al., 2017). Here, we show that loss of CDK8, a
kinase module subunit, has a similar effect. Unlike disruption of MED16 or MED23, loss of
CDKS8 does not restore the restricted lignin biosynthesis in ref4-3, which again demonstrates
that the stunted growth and reduced lignin content of ref4-3 can be genetically disentangled as
was found for MED2 (Dolan et al., 2017).

The identification of CDK8 as a novel ref4-3 suppressor also provides new evidence for the
functional/genetic, and potentially physical, interaction between the tail and kinase modules of
Mediator. Arabidopsis CDK8 functions together with MED25 to activate the pathogen defense
marker gene PDF1.2 (Zhu et al., 2014), and physical interaction between MED5 and the kinase
module has been suggested by several studies in mammalian cells (Ito et al., 2002; Kneusel et
al., 2009). Our study suggests that the interaction between MED5 and CDK8 may be preserved
in the Arabidopsis Mediator complex. Alternatively, the genetic interaction between CDK8 and
MEDS5 may reflect a functional but indirect interaction between these two subunits. Recent cryo-
EM structures of yeast Mediator complex revealed that the CDK8 kinase module can reversibly
associate with the head and middle module through the interaction between MED13 (kinase
module) and MED19 (middle module) (Tsai et al., 2013), whereas MED5, embedded in the talil,
is located distal to those two modules (Tsai et al., 2014). Given that the overall structure of
Mediator is conserved in eukaryotic systems (Tsai et al., 2014), the available high-resolution
map of yeast Mediator (Tsai et al., 2013; Tsai et al., 2014) suggests that MED5 and CDK8 do
not physically interact with each other. Nevertheless, the potential physical interaction between

different Mediator subunits in plants still needs to be evaluated by future studies.
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Although some genetic studies have shown that CDK8 has functions independent of its
kinase activity (Zhu et al., 2014), our data demonstrate that CDK8 kinase activity is required for
both growth deficiency and increased SA accumulation in ref4-3, consistent with the critical role
of CDK8 with intact kinase activity in retrograde signaling and stress response (Ng et al., 2013;
Zhu et al., 2014). Because CDKS8 is dispensable for normal phenylpropanoid accumulation
whereas MEDS is critical for this process, it is unlikely that wild-type MEDS is a general
substrate of CDKS8, and that the phosphorylation of MEDS by CDKS8 is required for
phenylpropanoid homeostasis.

The interacting partners and/or substrates of Arabidopsis CDK8 remain to be identified, but in
other eukaryotes include the C-terminal domain of Pol Il, histone proteins, individual Mediator
tail subunits including MED2 and MED3 (Hallberg et al., 2004; Gonzalez et al., 2014) and
various transcription factors (Rzymski et al., 2015; Poss et al., 2016). Notably, a recent study in
common wheat revealed that CDK8 can phosphorylate the transcription factor wax inducer 1
(TaWIN1), which thereby activates TaWIN1-targeted genes and promotes very-long-chain
aldehyde biosynthesis (Kong & Chang, 2018). The identification of TaWIN1 as a target of CDK8
suggests that besides substrates of CDK8 common to all eukaryotes, CDK8 may phosphorylate
plant-specific transcription factors, possibly including those that are necessary for growth
inhibition of ref4-3.

Many plant hormones including SA and auxin play critical roles in the cross-talk between
growth and immunity (Kazan & Manners, 2009; Huot et al., 2014). Although the stunted ref4-3
mutant hyper-accumulates SA, our data suggest that the SA content of the mutant is unrelated
to its dwarfism. Similarly, dwarfism of ref8-1, another lignin-deficient mutant, is also independent
of its SA accumulation (Bonawitz et al., 2014). Thus, hyper-accumulation of SA is not a
universal mechanism underpinning dwarfism in lignin-deficient mutants. Moreover, our data
further show that the repressed growth in ref4-3 is likely independent of auxin signaling.
Together, we conclude that perturbation of hormone signaling is not the underlying cause for
dwarfism associated with lignin deficiency.

Although ref4-3 and ref8-1 show multiple similarities including repressed phenylpropanoid
metabolism, significant changes in their transcriptome and growth deficiency independent of SA,
CDKS8 is a suppressor of ref4-3, but not of ref8-1. In fact, while multiple MED subunits were
identified as suppressors of ref4-3 (Dolan et al., 2017), MED5 is the only characterized
suppressor that can fully restore the growth of ref8-1 (Bonawitz et al., 2014). The difference
between ref4-3 and ref8-1, as well as previously identified low-lignin mutants, indicates that

multiple mechanisms exist for dwarfing in plants that co-occur with perturbed phenylpropanoid
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metabolic phenotypes. Specifically, the dwarfism of ref4-3 may result from abnormal
transcriptional reprogramming achieved by mutated MED5b itself, whereas the stunted growth
of ref8-1 is due to restricted flux through phenylpropanoid pathway or an abnormal response
triggered by over-accumulation of phenylpropanoid pathway intermediates that requires wild-
type MEDS5 for perception.

Our study raises the possibility that an alternative mechanism involving chaperone pathways
might be involved in ref4-3 associated dwarfism. We identified DJC66, encoding a co-
chaperone DnadJ protein, as a highly-upregulated gene in ref4-3 that was partially rescued by
loss of CDK8. Similar to elimination of CDKS8, loss of DJC66 suppresses the stunted growth of
ref4-3 but does not affect phenylpropanoid biosynthesis. DJCG66 interacts with the anaphase-
promoting complex subunit APC8, suggesting its potential role in cell cycle regulation and plant
growth (Schulz et al., 2014; Eloy et al., 2015). In addition, DJC66 can be targeted to
chloroplasts, and its expression is significantly induced under heat and cold stresses (Chiu et
al., 2013). Given that CDK8 is essential for retrograde signaling and general abiotic stress
responses (Ng et al., 2013), it is likely that DJC66 functions downstream of CDK8 in growth
repression of ref4-3 (Fig. 9). Moreover, the partial growth restoration in ref4-3 djc66 and the fact
that DJCG66 is only one of the DnaJ cochaperones (Chiu et al., 2013) suggest that other DnaJ
proteins may share redundant function with DJC66 and contribute to the stunted growth of ref4-

3 as well.
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Supporting Information

Fig. S1 CDKS8 is required for growth repression in ref4 mutants.

Fig. S2 Wild-type and kinase-dead CDK8 are expressed at similar levels in the ref4-3
cdk8-1 background.

Fig. S3 CDKS8 is not necessary for ref8-1 to repress plant growth.

Fig. S4 CDKS8 is dispensable for reduced phenylpropanoid accumulation in ref4
mutants.

Fig. S5 MED5b transgene is expressed at similar level in the selected transgenic
mutants, all of which are comparable or more than expression of MEDSb in wild type.
Fig. S6 Principle component analysis (PCA) of the RNA-seq samples.

Fig. S7 Transcriptional reprogramming in ref4 mutants reflects the severity of alleles.
Fig. S8 Comparison between wild type and cdk8 mutants.

Fig. S9 Phenylpropanoid biosynthetic genes are generally repressed in ref4-3 and ref4-
3 cdk8-1.

Fig. S10 The stunted growth of ref4-3 is independent of NPR1.

Table S1. Primers used in this study.

Table S2. GO term analysis of the genes that are up-regulated in ref4-1, ref4-3, cdk8-1 and
ref4-3 cdk8-1 compared to wild type respectively.

Table S3. GO term analysis of the genes that are down-regulated in ref4-1, ref4-3, cdk8-1 and
ref4-3 cdk8-1 compared to wild type respectively.

Table S4. A full list of the genes that are down-regulated in ref4-3 and with restored expression
in ref4-3 cdk8-1 (FDR < 0.05, absolute value of log2FC > 1).

Table S5. Gene ontology analysis for the genes that are down-regulated in ref4-3 and that have
restored expression in ref4-3 cdk8-1.

Table S6. A full list of the genes that are up-regulated in ref4-3 and with restored expression in
ref4-3 cdk8-1 (FDR < 0.05, absolute value of logoFC > 1).

Table S7. Gene ontology analysis for the genes that are up-regulated in ref4-3 and that have

restored expression in ref4-3 cdk8-1.
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Figure legends

Figure 1. CDKS is required for ref4-3 to repress plant growth.

(a-b) Representative photographs of ref4-3 cdk8-1 compared to wild-type Arabidopsis thaliana
(Columbia-0, Col-0), ref4-3 and cdk8-1. cdk8-1 is a T-DNA insertion line of CDKS8, a subunit of
the Mediator kinase module. Soil-grown plants were compared three weeks (a) or six weeks (b)
after planting.

(c-d) Height (c) and rosette diameter (d) measurement of ref4-3 cdk8-1 together with wild type,
ref4-3 and cdk8-1 after growth on soil for six weeks. Data represent mean * standard deviation
(SD) (n=10). The means were compared by one-way ANOVA, and statistically significant
differences (p < 0.05) were identified by Tukey’s test and are indicated by a to c to represent

difference between groups.

Figure 2. Elimination of CDK8 kinase activity is sufficient to suppress the dwarfism of
ref4-3.

(a) Five-week-old soil-grown Arabidopsis thaliana transgenic lines overexpressing CDK8 in a
ref4-3 cdk8-1 background (ref4-3 cdk8-1 CDK8) together wild type, ref4-3, cdk8-1 and ref4-3
cdk8-1 respectively. CDK8P'"%* indicates a kinase-dead version of CDK8 which carries a D to A
mutation at residue 176.

(b) Five-week-old soil-grown ref4-3 med12 compared to wild type, ref4-3 and med12

respectively.

Figure 3. ref4-3 represses phenylpropanoid metabolism independent of CDKS.

(a) Representative photograph of wild type, ref4-3, cdk8-1 and ref4-3 cdk8-1 under ultraviolet
(UV) light. Plants were compared three weeks after planting.

(b) Sinapoylmalate content of three-week-old plants from each genotype determined by high-
performance liquid chromatography (HPLC).

(c) Total lignin content in seven-week-old stem tissues quantified by thiolglycolic acid (TGA)
lignin analysis.

(d) Lignin monomer composition in seven-week-old stem tissues determined by the
derivatization followed by reductive cleavage (DFRC) method. The p-hydroxyphenyl (H),
guaiacyl (G) and syringyl (S) lignin subunit contents were quantified and normalized to the

weight of dried cell wall samples.
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For panels b-d, data represent mean + SD (n=3). The means were compared by one-way
ANOVA, and statistically significant differences (p < 0.05) were identified by Tukey’s test and

are indicated by a to b.

Figure 4. The stunted growth and reduced phenylpropanoids of ref4-3 is not dependent
on the phosphorylation event introduced by the G383S mutation.

(a) Representative photograph of wild type, ref4-3, med5a/5b, med5a and C4H promoter-driven
site-directed MEDSb mutants at G383 site in medba/bb background (medba/5b C4H:
MED5b%38"). Plants were compared six weeks after planting. *’ represents the amino acid
substitution including G, S, T, D, E, Aand V.

(b) Quantification of sinapoylmalate content in three-week-old wild type, ref4-3, med5a/5b,
med5a and MED5b%#%" mutants.

(c) Quantification of lignin content in seven-week-old wild type, ref4-3, medba/5b, med5a and
MED5b®3% transgenics.

For panels B-C, data represent the mean + SD (n = 3).  and * indicate p < 0.05 (Dunnett’s test)
when compared to MED5b%383¢ and MED5b%8%S, respectively.

Figure 5. Disruption of CDK8 rescues gene expression changes in the ref4-3 mutant.

(a) idealized histograms demonstrating the criteria for growth-related gene targets of interest.
The potential gene targets should either be down-regulated in ref4-3 compared to wild type with
at least partial restoration of expression in ref4-3 cdk8-1 compared to ref4-3 (left), or up-
regulated in ref4-3 compared to wild type and at least partially repressed in ref4-3 cdk8-1
compared to ref4-3 (right). *’ represents the significant difference of gene expression in two
genotypes (FDR <0.05, absolute value of log.FC > 1).

(b) The number of genes with significantly decreased expression in ref4-3 compared to wild
type is represented by the left Venn diagram, while the number of genes with significantly
decreased expression in ref4-3 compared to ref4-3 cdk8-1 is represented by the right Venn
diagram (FDR < 0.05, absolute value of log,FC > 1).

(c) The number of genes with significantly increased expression in ref4-3 compared to wild type
is represented by the left Venn diagram, while the number of genes with significantly decreased
expression in ref4-3 compared to ref4-3 cdk8-1 is represented by the right Venn diagram (FDR
< 0.05, absolute value of log2FC > 1).

For panels b-c, the overlapping region represents the genes that fit the criteria in the left

histogram and the right one in (a) respectively.
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Figure 6. Hyper-accumulation of SA in ref4-3 is dependent on CDKS8, but it is not the
major cause of dwarfing in ref4-3.

(a) The SA biosynthesis and signaling pathways. SA is synthesized from the precursor
chorismate via isochorismate synthase 1 (ICS1). Phenylalanine ammonia lyase (PAL) catalyzes
the first step in a less significant SA biosynthetic pathway which has yet to be fully elucidated.
SA can either be converted to its glucoside form for storage by UDP-glucose dependent
glucosyltransferases (UGT) UGT74F1 or UGT74F2, or serve as signal molecules for plant
development and stress responses. The pathogenesis-related (PR) genes including PR1, PR2
and PR5 are marker genes for SA signaling.

(b-c) Expression level (fragments per kilobase per million, FPKM) of SA biosynthetic genes (b)
and SA signaling marker genes (c) in wild type, ref4-3, cdk8-1 and ref4-3 cdk8-1, determined by
RNA-seq analysis. Data represent mean + SD (n=3). "’ indicates FDR < 0.05 compared to wild
type.

(d-e) Free SA (d) and total SA (e) in wild type, ref4-3, cdk8-1 and ref4-3 cdk8-1, ref4-3 cdk8-1
CDK8 and ref4-3 cdk8-1 CDK8 P'76A quantified by HPLC using fluorescence detection. Rosettes
from three-week-old plants were used to perform quantification. Data represent mean £ SD
(n=3). The means were compared by one-way ANOVA, and statistically significant differences
(p < 0.05) were identified by Tukey’s test and are indicated by a to c.

(f) Five-week-old soil-grown ref4-3 sid2-4 compared to wild type, ref4-3 and sid2-4 respectively.
(g) Free SA and total SA in wild-type, ref4-3, sid2-4 and ref4-3 sid2-4 quantified by HPLC using
fluorescence detection. Rosettes from three-week-old plants were used to perform
quantification. Data represent mean + SD (n=3). *’ indicates p < 0.05 compared to wild type

according to Student’s t-test.

Figure 7. Enhanced auxin accumulation does not restore the stunted growth of ref4-3.

(a) Expression level (FPKM) of major auxin signaling genes in wild type, ref4-3, cdk8-1 and ref4-
3 cdk8-1, determined by RNA-seq analysis. Data represent mean + SD (n=3). *’ indicates FDR
< 0.05 compared to wild type using EdgeR analysis.

(b) Expression of At4902520 normalized to the reference gene At1g13220 in wild type, ref4-3,
yuc6-1D and ref4-3 yuc6-1D, determined by quantitative PCR analysis. Data represent mean +
SD (n=3). The expression of At4902520 is not detectable (n.d.) in wild type and ref4-3.

(c-d) Representative photographs of three-week-old (c) and five-week-old (d) soil-grown ref4-3

yuc6-1D compared to wild type, ref4-3 and yuc6-1D.
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Figure 8. Disruption of DJC66 partially restores the dwarfism of ref4-3.

(a) Expression level (FPKM) of DJC66 in wild type, ref4-3, cdk8-1 and ref4-3 cdk8-1. Data
represent mean = SD (n=3). Statistically significant differences (FDR < 0.05) were indicated by
atoc.

(b) Expression level (FPKM) of DJC66 in wild type, ref4-3, med T-DNA lines and med ref4-3
double mutants determined by a previous RNA-seq analysis (Dolan et al., 2017). Data represent
mean + SD (n = 3). T and * indicate p < 0.05 (EdgeR analysis) when compared to Col-0 and
ref4-3, respectively.

(c-d) Three-week-old (c) and six-week-old (d) soil-grown ref4-3 djc66 together with wild type,
ref4-3 and djc66.

(e-f) Height (e) and rosette diameter (f) measurement of ref4-3 djc66 together with wild type,
ref4-3 and djc66 after growth on soil for three weeks and six weeks respectively.

(g) Sinapoylmalate content of three-week-old wild-type, ref4-3, djc66 and ref4-3 djc66 plants
determined by HPLC.

(h) Total lignin content in six-week-old stem tissues quantified by TGA lignin analysis.

For panel e-f, Data represent mean £ SD (n=10). For panel g-h, Data represent mean + SD
(n=3). The means were compared by one-way ANOVA, and statistically significant differences

(p < 0.05) were identified by Tukey’s test and are indicated by a to c.

Figure 9. A model of the genetic interaction between CDK8 and ref4-3.

The findings of this study are summarized into the genetic interaction between ref4-3 and CDK8
in the Mediator complex (white background), mis-regulated gene targets (light grey background)
and the resulting phenotypes (dark grey background). Particularly, ref4-3 requires CDK8 with
intact kinase activity (indicated by CDK8A™) to activate genes involved in SA biosynthesis and
therefore leads to enhanced SA signaling. The kinase activity of CDK8 is required for growth
repression of ref4-3; however, elimination of the kinase activity of CDK8 does not rescue the
down-regulated phenylpropanoid metabolism in ref4-3. DJC66 is one of the targets that are

related to the dwarfism of ref4-3, which could be downstream of CDKS.

25



