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We study a two-dimensional dilaton gravity system, recently examined by Almheiri and Polchin-
ski, which describes near-extremal black holes, or more generally, nearly AdS2 spacetimes. The
asymptotic symmetries of AdS2 are all the time reparametrizations of the boundary. These sym-
metries are spontaneously broken by the AdS2 geometry and they are explicitly broken by the
small deformation away from AdS2. This pattern of spontaneous plus explicit symmetry breaking
governs the gravitational backreaction of the system. It determines several gravitational prop-
erties such as the linear in temperature dependence of the near-extremal entropy as well as the
gravitational corrections to correlation functions. These corrections include the ones determining
the growth of out-of-time-order correlators that is indicative of chaos. These gravitational aspects
can be described in terms of a Schwarzian derivative effective action for a reparametrization.
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1. Introduction

In some respects AdS2 is a bit harder to understand than its higher-dimensional siblings. The main
reason is that pure gravity in AdS2 is inconsistent with the existence of finite energy excitations
above the AdS2 vacuum [1–3]. Nevertheless, there is a sense in which nearly AdS2 gravity is well
defined. In nearly AdS2, or NAdS2, one keeps the leading-order correction away from AdS2. These
corrections have a universal form and a very nice analysis of this system was given by Almheiri and
Polchinski [3].

The leading-order gravitational effects can be described by a particular dilaton gravity system
first studied by Jackiw [4] and Teitelboim [5]. Dilaton gravity theories in two dimensions have no
propagating degrees of freedom. In this case, the effective action is determined by the symmetries of
the problem. This symmetry is a spontaneously and explicitly broken reparametrization symmetry.
In the perfect AdS2 limit the system develops a reparametrization symmetry, t → t̃(t). This arises
as the asymptotic symmetry of AdS2 [6–8]. Alternatively, we expect it from the tracelessness of
the stress tensor of a putative boundary theory. Since that stress tensor has only one component, its
tracelessness due to the scaling symmetry implies that it is zero. Thus in the perfect AdS2 limit the
system has a full reparametrization symmetry. Under such circumstances one would naively expect
the full system to be topological. In some sense it is; the pure AdS2 limit can only describe the ground
states and their entropy [9,10].
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In fact, this reparametrization symmetry is spontaneously broken. It is spontaneously broken
because it is only an asymptotic symmetry. Only an SL(2) subgroup is unbroken by the geometry
of AdS2. A spontaneously broken symmetry has associated zero modes. If we think in terms of the
Euclidean path integral, there is an infinite number of non-compact zero modes: all the Fourier modes
of the reparametrization symmetry.

However, the symmetry is also explicitly broken because we have decided to keep the leading-
order correction away from the conformal limit. This correction is given by the simplest local action
that is invariant under a global SL(2) symmetry, the Schwarzian derivative of the reparametrization.
This action was originally found by Kitaev in his analysis of certain quantum mechanical fermion
models with emergent reparametrization symmetry [11]. Those models have a similar realization of
these symmetries (see also [12]).

The effective coefficient in front of this Schwarzian action becomes small at low energies or low
temperatures. For this reason, gravitational corrections, though formally suppressed by the Newton
constant, lead to important effects in the IR.

This action is responsible for the form of the near-extremal black hole entropy, which is linear in
the temperature. It also leads to important corrections for correlation functions, such as the connected
four-point function. In particular, it controls the chaos-related, exponentially growing, corrections
to out-of-time-order correlators.

Here we show how this Schwarzian action emerges in detail and we study some of its consequences
as well as some details regarding its physical interpretation. A similar perspective, but for AdS3, was
discussed in [13].

While this paper was in preparation, similar results were presented in [14]. We have also learnt of
others following similar ideas.1

This paper is organized as follows. In Sect. 2 we review the asymptotic symmetries of AdS2, and
we explain how they give rise to a family of geometries once we cut off the space. These give rise to
an infinite family of zero modes. In Sect. 3 we include the leading perturbation away from the AdS2

limit which corresponds to the near-extremal limit of black holes. This gives rise to a non-zero action
for the above geometries. The leading-order action describes a near-extremal entropy that is linear
in the temperature. In Sect. 4 we add matter and show how to couple it to the nearly zero modes
described above. Using this coupling we perform some perturbative computations. These include
the gravitational corrections to the four-point function, including the out-of-time-order correlator, a
one-loop correction to the free energy, and a gravitational correction to the two-point function. In
Sect. 5 we discuss some Lorentzian aspects of this action. We discuss its SL(2) symmetries and why
they cure a problem involving higher derivatives. In Sect. 6 we discuss how to resum all corrections
in the chaos regime to describe the crossover at the scrambling time.

2. Pure AdS2

2.1. Coordinate systems

On AdS2 (with unit radius) it is convenient to use the following coordinate systems:

Euclidean : ds2 = dt2 + dz2

z2 , ds2 = dρ2 + sinh2 ρdτ 2; (2.1)

1 J. Engelsőy, T. Martens, and H. Verlinde, to appear.
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(a) (b) (c) (d)

Fig. 1. (a) Hyperbolic space or Euclidean AdS2. The orbits of τ translations look like circles. Orbits of t are
curves that touch the boundary at t = ±∞. (b) Lorentzian AdS2. The ν, σ coordinates cover the whole strip.
The t̂, z coordinates describe the Poincaré patch denoted here in yellow. The red region is covered by the τ̂ , ρ
coordinates. There are different choices for how to place the τ̂ , ρ region that are generated by SL(2) isometries.
In (b) and (c) we show two choices and give the relation between the Poincaré time t̂ and the τ̂ at the boundary
of the space. In (d) we show a generic pair of Rindler wedges.

Lorentzian : ds2 = −dt̂2 + dz2

z2 , ds2 = dρ2 − sinh2 ρd τ̂ 2, ds2 = −dν2 + dσ 2

sin2 σ
;

Embedding : − Y 2−1 − Y 2
0 + Y 2

1 = −1, ds2 = −dY 2−1 − dY 2
0 + dY 2

1 . (2.2)

With Euclidean signature both coordinate choices cover all of hyperbolic space. In Lorenzian signa-
ture they cover different regions of the global space. The hatted versions of the times are Lorentzian,
e.g. t = it̂. The causal structure of the global space is displayed clearly in the ν, σ coordinates.
The t̂, z and τ̂ , ρ coordinates cover different patches, as seen in Fig. 1. The τ̂ , ρ coordinates can
be viewed as describing the exterior of a finite-temperature black hole. We can also view them as
Rindler coordinates of AdS2. Note that the finite-temperature and zero-temperature solutions are just
different coordinate patches of the same space.

2.2. Symmetries and a family of solutions

Let us imagine that we have a spacetime that is exactly AdS2, with a finite Newton constant. Then
the gravitational action is

I = − φ0

16πG

[∫
d2x

√
gR + 2

∫
K

]
+ Im[g, χ ], (2.3)

where Im is the matter action and χ are the matter fields. Here, φ0 is a constant, which sets the entropy
S0 = φ0

4G . In two dimensions, G is dimensionless.
We now want to imagine a situation where this spacetime arises as a low-energy limit of a well-

defined UV theory. For this purpose we imagine that we cut off the spacetime. The UV theory has
some time coordinate u. Thoughout the paper, we denote the time in the boundary theory by u. Let
us say that the (Euclidean) AdS2 spacetime has the metric in (2.1). We want to cut off the space along
a trajectory given by (t(u), z(u)). We expect to fix the proper length of the boundary curve

g|bdy = 1

ε2 ,
1

ε2 = guu =
√

t′ 2 + z′ 2

z2 −→ z = εt′ + O(ε3), (2.4)
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Fig. 2. In (a) we see the full AdS2 space. In (b) we cut it off at the location of a boundary curve. In (c) we
choose a more general boundary curve. The full geometry of the cutout space does depend on the choice of
the boundary curve. On the other hand, the geometry of this cutout region remains the same if we displace it
or rotate it by an SL(2) transformation of the original AdS2 space.

where primes are u derivatives. Note that, given an arbitrary t(u), we can choose z(u) = εt′(u) in
order to obey the above equations. Since all other fields are constant on the AdS2 vacuum, when we
set the boundary conditions for all the fields to be such constants, we will obey all other boundary
conditions. Therefore we find that we have a family of solutions to the problem, given by t(u).

Let us clarify in what sense these are different solutions. The main point is that we are cutting out a
region of AdS2, with different shapes that depend on the function t(u); see Fig. 2. Though the interior
AdS2 space is locally the same, the full cutout shape does depend on t(u). For example, correlation
functions of matter fields will depend on the shape chosen by the function t(u). Note, however, that
overall translations or rotations of the whole shape in hyperbolic space do not change the physics.
These are described by the action of an SL(2) symmetry group on AdS2. It acts by sending

t(u) → t̃(u) = at(u) + b

ct(u) + b
, with ad − cb = 1. (2.5)

We see that t(u) or t̃(u) produce exactly the same cutout shape. Therefore the full set of different
interior geometries is given by the set of all functions t(u) up to the above SL(2) transformations [or
modded out by these SL(2) transformations (2.5)].

It is worth noting that we can also look at the asymptotic symmetries of AdS2. They are generated
by reparametrizations of the asymptotic form

ζ t = ε(t), ζ z = zε′(t). (2.6)

These will map one boundary curve into another. In fact, (2.6) sends the curve t(u) = u to t(u) =
u + ε(u).

If we insert these geometries into the action (2.3), the Gauss–Bonnet theorem implies that we
always get the same action, namely the extremal entropy. Thus we have a set of exact zero modes
parametrized by t(u) [up to the SL(2) identification (2.5)].

Notice that, near the boundary, the geometries are indistinguishable; we need to go through the
bulk in order to distinguish them. In fact, this is the realization of the full reparametrization symmetry
that we expect in this problem. In other words, we expect that SL(2) is enhanced to a full Virasoro-
like symmetry; in this case, just the reparametrization symmetries. However, the reparametrization
symmetry is spontaneously broken by AdS2. It is broken to SL(2,R). The zero modes are characterized
by the functions t(u). These can be viewed as Goldstone bosons, except that here we consider them
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in the Euclidean problem. We can call these zero modes “boundary gravitons.” They are similar to
the ones that appear in three dimensions. An important difference with the three-dimensional case is
that, here, these modes have precisely zero action in the conformal limit: there is no local conformal
invariant action we can write down for them.

3. N AdS2, or nearly AdS2 spacetimes

The pure AdS2 gravity theory discussed above is not consistent with any configuration with non-zero
energy, since the variation of the metric imposes that the stress tensor of matter is identically zero.
The Einstein term is topological and does not contribute to the equation of motion for the metric. If
one is only interested in understanding the ground state entropy, this can be enough [9,10].

In order to obtain a reasonable gravity theory it is important to consider a nearly AdS2 geometry.
In other words, we need to keep track of the leading effects that break the conformal symmetry. This
is a configuration that still remembers that the conformal symmetry is slightly broken. A model that
correctly captures a large number of situations where AdS2 arises from a higher-dimensional system
(or from some otherwise well-defined UV theory) is the following [3]:

I = − φ0

16πG

[∫ √
gR + 2

∫
bdy

K

]
− 1

16πG

[∫
d2xφ

√
g(R + 2) + 2

∫
bdy

φbK

]
+ IM [g, χ ] + · · ·

(3.1)
Here we imagine that φ0 � φ and the dots denote higher-order terms in φ. We will neglect all such
higher-order terms here. φb is the boundary value of φ. If AdS2 is arising from the near-horizon
geometry of a near-extremal black hole, then φ0 + φ is the area of the two-sphere, and φ0 is the area
of the extremal black hole, with φ denoting the deviations from this extremal value. The middle term
in the action is the Jackiw–Teitelboim two-dimensional gravity theory [4,5]. The first term is purely
topological and its only role is to give the extremal entropy. We have included the extrinsic curvature
terms at the boundary to make the metric variational problem well defined. From now on, we will
ignore the dots in (3.1). Since the first term in the action is topological we will also ignore it.

A thorough analysis of this model was presented in an article by Almheiri and Polchinski [3]. Here
we simply emphasize how the pattern of breaking of the reparametrization symmetry determines
many aspects of the theory. Now, let us analyze the equations of motion of the Jackiw–Teitelboim
theory:

IJT = − 1

16πG

[∫
d2xφ

√
g(R + 2) + 2

∫
bdy

φbK

]
. (3.2)

The equations of motion for φ imply that the metric has constant negative curvature or is AdS2. This
is also the case if we include the matter term in (3.1), since it is independent of the dilaton φ. The
equations of motion for the metric are

Tφ
μν ≡ 1

8πG
(∇μ∇νφ − gμν∇2φ + gμνφ) = 0. (3.3)

Due to the Bianchi identity, this implies that Tφ
μν is automatically conserved. It turns out that the

general solution is

φ = α + γ t + δ(t2 + z2)

z
= Z .Y , (3.4)
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where we also rewrote the expression in embedding coordinates (2.2), where Z is an arbitrary vector.2

The solution breaks the SL(2) isometries to U(1). In fact, the vector ζμ = εμν∂νφ is aways a
Killing vector of the metric thanks to the equations (3.3) [15]. Thus, the combined dilaton gravity
theory always preserves this isometry.

Since φ is diverging near the boundary, we now have a new dimensionful coupling constant which
is the strength of that divergence. In other words, beyond the condition (2.4) we also need to impose
the condition

φb = φ|bdy = φr(u)

ε
, (3.5)

where φr(u) is an arbitary dimension −1 coupling. The r stands for “renormalized,” in the sense that
it remains finite in the ε → 0 limit. For generality we have chosen it to depend on u, but we could
also choose it to be independent of u. When we choose it to be constant we will denote it as φ̄r .

When we embed this into in a full higher-dimensional picture, we have in mind situations where
φb ∝ 1/ε is large, but φb � φ0 so that we are still in the near-extremal region.3 In other words, we
cut off the space before φ becomes too large. Note that the notion of “too large” is really external to
the theory (3.2).

Now, once we impose both (2.4) and (3.5) we determine completely the shape of the curve or
reparametrization t(u). It is simply given by computing z(u) from (2.4), substituting in (3.4), and
then using (3.5) to obtain

α + γ t(u) + δ t(u)2

t′(u)
= φr(u). (3.6)

It is interesting that this condition can also be obtained from an effective action for t(u). A simple
way to obtain the effective action is the following. Starting from (3.2) we impose the equation of
motion for φ, which implies that we have an AdS2 space. Inserting that into the action (3.2) we find
that the first term vanishes and we only get the boundary term, which involves the boundary value
of φ (3.5),

ITJ → − 1

8πG

∫
du

ε

φr(u)

ε
K , (3.7)

where we also used that the induced metric is given by du/ε (2.4). The extrinsic curvature is given
by

K = t′(t′ 2 + z′ 2 + zz′′) − zz′t′′

(t′ 2 + z′ 2)
3
2

= 1 + ε2Sch(t, u),

Sch(t, u) ≡ −1

2

t′′ 2

t′ 2 +
(

t′′

t′

)′
. (3.8)

Inserting this into ITJ we get

I = − 1

8πG

∫
duφr(u)Sch(t, u). (3.9)

2 More precisely, in (3.4) we use the Euclidean version of the embedding coordinates.
3 This type of expansion is somewhat analogous to the slow roll expansion for inflationary universes.
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We see that the zero modes get an action determined by the Schwarzian. Here, φr(u) is an external
coupling and t(u) is the field variable.

It is interesting to contemplate why we obtained this. We expect that the breaking of conformal
symmetry should be local along the boundary, and proportional to φr(u). In addition, we expect to
obtain a local action which involves the pseudo-Nambu–Goldstone modes. Since these are specified
by t(u) up to global SL(2) transformations, we conclude that the simplest term is the Schwarzian

action, which is indeed SL(2) invariant; Sch(t, u) = Sch
(

at+b
ct+d , u

)
.

Finally, it easy to check that by varying (3.9) with respect to t(u) we obtain the equation

[
1

t′

(
(t′φr)

′

t′

)′]′
= 0, (3.10)

which can be easily integrated to (3.6), where α, γ , and δ are integration constants.4 Thus we see that
the action (3.9), which is defined purely on the boundary, captures the same information as the bulk
expression for the dilaton φ. Notice that this also implies that the equations of motion of the action
(3.9) are equivalent to imposing the equations of motion that result from varying the metric, which
were not imposed in deriving (3.9). The time dependence of φr(u) allows us to pick an arbitrary
t(u) as the saddle point geometry. On the other hand, we can also remove it by picking a new time
coordinate via dũ = φ̄rdu/φr(u). When φr(u) is constant, (3.10) becomes φ̄r

[Sch(t,u)]′
t′ = 0.

The Schwarzian action summarizes many gravitational effects of the model. As we have explained,
it follows from the symmetries of the problem and its applicability can go beyond systems that are
described by a local gravity theory. In fact, this Schwarzian action was introduced, for these reasons,
by Kitaev in his analysis of certain interacting fermion models [11] (see [16] for a description).

3.1. The near-extremal entropy

It is convenient to make a change of field variable in the Schwarzian action from t to τ of the form

t = tan
τ

2
. (3.11)

We can then use the general transformation rule for the Schwarzian to find

I = −C
∫

du Sch(t, u) = −C
∫

du
[
Sch(τ , u) + τ ′ 2Sch(t, τ)

]

= −C
∫

du

[
Sch(τ , u) + 1

2
τ ′ 2
]

, C ≡ φ̄r

8πG
. (3.12)

We could have derived this form of the action by starting with AdS2 in terms of the coordinates
ds2 = dρ2 + sinh2 ρdτ 2 and viewing the boundary as parametrized by τ(u), with ρ(u) determined
by the analog of (2.4).

This is an interesting action, whose solutions are τ = 2π
β

u (up to SL(2) transformations). Note

that τ ∼ τ + 2π . For these solutions, only the term involving τ ′ 2 in (3.12) is important. On such
solutions the action gives

log Z = −I = 2π2 C

β
= 2π2CT , (3.13)

4 A fourth integration constant arises by integrating (3.6).
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which leads to a near-extremal entropy S = S0 + 4π2CT that is linear in the temperature. Note
that 4π2CT is also the specific heat. This linear in T behavior is a simple consequence of the
reparametrization symmetry and its breaking.

This gives us only the near-extremal entropy. The extremal entropy, S0, can be obtained by adding
a purely topological term to the above action of the form

−Itop = φ0

8πGN

∫
du τ ′. (3.14)

It might seem unusual that we reproduce the entropy from a classical action. This is familiar from
the bulk point of view, but it seems unusual to reproduce it from a boundary-looking action. However,
this is common in discussions of hydrodynamics. In that case, the free energy is reproduced from a
classical action. Here the crucial feature is that the solution depends on the temperature through the
condition that τ winds once as we go from u = 0 to u = β.

We could wonder whether we should consider solutions where τ winds n times, τ = n2π
β

u. It

appears that this effective action makes sense only for the case with winding number one.5

Note that this is not a microscopic derivation of the entropy. This is simply phrasing the computation
of the entropy as a consequence of a symmetry. We have not given an explicit description of the
black hole microstates. If one had a microscopic system which displayed this symmetry breaking
pattern, then we would microscopically explain the form of the entropy.

It is also possible to compute the Arnowitt–Deser–Misner (ADM) energy of the system. This is
given in terms of the boundary values of the fields. In this case, we get [3]

M = 1

8πG

1

ε
[φb − ∂nφ] = φ̄r

8πG
Sch(t, u) = C Sch(t, u) = −C Sch(t̂, û). (3.15)

The second expression gives the mass terms of the Schwarzian action. This can be obtained by either
solving the equations for φ or by deriving the conserved-quantity-associated u translations for (3.9).
It is valid in the absence of boundary sources for massive fields. The general formula is given in
(A.11).

4. Adding matter

We can now add matter as in (3.1). Since φ does not appear in the matter action, the metric is still
fixed to the AdS2 metric by the φ equation of motion, and the matter fields move on this fixed AdS2

geometry. The gravitational backreaction is completely contained in the equations obeyed by the
dilaton, which are simply (3.3) but with the matter stress tensor on the right-hand side.6 These are
three equations for a single variable φ, but the conservation of the matter stress tensor implies that
the equations are consistent. The boundary is located by finding the curve where φ = φb. This can
be done by first solving for φ in the bulk as described above and then finding the trajectory of the
boundary curve. Alternatively, one can show that the final equation for the trajectory is given by an
equation where we add a new term on the right-hand side of (3.10). For the case of massless matter

5 For n = 0 the τ ′ terms in the numerator are a problem. For n > 1 the small fluctuations around the solution
have negative modes.

6 This structure is similar to other models of dilaton gravity where the metric is forced to be flat, instead of
AdS2; see [17] for a review.
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fields we obtain

C
(Sch(t, u))′

t′
= −t′Ttz. (4.1)

A simple derivation is obtained by equating the change in energy (3.15) to the flux of energy, −t′2Ttz,
into the space. A factor of t′ comes from redshifting the energy from t to u time and another factor
from going from energy per unit t to energy per unit u.7 Solving (4.1) we find t′(u) and solve directly
for the trajectory of the boundary curve. The correction to (4.1) when we have sources for massive
fields is given in Appendix A.

For correlation function computations it is useful to calculate the effective action as a function of
the boundary conditions for the matter fields, χr(u), which can be functions of the boundary time.

It is convenient to solve first an auxiliary problem, which consists of finding the effective action
for the matter fields in AdS, with boundary conditions χ̃r(t) that are functions of the AdS2 boundary
time. For a free field in AdS2 this is simple to compute, and we obtain

−Ieff = D
∫

dtdt′ χ̃r(t)χ̃r(t′)
|t − t′|2�

, (4.2)

where D is a constant.8 Once we specify the trajectory of the actual boundary curve via t(u) we can
transform this to the desired boundary conditions:

χ ∼ z1−�χ̃r(t) = ε1−�t′1−�
χ̃r(t) = ε1−�χr(u) −→ χr(u) = [t′(u)]1−�χ̃r(t(u)). (4.3)

The first expression defines χ̃r(t); then we used the expression for z from (2.4), and finally we
compared it to the expression for χ that defines χr(u). Using (4.3), we rewrite (4.2) as

−Ieff = D
∫

dudu′
[

t′(u)t′(u′)
[t(u) − t(u′)]2

]�

χr(u)χr(u
′). (4.4)

Though we did this for the two-point function, the same is true for any n-point function. If we
had a self-interacting matter theory in AdS2 and we computed the AdS2 n-point correlation function,
then the correct physical one in NAdS2, after coupling to gravity, would be obtained by writing them
using t(u), and rescaling by a factor of t′(ui)

�i at the insertion of each operator.9 Even if we had
free fields in AdS2 this coupling to gravity makes them interact with each other. What is remarkable
is the simplicity of this coupling.

In this way we have found a coupling between t(u) and the matter action. We see that the coupling
proceeds by a reparametrization of the original two-point function. The full correlation functions are
obtained by integrating over t(u), after we add the Schwarzian action (3.9). These are the same for-
mulas derived in [3]. The classical equations for t(u) that follow from the variation of the Schwarzian
action (3.9) plus (4.4) are the same as the ones in [3].

7 In Lorentzian signature we get a minus sign in (4.1) from the minus in (3.15).
8 D = (�− 1

2 )�(�)
√

π�(�− 1
2 )

, or D = 1/2π for � = 1.
9 We can say that if ZM [χ̃r(t), z(t)] is the partition function of the pure matter theory with boundary conditions

at z = z(t), then the one in the theory coupled to dilaton gravity is ZDressed[χr(u), ε] = ZM [t′�−1
χ(u), z(t(u))],

where z = εt′ + · · · .
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4.1. Perturbative expansion of the Schwarzian action

Since the Schwarzian action is of order 1/G we can evaluate its effects using perturbation theory
around a solution. To avoid carrying unnecessary factors of the temperature, we set β = 2π . The
factors of temperature can be reinstated by dimensional analysis. We then set

τ = u + ε(u) (4.5)

in (3.12) and expand to second order in ε to obtain

Iε = C

2

∫
du[ε′′ 2 − ε′ 2], for β = 2π . (4.6)

We would like to compute the propagator for this action. A problem is that the action has three
zero modes, going like ε = 1, eiu, e−iu. These zero modes arise from SL(2) transformations of the
background solution τ = u. Recall that these SL(2) transformations did not generate new geometries.
Therefore we should not be integrating over them in the first place, since the integral over ε is only
over distinct geometries. This is equivalent to viewing the SL(2) symmetry as a gauge symmetry, so
that we can gauge fix those three zero modes to zero and invert the propagator. The answer is

〈ε(u)ε(0)〉 = 1

2πC

[
−(|u| − π)2

2
+ (|u| − π) sin |u| + a + b cos u

]
. (4.7)

The last two terms are proportional to SL(2) zero modes and cancel in any gauge-invariant computa-
tion.10 Note that the propagator is formally suppressed by G, but it is enhanced as φ̄r becomes small.
We will now use this propagator for some computations. The effective coupling is β/C, which is the
same as the inverse of the near-extremal entropy.11

4.2. Gravitational contributions to the four-point function

Suppose that we have operators V , W , which are dual to two different fields that are free in AdS2

before coupling to gravity. The gravitational contribution to the four-point function can be computed
as follows. (Some four-point functions were also considered in [3]. These steps are identical to the
ones discussed in [16], since the effective action is the same.) We start from the factorized expression
for the four-point function, 〈V (t1)V (t2)W (t3)W (t4)〉 = 1

t2�
12

1
t2�
34

. We then insert the reparametrizations

(3.11) and (4.5) into (4.4) and expand to linear order in ε to obtain

1

t2�
12

−→ B(u1, u2)
�[

2 sin u12
2

]2�
, B(u1, u2) ≡

[
ε′(u1) + ε′(u2) − ε(u1) − ε(u2)

tan u12
2

]
. (4.8)

We make a similar replacement for t−2�
34 , and then contract the factors of ε using the propagator

(4.7). This gives the O(1/C) = O(G) contribution to the four-point function. Note that the bilocal
operator B is SL(2) invariant.12 The final expression depends on the relative ordering of the four
points. When u4 < u3 < u2 < u1 we obtain the factorized expression

〈V1V2W3W4〉grav

〈V1V2〉〈W3W4〉 = �2〈B(u1, u2)B(u3, u4)〉 = �2

2πC

(
−2 + u12

tan u12
2

)(
−2 + u34

tan u34
2

)
. (4.9)

10 A direct inversion of the operator gives a = 1 + π 2/6 and b = 5/2 [16].
11 This is the reason that there is trouble with naive black hole thermodynamics at C/β ∼ 1 [1].
12 Indeed, a and b in (4.7) disappear if we consider 〈ε(u)B(u1, u2)〉.
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As discussed in [16], this expression can be viewed as arising from energy fluctuations. Each two-
point function generates an energy fluctuation which then affects the other. Since energy is conserved,
the result does not depend on the relative distance between the pair of points. In other words, we can
think of it as

〈V1V2W3W4〉grav = ∂M 〈V1V2〉∂M 〈W3W4〉 1

−∂2
M S(M )

= ∂β〈V1V2〉∂β〈W3W4〉 1

∂2
β log Z(β)

, (4.10)

where M is the mass of the black hole background, or β its temperature, and S(M ) or log Z are its
entropy or partition function.13 Both expressions give the same answer, thanks to thermodynamic
identities between entropy and mass.14 If one expands as u12 → 0 we get a leading term going like
u2

12, which one would identify with an operator of dimension two. In this case this is the Schwarzian
itself, which is also the energy, and it is conserved (3.15). Its two-point functions are constant.15

It is also interesting to evaluate the correlator in the other ordering u4 < u2 < u3 < u1. We get

〈V1W3V2W4〉grav

〈V1V2〉〈W3W4〉 = �2

2πC

[(
−2 + u12

tan u12
2

)(
−2 + u34

tan u34
2

)
+

+ 2π [sin(u1−u2+u3−u4
2 ) − sin(u1+u2−u3−u4

2 )]
sin u12

2 sin u34
2

+ 2πu23

tan u12
2 tan u34

2

]
. (4.11)

This expression interpolates between (4.9) when u3 = u2 and an expression like (4.9), but with
u34 → −2π + u34, when u3 = u1. Note that now the answer depends on the overall separation of
the two pairs. This dependence, which involves the second sine term in the numerator as well as the
u23 factor, looks like we are exciting the various zero modes of the Schwarzian action, including the
exponential ones. It is interesting to continue (4.11) to Lorentzian time and into the chaos region,
which involves the correlator in the out-of-time-order form

〈V (a)W3(b + û)V (0)W (û)〉 ∼ β�2

C
e

2π û
β ,

β

2π
� û � β

2π
log

C

β
, (4.12)

where a, b ∼ β. Here we restored the temperature dependence in (4.11) by multiplying by an overall
factor of β

2π
and sending ui → 2π

β
ui.

We can also connect (4.12) to a scattering process. It is peculiar that in this setup the two particles
do not scatter since they behave like free fields on a fixed AdS2 background. On the other hand,
they create a dilaton profile which gives rise to a nontrivial interaction once we relate the AdS2 time
to the boundary time. The net result is the same as what is usually produced by the scattering of
shock waves; see Appendix B. Here we see that the gravitational effects are very delocalized; we can
remove them from the bulk and take them into account in terms of the boundary degree of freedom
t(u).

4.3. Loop corrections

We can use the Schwarzian action as a full quantum theory and we can compute loop corrections.
The simplest example corresponds to the one-loop correction to the free energy.16 This arises from

13 The correlator at finite β is 〈VV 〉 =
[

β

π
sin πu12

β

]−2�

.
14 (4.10) is valid for a general spherically symmetric reduction of general relativity to two dimensions.
15 Note that this is different than in 1+1 dimensions, where the stress tensor correlators go like 1/z4.
16 J. Polchinski and A. Streicher, private communication.
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computing the functional determinant of the quadratic operator in (5.1). This was done in detail in [16]
and we will not repeat the details. The important point is simply that it gives a temperature-dependent
correction to the free energy going like

log Z |one loop = −3

2
log

(
β

C

)
. (4.13)

This is a correction to the leading classical expression (3.13). The determinants of all matter fields
in AdS2 are conformally invariant and should not give rise to a temperature-dependent contribution,
but they can and do contribute to the extremal entropy [18,19]. The correction (4.13) is such that
there is no logarithmic correction to the entropy as a function of energy. This is good, since there are
cases, such as BPS black holes, where we do not expect corrections that diverge in the IR.

As a second example, we can consider a loop correction to the two-point function. We expand the
reparametrization

1

t2�
12

→ (1 + ε′
1)

�(1 + ε′
2)

�

(sin u12+ε1−ε2
2 )2�

(4.14)

to quadratic order in the ε, and then contract using the propagator (4.7):

〈V1V2〉one loop

〈V1V2〉tree
= �

〈
(ε1 − ε2)

2

4 sin2 u
2

− 1

2
(ε′ 2

1 + ε′ 2
2 )

〉
+ �2

2

〈(
ε′

1 + ε′
2 − (ε1 − ε2)

tan u
2

)2
〉

= 1

2πC

[
�

(u2 − 2πu + 2 − 2 cos u + 2(π − u) sin u)

4 sin2 u
2

+

+ �2

2

(
−2 + u

tan u
2

)(
−2 + (u − 2π)

tan u
2

)]
, u = u1 − u2 > 0. (4.15)

It is interesting to continue these formulas to Lorentzian signature u → iû and then expand them for
large Lorentzian times. The largest term, which goes at û 2 for large Lorentzian time, can arise from
energy fluctuations in a manner analogous to (4.10). The tree-level correlator includes a quasinormal
decay as e−�τ̂ ∼ e−�2π û/β . But the energy fluctuations cause a temperature fluctuation which would
then lead to a correction for the ratio of the one loop to tree level as

�2

2

4π2û2

β4

1

∂2
β log Z

= �2û2

2βC
, (4.16)

which agrees with the û2 piece from (4.15).17

5. Lorentzian picture and the SL(2) symmetry
5.1. SL(2) symmetry of the Schwarzian action

We have seen that gravitational effects are summarized by the Schwarzian action (3.9). This action
seems problematic when viewed as an action in Lorentzian signature since it involves higher-
derivative terms. These usually lead to ghosts. We can see this more explicitly by starting with

17 In fact, (4.15) can be written exactly as 〈V1V2〉one loop = 1
2∂2

β
log Z

∂β

{[
∂β〈V1V2〉tree

]
u→β−u

}
. The derivatives

seem to be a way of varying the temperature in a way that maintains periodicity.
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the Lorentzian action for small fluctuations,

iIL = −iC
∫

dû Sch(t̂, û) = i
C

2

∫
dû(ε′′ 2 + ε′ 2

), for β = 2π , C ≡ φ̄r

8πG
. (5.1)

It is possible to rewrite this higher-derivative action in terms of a two-derivative action for two fields
by introducing a new field η,∫

dû[ε′′ 2 + ε′ 2] →
∫

dû

[
η(ε′′ − ε

2
) − η2

4
− ε2

4

]
=
∫

dû[−r′2 − r2 + q′ 2]
ε = r + q, η = r − q. (5.2)

Integrating out η we get η = 2ε′′ − ε and recover the original action, (5.1). We can also use this
expression for η to express r and q in terms of ε, which gives

r = ε′′, q = −ε′′ + ε. (5.3)

The full set of solutions of the original Lorentzian action (5.1) is given by

ε = (αeû + βe−û) + (γ û + δ). (5.4)

We see that the first parenthesis corresponds to the ghost-like mode r and the last one to the mode q.
Note that in Euclidean space we started out with a full function worth of nearly zero modes, but in
the Lorentzian theory these only give rise to the two degrees of freedom r and q.

Should we be worried by the appearance of the ghost-like mode that has a negative sign in its
kinetic term in (5.2)? Should we view the exponentially growing solutions in (5.4) as an instability?
To answer these questions we need to recall that the original metric had an unbroken SL(2) symmetry.
Such SL(2) diffeomorphisms do not generate a new cutout geometry. Thus, we should not include
them in our integration over pseudo-Goldstone modes. One way to remove them is to treat such
diffeomorphisms as a gauge symmetry. More precisely, the Schwarzian action has an SL(2) global
symmetry. This global symmetry has its associated conserved charges

Q− = C

[
t̂′′′

t̂′2
− t̂′′ 2

t̂′3

]
= Ce−τ̂

[
τ̂ ′′′

τ̂ ′ 2 − τ̂ ′′ 2

τ̂ ′ 3 + τ̂ ′′

τ̂ ′

]
,

Q0 = C

[
t̂′′′ t̂
t̂′2

− t̂ t̂′′ 2

t̂′3
− t̂′′

t̂′

]
= C

[
τ̂ ′′′

τ̂ ′ 2 − τ̂ ′′ 2

τ̂ ′ 3 − τ̂ ′
]

,

Q+ = C

[
t̂′′′ t̂2

t̂′2
− t̂′′ 2 t̂2

t̂′3
− 2t̂ t̂′′

t̂′
+ 2t̂′

]
= Ceτ̂

[
τ̂ ′′′

τ̂ ′ 2 − τ̂ ′′ 2

τ̂ ′ 3 − τ̂ ′′

τ̂ ′

]
, (5.5)

written after setting t̂ = eτ̂ , which is appropriate for Lorentzian finite-temperature computations.
Treating them as gauge symmetry amounts to saying that the full state should be invariant under
these symmetries. However, we see that a solution with nonzero τ̂ ′ cannot have zero charges! Recall,
though, that in the bulk this SL(2) symmetry acts on the full AdS2 spacetime. This means that it is
a symmetry of the thermofield double. In the quantum mechanical description of the thermofield
double we have two sides and the charges are equal and opposite to the two sides, Qa

L = −Qa
R, so

that the total charge can be zero. Therefore, purely on one side the charges can be anything. We
can view the charges Qa as proportional to the vector Za in (3.4) that determines the location of the
bifurcation point. The SL(2) transformations move this point in AdS2. This motion has no physical
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consequence because the location of the boundary is determined by the value of the dilaton and thus
the boundary curve moves together with the bifucation point as we perform an SL(2) transformation.

For the simplest solution τ̂ = 2π
β

u, the charges are

Q± = 0, Q0 = −C
2π

β
. (5.6)

This value of Q0 (when Q± = 0) can be viewed as (minus) the near-extremal entropy of the black
hole. More precisely, S = −2πQ. As Wald has pointed out [20], we can view black hole entropy as
a Noether charge associated to the translation generated by the horizon-generating Killing vector.

There is an additional conserved quantity of the Schwarzian action, which is simply associated to
u time translations. This is the Hamiltonian discussed in (3.15). It is interesting to note the relation

H = 1

2C

[−Q+Q− + (Q0)2] (5.7)

between the energy and the charges. Here, the Q are the charges of only the t field on one side, as in
(5.5).

It is also interesting to evalute the charges and the Hamiltonian for a first-order perturbation around
the thermal solution, τ̂ = u + ε(u):

Q± ∼ Ce±u [ε′′′ ∓ ε′′] , Q0 ∼ C
[−1 + ε′′′ − ε′] ,

H ∼ C

[
1

2
− (ε′′′ − ε′)

]
. (5.8)

With these expressions we see that the zero mode ε = eu only contributes to Q− and ε = e−u only to
Q+. Two-point functions of H are constant, as expected for a conserved quantity.18 Saying that we
treat the SL(2) symmetry as a gauge symmetry implies that we are not free to excite these modes.
These modes are excited in an amount that is set by the value of the charges.

At this linear order in ε, we can also show that the Hamiltonian has the expected commutation
relation with operators. From (5.8) and (5.3) we have H ∼ C

(1
2 + q′). Assuming a canonical quan-

tization of the non-ghost mode q, we conclude that [H , ε] = C[q′, q] = −i and [H , ε′] = 0. To
evaluate the commutator with V , we include the reparametrization dressing V → (1+ε′)�V (u+ ε)

and then expand to linear order in ε. This immediately gives [H , V ] = −iV ′.

5.2. Adding matter

If we have matter in AdS2 then the matter can also carry SL(2) charges. The total SL(2) charge is the
sum of the matter one plus the one carried by the field τ̂ (û) that appears in the Schwarzian action.
For massless matter we simply have

Qa
T = Qa(τ̂ ) + qa

M , (5.9)

where qa
M are the standard charges associated to the AdS2 isometries for the matter fields. The SL(2)

gauge symmetry is saying that QT will remain constant as we add matter. This is compatible with

18 Two-point functions of the Qa, such as 〈Qa(u)Qb(0)〉, are not constant, despite their classical conservation
law. This is due to the fact that we needed to break the SL(2) symmetry to compute the propagator for ε (4.7).
This is not a problem because these are not gauge-invariant quantities.
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the equations of motion (4.1), and the fact that the SL(2) charges change by a flux of energy; for
massless matter we have simply ∂û(Q

−, Q0, Q+) = Tt̂z t̂′(1, t̂, t̂2). When sources for massive fields
are turned on, one has to add an extra stress tensor term to qM to define matter charges that satisfy
the correct conservation conditions; see (A.13). This SL(2) gauge symmetry implies that we cannot
purely excite one of the ghost modes, we have to excite them together with some matter fields.

The total energy is still given by the ADM expression (3.15) and it is written purely in terms of the
τ̂ variable. In particular, (5.7) continues to be true where Qa in (5.7) are the SL(2) charges of the τ

system only, they are not the total SL(2) charge appearing in (5.9). So we see that the matter inside
AdS2 only carries SL(2) charge and their contribution to the mass only appears through the SL(2)
constraints that relate these charges to the SL(2) charge of the τ̂ variable.

Suppose that we start from the thermofield double state and then we add matter on the right part.
Then from the right part point of view we can view the charges and masses of the left part of the
thermofield double as being carried at the horizon. Then the condition that the total charge vanishes
becomes simply the condition that

Qa
h = Qa + qa

M = Qa
R, (5.10)

where Qa
R are the total charges of the right system, qM

a are the SL(2) charge of possible matter falling
into the black hole, and Qa

h = −Qa
L is the value of the charge at the bifurcation point, also equal to

minus the charges of the left side. Here we assumed that there is no matter on the left side of the
spacetime. We have seen that for the simple solution τ = u the charge Q0 < 0, and it is related to
the energy (5.7). On the other hand, with the same conventions, the matter charge q0

M of a matter
particle would be positive. That makes (5.10) compatible with the energy conservation condition for
small fluctuations which says that the mass of the black hole plus the energy of matter should the be
the same as the energy measured at the boundary.

When we throw matter into the black hole, the values of these charges change, but always in
agreement with the conservation law. As we send in matter from the boundary, its additional mass is
immediately recorded in the new value for the on-shell Schwarzian. The SL(2) charges of the matter,
together with the boundary charges, are constrained to add to the same value that the boundary
system had before we threw in the matter. For an initial configuration with Q± = 0, the changes
of the Q0 charges demanded by (5.10) can be viewed as a consequence of the first law, once we
remember that Q0 is related to the entropy.

Let us add a classical massive particle following a geodesic in the background AdS2 spacetime. The
equations for this geodesic are given by A.Y = 0 in embedding coordinates. If we choose A2 = ±m2,
then �A is also proportional to the SL(2) charges. Then the dilaton on the other side of the geodesic
is given by � = (Z + A).Y , where Z + A reflect the SL(2) charges on the other side of the geodesic.

An important point to note is that the Schwarzian action breaks conformal symmetry for the u time,
so that general SL(2) transformation of u, such as u → (au + b)/(cu + d), is not a symmetry. (Only
u → u + constant is a symmetry.) Nevertheless, the SL(2) charges acting on t are still conserved,
since they are gauge symmetries. In other words, we should not confuse the SL(2) symmetry acting
on t, which is gauged and thus unbroken, with the SL(2) symmetry acting on u, which is not gauged
and is broken by the Schwarzian action.

These charges are analogous to the edge modes of the electromagnetic field discussed in [21,22],
or the “center” in [23], or horizon symmetries in [24].

It is likely that there is a more elegant way to think about these SL(2) charges using the SL(2)
gauge theory formulation of (3.2) [25,26].
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6. Higher orders in the chaos region

The order G ∼ 1/C term in the four-point function (4.12) is exponentially growing in the time
separation û of the V and W operators. However, we actually expect the full correlator to become
small at large û. This is due to higher-order effects in powers of 1/C. As an application of the
Schwarzian action, we will show how to sum powers of (eû/C), which will be enough to capture the
late-time decay. More precisely, we work in a limit C → ∞, û → ∞ with eû/C fixed.

6.1. Bulk inspiration

The procedure is equivalent to a bulk analysis where the tree-level amplitude is upgraded to an eikonal
S matrix. We will briefly review this analysis (see [27], using [28–30]), which is very simple in AdS2.
The V and W operators are represented by bulk quanta with momenta p− and q+, respectively. To
capture all powers of eû/C, one can replace the bulk metric by two effective “shock wave” modes.
These are parametrized by shifts X + and X − on the future and past horizons of the black hole. The
bulk metric perturbations and stress tensor are

h++ = 4δ(x+)X −, h−− = 4δ(x−)X +, T−− = −p−δ(x−), T++ = −q+δ(x+). (6.1)

Here we are using Kruskal coordinates x+, x− to describe the region near the horizon; see (B.1). The
bulk action IJT + SM (3.1) for these quantities to quadratic order is

IL = −2CX +X − − X +q+ − X −p−. (6.2)

The integral over X +, X − of eiIL gives the scattering matrix S = eip−q+/2C . The four-point function
is an in–out overlap with this S matrix. The essential feature is that at late time the product p−q+
is large, and the S matrix implements a large translation of the wave packets, making the overlap
small.

6.2. Full resummation from the Schwarzian action

We will now do the calculation for real, using the boundary formulation of the theory. The metric
is always exactly AdS2; the only variable is the reparametrization t(u). We have to identify X +, X −
with certain modes of t(u) and then evaluate the Schwarzian action and the coupling to V , W . The
main subtlety is that for the out-of-time-order correlator, we have to think about the function t(u) on
a folded time contour.

We start with a single shock, so just X + is nonzero. The bulk solution consists of two black holes
glued together with a shift along the horizon. In terms of t(u), we glue two solutions together at
û = ∞ with an SL(2) transformation. In an SL(2) frame where the original black hole solution is
t̂ = eû, the transformation is a simple translation, and the shock wave solution is

t̂ = eû (sheet 1), t̂ = eû + X + (sheet 2). (6.3)

Notice that these can be glued at û = ∞. We will find it more convenient to work in a different SL(2)
frame, where the original solution is t̂ = tanh( û

2); see Fig. 1. Then the one-shock solution is

t̂ = x (sheet 1), t̂ = x + (1 − x)2X +

2 + (1 − x)X + (sheet 2), x ≡ tanh
(

û

2

)
. (6.4)

This new SL(2) frame makes it clear that if X + is small then we have a small perturbation to t̂ for
all values of û.
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Fig. 3. The black contour at left is the minimal time contour needed to compute 〈V1W3V2W4〉. Horizontal is
real time, vertical is imaginary time; the ends are identified. It is convenient to extend the folds to infinity, as
shown at right. The blue and red indicate which sheets have the X − and X + perturbations turned on.

To compute the 〈V1W3V2W4〉 correlator, we need a contour with four folds, as in Fig. 3. We would
like to superpose the (6.4) solution and a similar expression for X − in the right way to capture the
important part of the functional integral over t(u). We can guess the answer based on the bulk picture,
or from the discussion of SL(2) charges in the previous section, which suggests that each pair of
operators is associated to a relative SL(2) transformation between the portion of the contour inside
and outside the pair. So we consider the configuration

t̂ = x + (1 − x)2X +

2 + (1 − x)X + θ(2, 3) − (1 + x)2X −

2 + (1 + x)X − θ(3, 4), x ≡ tanh
(

û

2

)
. (6.5)

The θ symbols are defined to be equal to one on the sheets indicated and zero elsewhere; see Fig. 3.
This is not a solution to the equations of motion, it is an off-shell configuration of t(u). The idea is
that by integrating over X +, X −, we are capturing the part of the integral over t(u) that gives powers
of eû/C. The entire dependence of the action (3.9) on X +, X − comes from the fold where both terms
are nonzero. The product X +X − is small, of order 1/C in the limit we are taking, so it is enough to
compute the action to quadratic order:

iIL ⊃ −iC
∫

sheet 3
dû Sch(t̂, û) = −2iCX −X + + (X -independent). (6.6)

To compute the four-point function, we also have to consider the reparametrized two-point func-
tions. If the V operators are at early time, then only the X + part of the reparametrization is important.
It acts on sheets two and three, and therefore affects only V2 (see Fig. 3). Similarly, for the W operators
we only have to consider the X − part acting on W3:

GV (û1, û2) =
[

−t̂′(û1)t̂′(û2)

(t̂(û1) − t̂(û2))2

]�

≈
[

−i

2 sinh û12
2 − X +e−(û1+û2)/2

]2�

, (6.7)

GW (û3, û4) =
[

−t̂′(û3)t̂′(û4)

(t̂(û3) − t̂(û4))2

]�

≈
[

−i

2 sinh û34
2 − X −e(û3+û4)/2

]2�

. (6.8)

Now, to compute the four-point function, we simply integrate these expressions over X ± with the
weighting given by (6.6). Up to measure factors, we have

〈V1W3V2W4〉 ∝
∫

dX +dX −e−2iCX +X −
GV (û1, û2)GW (û3, û4). (6.9)
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Fig. 4. The correlation function (6.10) in the configuration (6.11), with 8C = 106. Scaling up C simply
translates all of the curves to the right without changing their shape. The initial descent from the plateau is

characterized by the e
2π
β

û behavior. The final approach to zero is determined by quasinormal decay.

One of the integrals can be done simply, and the second can be expressed using the confluent
hypergeometric function U (a, 1, x) = �(a)−1

∫∞
0 dse−sx sa−1

(1+s)a . The answer is

〈V1W3V2W4〉
〈V1V2〉〈W3W4〉 = U (2�, 1, 1

z )

z2�
, z = i

8C

e(û3+û4−û1−û2)/2

sinh û12
2 sinh û34

2

. (6.10)

The real part of z is positive for the ordering of operators we have assumed. A simple configuration
to keep in mind is the one where the V , W operators are equally spaced around the Euclidean circle,
for example

û1 = − û

2
− iπ , û2 = − û

2
, û3 = û

2
− i

π

2
, û4 = û

2
+ i

π

2
=⇒ z = eû

8C
. (6.11)

Here, û is the separation of the early V operators and the late W operators. Notice that the z variable
is real and positive in this type of configuration. We give a plot of (6.10) in Fig. 4. For early and late
times, we have the limiting behaviors

U (2�, 1, 1
z )

z2�
≈ 1 − 4�2z (z � 1),

U (2�, 1, 1
z )

z2�
≈ log z

�(2�)z2�
(z � 1). (6.12)

The small-z expression reproduces the initial exponential growth of the connected correlator (4.12).
The large-z behavior gives exponential decay of the full correlator at late time, where it is dominated
by the decay of the quasinormal modes.

6.3. Role of the SL(2) charges

To understand the charges of the matter, it is helpful represent (6.7) and (6.8) in a basis that diago-
nalizes certain SL(2) generators. It is convenient to return to the SL(2) frame where the background
solution is t̂ = eû. One can write

GV (û1, û2) = 1

�(2�)

∫ 0

−∞
dq+
−q+

�1(q+)�2(q+)e−iX +q+ , (6.13)

GW (û3, û3) = 1

�(2�)

∫ 0

−∞
dp−
−p−

�3(p−)�4(p−)e−iX −p− , (6.14)

where the wave functions are given by

�j = x�
j e−xj , x1 = −iq+eû1 , x2 = iq+eû2 , x3 = ip−e−û3 , x4 = −ip−e−û4 . (6.15)
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Equations (6.13) and (6.14) decompose the bilocals into pieces with definite charge, e.g. q−
M = −q+.

Based on the discussion in Sect. 5.2, we expect these charges to be related to the charges of the shocks
in t(u). For example, when we pass the V operator, the X − shock turns on, and one can check from
(5.5) that the charge changes by Q−

after −Q−
before = −2CX −. This gets related to q+ as follows: when

we insert (6.13) and (6.14) into (6.9) and integrate over X +, we will get a delta function setting
−2CX − − q+ = 0, so that

Q−
after − Q−

before = −q−
M . (6.16)

This means that the total charge QT indeed remains constant.
The charges give a new perspective on the exponential growth of the four-point function. Acting

with V at an early time changes Q− of the τ̂ sector. Because the charge is conserved, and because of
the explicit factor of e−τ̂ in (5.5), this has an exponentially growing effect on τ̂ (u) as we move toward
the future. We can always make an SL(2) gauge transformation to remove this effect on either the
portion of the contour before V or the portion after, but not both. In the out-of-time-order four-point
function we have W operators probing both sides, so the exponential effect is physical.

7. Discussion

We have pointed out how the asymptotic symmetries of AdS2 can be used to determine many aspects
of the gravitational dynamics of nearly AdS2 spacetimes, or NAdS2. The essential feature is the
emergence of a reparametrization symmetry which is both spontaneously and explicitly broken. The
corresponding pseudo-Goldstone bosons are described by a reparametrization t(u) that expresses AdS
time t in terms of the physical boundary time u. The explicit breaking leads to a Schwarzian action
for t(u) (3.9). In addition, we also have a simple coupling to bulk fields (4.4). These together give rise
to several features of NAdS2 or near-extremal black holes. These include the computation of the near-
extremal free energy as well as several gravitational effects involving correlation functions. These
include gravitational corrections to the four-point function (4.9) and (4.12) as well as corrections to
the two-point function (4.15).

For all these features it was important to assume that the Schwarzian action was the leading
effect that breaks the reparametrization symmetry. This is the case in many interesting physical
situations. However, one can imagine cases involving AdS2 spaces with particularly light fields, dual
to operators with dimensions 1 < � < 3/2. In these cases, if these fields are excited, then we have
larger irrelevant perturbations and the infrared dynamics is different. See Appendix D for a detailed
discussion.

The Schwarzian action involves higher-derivative terms, which raise ghost fears. The ghosts are
made invisible by treating the SL(2) symmetry of the Schwarzian action as a gauge symmetry. This
reflects the fact that the whole configuration, including the boundary, can be shifted around in AdS2

space with no physical consequence. This is distinct from the physical SL(2) symmetry acting on u,
which is broken by the Schwarzian action. The ghost-like degrees of freedom lead to exponentially
growing corrections in the out-of-time-order configuration.

Note that the Schwarzian action has the flavor of a hydrodynamical theory. Namely, it reproduces
the thermodynamics of the system. The fact that the entropy is the conserved charge associated to
the τ circle translations also resonates with recent discussions of a U(1)T symmetry in [31]; see
also [14]. It is also important to include both sides of the thermofield double to make sense of the
SL(2) constraints. Now, this Schwarzian action goes beyond ordinary long-distance hydrodynamics,
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because it is including modes whose time variation rate is comparable to the temperature. Such
modes are crucial for reproducing the out-of-time-order correlator in the chaos regime.

Two-dimensional black holes are a very useful testing ground for ideas for solving the information
paradox. Any general idea should work in this simplest context. An important element seems to be a
better understanding of the emergence of the charges Q±. These are the symmetries that allow us to
move into the interior! These charges are analogous to the edge modes of the electromagnetic field
discussed in [21,22], or the “center” in [23], or horizon symmetries in [24] (see also [32]).19

There are several other questions remaining to be answered. In two dimensions similar holomorphic
reparametrizations give rise to a Virasoro algebra with a central charge. Here we have mentioned
neither the algebra nor the central charge. It would be nice to see whether and how it can be defined.
Several papers have discussed a central charge for AdS2, including [7,8,33,34], but we have not
understood how they are connected to the present discussion.
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Appendix A. Massive fields in AdS2 and their coupling to gravity

In this appendix we study in some detail the effect that sources for massive fields have on the time
dependence of the Hamiltonian and the SL(2) charges. A subtlety is that the Schwarzian is not equal
to the ADM Hamiltonian while such sources are turned on; it differs by a term involving Tzz. For the
SL(2) charges, one has to add a similar term to the naive matter charges to get exact conservation.

We will start by considering free fields. We imagine we add classical sources at the boundary by
specifying the boundary conditions χr(u); see (4.3). As we explained in Sect. (4), we can go from
the effective action (4.2) to (4.4). We can add this to the Schwarzian action (3.9) and then vary the
resulting effective action for t(u) to obtain a new classical equation,

C
[Sch(t, u)]′

t′
= − 1

t′
{
χ ′

r(u)O(u) + ∂u [(� − 1)χr(u)O(u)]
}

(A.1)

with O(u) ≡ 2D t′(u)�
∫

du′ t′(u′)�χr(u′)
(t(u) − t(u′))2�

, (A.2)

where O can also be interpreted as the classical expectation value of the operator dual to the source
χr(u). O and χr are related to the small-z behavior of the field by

χ(z, t) =
[
χr(u) − ε2�−1O(u)

2� − 1

](
z

t′(u)

)1−�

+ · · · + O(u)

2� − 1

(
z

t′(u)

)�

+ · · · (A.3)

The explicit ε term is to ensure χ(εt′(u), t(u)) = ε1−�χr(u) so that (4.3) is satisfied.

19 It was emphasized in [24] that the number of charges is infinite in more than two dimensions. In two
dimensions we simply have a finite number of charges, the SL(2) charges discussed here.
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We now want to relate (A.1) to the energy conservation condition. In the bulk, given any vector
ζμ, we can construct a current (∗jζ )μ = εν

μ Tνδζ
δ , which is conserved when ζ is a Killing vector.

In general, the ADM mass M is given by the first equality in (3.15) as a function of the dilaton. We
expect that its first derivative should give us the flux of energy into the system,

∂uM = 1

8πG
∂u(t

′∂zφ − z′∂tφ) = (∗j)μ(t′, z′)μ = √
hTun, (A.4)

where u is the coordinate along the boundary and n is the normal direction. Here we have equated
the flux with the energy corresponding locally to a direction tangent to the boundary curve. We also
assumed ∂uφb = 0. For a scalar field we see that

∂uM = √
hTun = √

h∂uχ∂nχ = ∂uχr
[
ε1−2�(� − 1)χr − O] , (A.5)

where we used (A.3). Note that, as expected, energy is conserved as long as the sources are time
independent. The first term diverges as ε → 0 and can be cancelled by a counter term. Here we
assumed that 1 < � < 3/2 in order to avoid further divergent terms.

Comparing this with (A.1) we conclude that

M = CSch(t, u) + ε1−2�(� − 1)
χr(u)2

2
+ (� − 1)χr(u)O(u). (A.6)

In fact, we can compute the relation between the mass M and the Schwarzian directly by using
the definition of the ADM mass

(8πG)M ≡ −∂nφ + φ
√

h = t′∂zφ − z′∂tφ + φ̄r

ε2 = (A.7)

= t′(φ
z

+ ∂zφ) − z′

z
∂t(zφ) −

[
t′

z
− 1

ε

]
φ̄r

ε
, (A.8)

where
√

h = 1/ε is the boundary metric and φ = φ̄r/ε at the boundary (3.5). We have added and
subtracted various terms. In the first term we use the Tzz equation

∂2
t φ − 1

z2 φ − 1

z
∂zφ = 8πG Tzz. (A.9)

In the third term in (A.8) we expand the constant proper length condition as t′/z = 1
ε

− 1
2ε t′′2

t′2 . We
also assume that

φ = φ−
z

+ φsl , (A.10)

where φsl is less singular than 1/z, so that zφ has a finite limit. Then we see that φ− = t′φ̄r to leading
order. We can also convert ∂t into 1

t′ ∂u for the terms that are finite. All these terms together then give

M = 1

8πG

[
t′(∂2

t (zφ) − 8πGzTzz) − t′′2

t′2
φ̄r + 1

2

t′′2

t′2
φ̄r

]
= C Sch(t, u) − t′zTzz. (A.11)

This derivation of the relation between the Schwarzian and the mass is valid also for a self-interacting
matter theory (that is not directly coupled to the dilaton in the Lagrangian). Evaluating zTzz for a
free field, we obtain the extra terms in (A.6).
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We can similarly consider the expressions for the SL(2) charges. We expect that the total SL(2)
charges should be preserved even with time-dependent boundary conditions. We first define a naive
matter SL(2) charge, q(k)

M , as the integral of ∗jζ over a spatial slice with ζμ = (k(t), εk ′(t)) near the
boundary, with k(t) = 1, t, t2, for each of the SL(2) generators. For a free field, the fluxes are then
given as

∂uq(k)
M = −√

hTnμζμ = k

t′
χ ′

r(u)O(u) − (� − 1)

(
k

t′

)′
χrO + ∂u

(
(1 − �)ε1−2� χ2

r k

2t′

)
. (A.12)

We now define a new matter charge that includes some extra terms of the form

Q(k)
M = q(k)

M − kzTzz,

Q(k)
M =

∫
∗jζ + (� − 1)ε1−2� χ2

r k

2t′
+ (� − 1)

k

t′
χrO. (A.13)

The extra terms are boundary terms that we can add in the definition of the charge. Then we see that
the total SL(2) charges defined as

Q(k)
T = Q(k) + Q(k)

M , ∂uQ(k)
T = 0 (A.14)

are conserved, once we use the equations of motion (A.1). Here, Q(k) are the charges constructed
purely out of the t(u) variable as in (5.5), (Q−, Q0, Q+) = (Q(1), Q(t), Q(t2)). They obey

∂uQ(k) = C
k[Sch(t, u)]′

t′
, k = 1, t, t2. (A.15)

Appendix B. Gravitational shock wave scattering

Here we consider the scattering of two pulses in two-dimensional gravity. This is simplest to discuss
in a frame where one pulse is highly boosted, created by V (−û) where û large, and the other
is unboosted, created by V (0). As in higher dimensions, the scattering can then be described by
studying the propagation of the probe V particle on the background created by W [28].

In the theory (3.1), the metric is always exactly AdS2, so there must be a set of coordinates in
which this background is trivial, and the particles simply pass through each other, without detecting
any local gravitational effect. If this is the case, how can there be any scattering at all? The answer
is that these coordinates are related to the physical boundary coordinate û in a nontrivial way [3,29].
This is simplest to explain with a drawing, which we attempt in Fig. 5.

We can also relate this discussion to the standard shock wave picture. The backreaction of V can
be described by a metric

ds2 = − 4dx+dx−

(1 + x+x−)2 + 4X −δ(x+)(dx+)2, (B.1)

where X − is proportional to the large p+ momentum of V . In these coordinates, the dilaton is a
function of x+x− only, and the physical time coordinate û at the right boundary (x+x− = −1, x+ > 0)
is given by eû = x+. However, it is not manifest that they describe a piece of AdS2. It is simple to
check that we can rewrite (B.1) as

ds2 = − 4dx̃+dx̃−

(1 + x̃+x̃−)2 , x̃+ =
{

x+ x+ < 0
x+

1+X −x+ x+ > 0
x̃− = x− − X −θ(x+). (B.2)
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(a) (b) (c) (d)

Fig. 5. In (a) we show the trajectories of the V , W quanta without backreaction. In (b) we show the backreaction
of the V particle. This is still a piece of AdS2, but it is a smaller piece. In (c) we add back W in the arrangement
appropriate for the operator ordering V (−û)W (0). The trajectories are (almost) the same as (a) relative to the
fixed AdS2 coordinates of the diagram, but they change relative to the physical û coordinate. In (d) we show
the other ordering W (0)V (−û). Now the red line touches the boundary at time û = 0. Although it is difficult
to see in this frame, the V line has moved down slightly, so that it no longer reaches the boundary.

These coordinates make it clear that we have a piece of AdS2. In fact, these are the coordinates of
the fixed AdS2 space on which the drawings in figure 5 are represented. In these coordinates, the
dilaton profile does not simply depend on x̃+x̃−. Their relationship to the time û at the right boundary
depends on X −. At the boundary we have

eû = x+ = x̃+

1 − X −x̃+ . (B.3)

In summary, the particles simply pass through each other in the bulk, but nevertheless there is an
effect on the boundary time. In this way, the gravity dual manages to encode chaos in non-interacting
particles.

Appendix C. Corrections to the matter two-point functions

It is natural to ask about the form of the leading correction to the matter two-point functions due to
further couplings to the dilaton field such as

∫
d2x

√
g
[
(∇χ)2 + m2χ2 + αφχ2] . (C.1)

We can now consider the background value for φ = φh cosh ρ to find the leading correction to
the thermal two-point function. This can be found by noticing that the integral we need to do for
the dilaton field has the same form as the one expected for the insertion of a bulk-to-boundary
propagator for a � = −1 boundary operator. Thus the correction to the correlator has the form∫

du〈O�(u1)O�(u2)V−1(u)〉. Since the three-point function is fixed by conformal symmetry, we
find that

〈O(1)O(2)〉 =
(

π

β sin πτ12
β

)2� [
1 + c0α

φr

β

(
2 + π

(1 − 2τ12/β)

tan πτ12
β

)]
, (C.2)

where c0 is a numerical constant. We see that this correction depends on a new parameter α that
depends on the details of the theory. This has the same form as the corrections found in [16] for the
Sachdev–Ye–Kitaev model.
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Appendix D. A case where the Schwarzian is not dominating

Throughout this paper we have considered nearly AdS2 situations where the Schwarzian is the leading
irrelevant deformation. We now ask the question of whether this always happens or whether there
are also situations where other corrections dominate.

For simplicity we will focus only on systems that have a large-N expansion, or a weakly coupled
gravity description. By assumption we have an IR fixed point, and therefore we assume that there
are no relevant operators turned on. We can consider the effects of turning on irrelevant single trace
operators which correspond to changing the boundary values of massive bosonic fields in AdS2.

We will see that if we turn on an operator with

1 < � < 3/2 (D.1)

then its effects dominate over the ones due to the Schwarzian action and the IR dynamics is different
from that described in this article.

As before, we still have the zero modes in the IR parametrized by the field t(u). But due to the
presence of the irrelevant operator with dimension � we get an effective action given by (4.4)

−Ieff = λ2
∫

dudu′
[

t′(u)t′(u′)
(t(u) − t(u′))2

]�

, (D.2)

where λ is the coefficient of the operator in the action
∫

duλO(u). As a simple check that we obtain
some effect that dominates over the Schwarzian, we consider the finite-temperature configuration
with t = tan πu

β
, where we obtain a free energy of the form

log Z = λ2β

∫ β−ε

ε

du

[
π

β sin πu
β

]2�

= βλ2 1

� − 1
2

1

ε2�−1 + λ2β2−2�
π2�− 1

2 �(1
2 − �)

�(1 − �)
. (D.3)

The first term is a UV divergence, but is proportional to β so that it is a correction to the ground state
energy. The second term is finite. We see that if � < 3/2, this second term dominates, for large β,
over the Schwarzian answer (3.13), which goes as β−1.

Thus in the range (D.1) this operator gives the leading IR correction. The effective action for the
reparametrizations (D.2) is non-local. This can be checked more explicitly by setting t = u + ε(u)

and expanding in Fourier space. We end up with an action of the form Ieff ∝ ∫
dp|p|1+2�ε(p)ε(−p),

which indeed has a non-local form for the range (D.1).
The Sachdev–Ye–Kitaev model [11,35] has no operators in the range (D.1) [11], and therefore the

Schwarzian dominates in the IR.

Appendix E. Lack of reparametrization symmetry in “conformal” quantum
mechanics

There are simple quantum mechanical theories that display an SL(2) conformal symmetry. An
example is a Lagrangian of the form

S =
∫

dt

[(
dX

dt

)2

− �2

X 2

]
. (E.1)
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Under a transformation of the form

t → t(t̃), X (t(t̃)) = (t′)
1
2 X̃ (t̃), (E.2)

(E.1) changes to

S →
∫

dt̃

⎡
⎣(dX̃

dt̃

)2

− �2

X̃ 2
− 1

2
Sch(t, t̃)X̃ 2

⎤
⎦ . (E.3)

We see that if t(t̃) is an SL(2) transformation, then the action is invariant. However, if it is a more
general reparametrization then the action is not invariant.
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