

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-764462

Origin of ^{16}O -rich Fine-Grained Ca-Al-Rich Inclusions of Different Mineralogy and Texture

J. Han, B. Jacobsen, M. C. Liu, A. J. Brearley, J. E. Matzel

December 20, 2018

Geochemistry

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

1 **Origin of ^{16}O -rich fine-grained Ca-Al-rich inclusions**
2 **of different mineralogy and texture**

4 Jangmi Han^{a,b,c*}, Benjamin Jacobsen^d, Ming-Chang Liu^e, Adrian J. Brearley^a, Jennifer E.
5 Matzel^d, and Lindsay P. Keller^c

7 ^aDepartment of Earth and Planetary Sciences, MSC03-2040, University of New Mexico,
8 Albuquerque, NM 87131, USA

9 ^bLunar and Planetary Institute, USRA, 3600 Bay Area Boulevard, Houston, TX 77058, USA

10 ^cARES, NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, USA

11 ^dNuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore,
12 CA 94550, USA

13 ^eDepartment of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los
14 Angeles, CA 90095, USA

15 *corresponding author. Email: han@lpi.usra.edu

17 Submitted to *Geochemistry*

18 *the special issue “In honor to Prof. Keil”*

19 May 30, 2019

21 **ABSTRACT**

22 A coordinated mineralogical and oxygen isotopic study of four fine-grained calcium-
23 aluminum-rich inclusions (CAIs) from the ALHA77307 CO3.0 carbonaceous chondrite was
24 conducted. Three of the inclusions studied, 05, 1-65, and 2-119, all have nodular structures that
25 represent three major groups, melilite-rich, spinel-rich, and hibonite-rich, based on their primary
26 core mineral assemblages. A condensation origin was inferred for these CAIs. However, the
27 difference in their primary core mineralogy reflects unique nebular environments in which
28 multiple gas-solid reactions occurred under disequilibrium conditions to form hibonite, spinel, and
29 melilite with minor perovskite and Al-Ti-rich diopside. A common occurrence of a diopside rim
30 on the CAIs records a widespread event that marks the end of their condensation as a result of

31 isolation from a nebular gas. An exception is a rare inclusion 2-112 that contains euhedral spinel
32 crystals embedded in melilite, suggesting this CAI had been re-melted. All of the fine-grained
33 CAIs analyzed in ALHA77307 are uniformly ^{16}O -rich with an average $\Delta^{17}\text{O}$ value of $\sim-22 \pm 5\text{\textperthousand}$
34 (2σ), indicating no apparent correlation between their textures and oxygen isotopic compositions.
35 We therefore conclude that a prevalent ^{16}O -rich gas reservoir existed in a region of the solar nebula
36 where CO3 fine-grained CAIs formed, initially by condensation and then later, some of them were
37 reprocessed by melting event(s).

38 *Keywords:* calcium-aluminum-rich inclusions; microstructures; oxygen isotopes; solar
39 nebula

40

41 1. INTRODUCTION

42 Calcium-aluminum-rich inclusions (CAIs) are the oldest objects known to have formed
43 within the early solar nebula (e.g., Connelly et al., 2012). They are composed of refractory minerals
44 that are predicted to be among the first to condense from a gas of solar composition (Ebel, 2006).
45 However, CAIs show significant variations in textures, mineralogy, and chemical and isotopic
46 compositions within and among different chondrite groups, indicating complex formation histories
47 under various physicochemical conditions (MacPherson, 2014). Possible formation processes for
48 CAIs include gas-solid condensation, melting, evaporation, and/or shock that occurred in the solar
49 nebula (MacPherson, 2014). In general, many coarse-grained CAIs found in CV3 chondrites are
50 thought to have once been partially or completely re-melted (e.g., MacPherson and Grossman,
51 1981; Simon et al., 1999), whereas fine-grained CAIs commonly found in CO, CR, CM, and CV
52 chondrites represent the products of high-temperature condensation that experienced minimal
53 melting (e.g., Krot et al., 2004a; Han and Brearley, 2017). The texture, mineralogy, and chemical
54 and isotopic compositions of CAIs are therefore a valuable resource for understanding the
55 primordial conditions of the earliest dust-forming environments in the solar nebula, in particular
56 the reservoirs they formed.

57 The oxygen isotopic compositions of CAIs are distributed along the carbonaceous
58 chondrite anhydrous mineral (CCAM) line on a three-isotope plot over a range between oxygen
59 isotopic compositions of protosolar ($\delta^{18,17}\text{O} \approx -50\text{\textperthousand}$ to $-60\text{\textperthousand}$) and planetary ($\delta^{18,17}\text{O} \approx \sim 0\text{\textperthousand}$)
60 reservoirs (e.g., Clayton et al., 1977; Young and Russell, 1998). A large degree of oxygen isotopic
61 heterogeneity is often observed within individual CAIs and their rims from CV3 chondrites. Simon

et al. (2011) showed that a coarse-grained Type A CAI A37 from the Allende CV3 chondrite exhibits $^{17,18}\text{O}$ -enrichments toward its margin, approaching a planetary-like isotopic composition, then an extreme shift to protosolar-like ^{16}O -rich compositions through a surrounding rim. This heterogeneous oxygen isotope distribution may be related to primary high-temperature nebular processes involving gas reservoirs with various oxygen isotopic compositions, implying transport of CAIs between distinct reservoirs in the solar nebula or evolution of the gas composition near the protosun (e.g., Yurimoto et al., 1998; Park et al., 2012; Simon et al., 2016; Kawasaki et al., 2017). Numerical models of solar nebular evolution suggest that CAIs could experience extremely complex transport paths through the protoplanetary disk, interacting with multiple gas reservoirs that have a wide range of nebular density, pressure, and temperature conditions (e.g., Boss et al., 2012; Ciesla, 2010). However, oxygen isotopic records in CAIs, in particular from CV3 chondrites, are often complicated by secondary low-temperature parent body processes involving ^{16}O -poor fluids (e.g., Wasson et al., 2001; Itoh et al., 2004; Bodénan et al., 2014; Krot et al., 2017). Wasson et al. (2001) found that fine-grained CAI melilite in the Kainsaz CO3.2 and Ornans CO3.3 chondrites shows significant, but various degrees of $^{17,18}\text{O}$ -enrichments relative to that in the Colony CO3.0 chondrite, suggesting that oxygen isotopic compositions of melilite can be easily disturbed by very low-grade parent body alteration without any textural or compositional modification.

Here we report the mineralogy, petrology, and oxygen isotopic compositions of four fine-grained CAIs in the Allan Hills (ALH) A77307 CO3.0 carbonaceous chondrite for the following important reasons: (1) this meteorite is one of the least-altered CO chondrites (e.g., Grossman and Brearley, 2005), thus providing important clues into the primary nebular characteristics of CAIs; and (2) fine-grained CAIs in carbonaceous chondrites are generally regarded as aggregates of high-temperature nebular condensates that experienced no or little melting (e.g., Krot et al., 2004a). Our study elucidates the connection between the mineralogy, textures, and oxygen isotopic compositions of fine-grained CAIs in ALHA77307 and the variations in oxygen isotopic compositions across their interiors and rims. The implications for the formation processes and conditions of these CAIs are considered.

2. METHODS

Four fine-grained CAIs (05, 1-65, 2-119, and 2-112) in two petrographic thin sections of

93 ALHA77307 (ALH 77307,40 and ,76) were studied using a FEI Quanta 3D field emission gun
94 scanning electron microscope (SEM)/focused ion beam (FIB) instrument fitted with an EDAX
95 Apollo 40 SDD Energy Dispersive Spectroscopy system at the University of New Mexico (UNM).
96 The instrument was operated at 30 kV accelerating voltage in the high-vacuum mode, using beam
97 currents of 2-23 nA for backscattered electron (BSE) imaging and 23 nA for x-ray mapping.
98 Quantitative wavelength-dispersive spectroscopy analyses of individual minerals in the
99 ALHA77307 CAIs were collected with a JEOL JXA-8200 electron microprobe at UNM. All
100 analyses were obtained at 15 kV accelerating voltage, 20 nA beam current, and 1 μm spot size.
101 Elemental calibration was carried out using CM Taylor Company Microprobe Standards as
102 follows: Mg, Si, and Fe on olivine, Al and K on orthoclase, Ca on diopside, Mn on spessartine, Cr
103 on chromite, Na on albite, V on V-metal, and Ti on rutile. Data were reduced using the modified
104 ZAF correction procedure.

105 The oxygen isotopic compositions of the ALHA77307 CAIs were measured using a
106 CAMECA NanoSIMS 50 at the Lawrence Livermore National Laboratory and a CAMECA ims-
107 1290 ion microprobe at UCLA. The NanoSIMS protocol for measuring oxygen isotopes is
108 described in Simon et al. (2011). A \sim 10 pA Cs^+ primary beam with a diameter of \sim 200 nm was
109 rastered over $2\times 2 \mu\text{m}^2$ areas. Negative secondary ions were acquired by simultaneously measuring
110 $^{16}\text{O}^-$ on a Faraday cup (FC) and $^{17}\text{O}^-$, $^{18}\text{O}^-$, and $^{28}\text{Si}^-$ on electron multipliers. A mass resolving
111 power of \sim 7000 was used to minimize the contribution from $^{16}\text{OH}^-$ to $^{17}\text{O}^-$. Instrumental mass
112 fractionation was determined by measuring matrix matched terrestrial standards (Burma spinel,
113 San Carlos olivine, and San Carlos pyroxene). The vertical deviations ($\Delta^{17}\text{O}$) from a mass
114 dependent isotope fractionation line were calculated as $\Delta^{17}\text{O} (\text{\textperthousand}) = \delta^{17}\text{O} - 0.52 \times \delta^{18}\text{O}$. The external
115 reproducibility of our standards on $\Delta^{17}\text{O}$ was $< 6\text{\textperthousand}$ (2σ).

116 Oxygen isotope analysis on the UCLA ims-1290 ion microprobe was carried out in multi-
117 collection mode with 3 FCs. A 3.5 nA, 20 keV Cs^+ primary beam with a diameter of \sim 20 μm was
118 used. Secondary $^{16}\text{O}^-$ and $^{18}\text{O}^-$ ions were collected on off-axis L'2 ($10^{10} \Omega$) and H1 ($10^{11} \Omega$),
119 respectively, at mass resolution of \sim 2,500, whereas the $^{17}\text{O}^-$ signal was measured with the axial
120 FC2 FC ($10^{11} \Omega$) at mass resolution of \sim 7,000. Instrumental mass fractionation was characterized
121 by using a suite of terrestrial standards (Burma spinel, San Carlos olivine, and San Carlos
122 pyroxene). The external reproducibility of $\Delta^{17}\text{O}$ on standards is $\sim 1\text{\textperthousand}$ (2σ). It should be noted that
123 no corrections for matrix effects were performed for melilite due to the lack of melilite standards,

124 but it did not affect the determination of $\Delta^{17}\text{O}$ for melilite.

125 Following oxygen isotope measurements, two transmission electron microscope (TEM)
126 sections were prepared from CAIs 1-65 and 2-119 using a FEI Quanta 3D 600 dual beam FIB-
127 SEM at NASA Johnson Space Center (JSC). Targeted regions for the sections covered all
128 different mineral phases observed in the inclusions. The FIB sections were characterized in detail
129 using bright-field (BF) and dark-field (DF) images, high-resolution (HR) images, and selected
130 area electron diffraction (SAED), using a JEOL 2500SE 200 kV field-emission scanning TEM
131 (STEM) at NASA JSC. In addition, chemical microanalyses and elemental mapping were carried
132 out using a Thermo-Noran thin-window energy dispersive X-ray (EDX) spectrometer. Elemental
133 X-ray maps were obtained using STEM raster mode with a scanned probe size of 2 nm and a
134 dwell time of 50 $\mu\text{s}/\text{pixel}$. Successive rasters were added until <1% counting statistical errors
135 were achieved for major elements. Data reduction was performed using the Cliff-Lorimer thin
136 film approximation with experimental and theoretical K-factors determined from natural and
137 synthetic standards.

138

139 3. RESULTS

140 A total of 319 fine-grained CAIs were identified from the two thin sections of
141 ALHA77307; they are typically less than 200 μm in size and irregularly-shaped. Based on the
142 observed primary core mineral assemblages, ALHA77307 CAIs can be divided into three major
143 types: melilite-rich, spinel-rich, and hibonite-rich inclusions (Russell et al., 1998; Han and
144 Brearley, 2017). The modal abundance for each type is approximately 28%, 55%, and 17% of total
145 found, respectively. In these CAIs, perovskite is a common accessory phase, but anorthite is
146 completely absent. Most CAIs are rimmed by a single layer of diopside; olivine rims are very rare.
147 Representative SEM and TEM images of the ALHA77307 CAIs analyzed in this study are
148 presented in Figures 1-10, and average compositions of their individual mineral phases obtained
149 using electron microprobe are listed in Table 1.

150

151 3.1. Melilite-Rich CAI 05

152 A detailed TEM study of CAI 05 was presented in Han and Brearley (2017); only a short
153 summary of mineralogical and petrologic characteristics of this inclusion is provided below.

154 CAI 05 is a melilite-rich inclusion (Fig. 1), the common type of CAI in ALHA77307 and

155 other CO3 chondrites (Russell et al., 1998; Simon and Grossman, 2015; Han and Brearley, 2017).
156 This inclusion is a rounded object, 110 μm in diameter, with a distinct zoned structure (Figs. 1a,
157 b). The CAI consists of a compact melilite-rich core completely enclosed by a 20-25 μm -thick
158 porous mantle, followed by a discontinuous, 2 μm -thick rim of diopside. The melilite-rich core,
159 70 μm in diameter, is dominated by very gehlenitic melilite (Ak_{5-10} ; Table 1) with fine-grained
160 perovskite and spinel. The porous mantle consists of complex intergrowths of spinel and melilite
161 with fine-grained perovskite (Figs. 1c, d). Spinel in the mantle is more abundant than in the core
162 and occurs either as very fine grains embedded in melilite or in a band that is concentrated in the
163 outer region of the mantle. Subrounded to elongated perovskite grains $<3\ \mu\text{m}$ in size are randomly
164 distributed throughout the inclusion.

165 Based on the TEM results presented in Han and Brearley (2017), the core consists of a
166 dense aggregate of very gehlenitic melilite grains ($\text{Ak}_{\leq 2}$) having straight or slightly curved grain
167 boundaries, but its edge is embayed by spinel and minor Al-Ti-rich diopside. Such very gehlenitic
168 compositions were obtained from the outermost core, and represent a narrower and lower range
169 than EMPA data obtained from the inclusion center (Table 1). The mantle contains perovskite
170 grains corroded by Al-Ti-rich diopside and minor spinel, finally embedded in melilite (Fig. 2a).
171 All phases in the mantle share highly irregular grain boundaries with each other. Melilite in the
172 mantle is gehlenitic with a range of Ak_{1-17} , but shows no systematic compositional zonation. Al-
173 Ti-rich diopside is usually less than 1 μm thick, identified only by TEM, and shows relatively
174 constant ranges of Al_2O_3 (24-26 wt%) and TiO_2 (8-14 wt%) throughout the mantle (Fig. 2b).
175 Numerous pores are homogeneously distributed throughout the mantle and are dominantly present
176 in melilite.

177

178 **3.2. Spinel-Rich CAI 1-65**

179 CAI 1-65 is a spinel-pyroxene inclusion with a size of $190 \times 230\ \mu\text{m}$ (Fig. 3). This CAI is a
180 mineralogically-zoned inclusion consisting of subrounded to elongated nodules of spinel cores
181 ($<200\ \mu\text{m}$ in size) corroded by thin layers of Al-Ti-rich diopside and minor melilite, finally
182 surrounded by a 5-30 μm -thick diopside rim. In addition, minor forsteritic olivine is intergrown
183 and shares convoluted grain boundaries with diopside in the outermost rim (Figs. 3c, d). Spinel is
184 nearly pure MgAl_2O_4 with 0.15-0.32 wt% FeO , and diopside contains a range of Al_2O_3 (3.8-6.7
185 wt%) with very low TiO_2 (0.08-0.22 wt%) (Table 1).

186 The FIB section reveals the zonal sequence (Fig. 4): from the spinel core > intergrowth of
187 spinel, Al-Ti-rich diopside, and minor melilite > Al-rich diopside with minor spinel and Al-Ti-rich
188 diopside > forsterite > diopside > forsterite > finally to diopside. The grain size tends to decrease
189 from the spinel core to the outermost diopside rim. The core consists of a compact aggregate of
190 spinel grains (2.5-10 μm in size) with minor Al-Ti-rich diopside and perovskite having straight to
191 curved grain boundaries and is highly embayed by complexly intergrown spinel and Al-Ti-rich
192 diopside (Fig. 4a). Minor, subrounded melilite grains (<1 μm in size) also occur in this intergrowth
193 layer and are partially to completely surrounded by spinel. All grains within the intergrowth layer
194 have highly curved, unequilibrated grain boundaries (Fig. 5a). In contrast, the following outer
195 layers from Al-rich diopside to diopside develop a higher degree of equilibrated grain boundaries
196 between phases, often with straight grain boundaries and 120° triple junctions (Fig. 5b). In
197 particular, forsterite grains display a columnar morphology, with a common elongation direction
198 along their (001) and (011) planes for some grains. In these layers, the grain size ranges up to 5
199 μm , but mostly less than 3 μm .

200 Our TEM EDX analyses reveal a high degree of compositional variation in pyroxene that
201 occurs over a distance of \sim 15 μm from the spinel core, between and within grains. The Al_2O_3 and
202 TiO_2 contents in pyroxene vary up to 25 wt% and 19 wt%, respectively. In general, pyroxene
203 becomes less Al,Ti-rich with increasing distance from the spinel core and then finally pure
204 diopside (\leq 1 wt% Al_2O_3) in contact with two olivine layers. However, the highest Al and Ti
205 contents in pyroxene do not occur at the interfaces with the spinel core, but as patches in the
206 intergrowth layer (Figs. 4b, c). Spinel is nearly MgAl_2O_4 with <0.5 wt% FeO. Spinel only in the
207 core contains detectable TiO_2 (0.2-0.4 wt%) and V_2O_3 (0.2-0.3 wt%) in contrast to that in the
208 intergrowth layer. Olivine is forsteritic with no detectable Fe content.

209

210 **3.3. Hibonite-Rich CAI 2-119**

211 CAI 2-119 is a hibonite-spinel inclusion with a size of 55 \times 45 μm (Fig. 6). This CAI appears
212 to have three nodules separated by a layer of Fe,S-rich phases, probably terrestrial weathering
213 products, followed by a 0.5-10 μm -thick rim of diopside. The individual nodules consist of
214 hibonite laths (7-25 μm in length and 1.5-8 μm in width) partially to completely surrounded by
215 spinel. Perovskite grains up to 2 μm in size are present only in spinel (Fig. 6c). Hibonite contains
216 1.4-3.9 wt% TiO_2 and 0.93-2.4 wt% MgO . Spinel is nearly pure MgAl_2O_4 with \sim 0.8 wt% FeO

217 (Table 1).

218 The FIB section contains a single hibonite crystal completely embedded in spinel grains
219 with minor perovskite and Al-Ti-rich diopside (Figs. 7a, b). Hibonite is elongated normal to the
220 c^* axis. No stacking faults was observed in hibonite. Spinel grains share embayed grain boundaries
221 with adjacent hibonite and appear to have a lath morphology with their elongation direction normal
222 to the c^* axis of hibonite (Figs. 7c, d). Al-Ti-rich diopside is identified only by TEM and appears
223 to occur interstitially between spinel and mostly elongated (up to 300 nm thick and 1 μm long)
224 along with surrounding spinel grains (Fig. 7c). Importantly, hibonite is in a crystallographic
225 continuity only with spinel; there are no crystallographic orientation relationships between
226 hibonite and Al-Ti-rich diopside. Analysis of diffraction patterns obtained from three different sets
227 of the interfaces between hibonite and adjacent spinel grains, as well as the FFT patterns obtained
228 from their HR-TEM images yield the same crystallographic orientation relationships between them
229 such that $[110]_{\text{hibonite}}/[011]_{\text{spinel}}$ and $(001)_{\text{hibonite}}/(111)_{\text{spinel}}$ (Fig. 8). The diopside rim consists of a
230 compact aggregate of grains less than 2 μm in size having nearly equilibrium grain boundary
231 microstructures, i.e., straight grain boundaries and 120° triple junctions (Figs. 9a, d).

232 Our TEM EDX analyses show that hibonite contains 1.5-2.1 wt% TiO_2 and 0.3-0.7 wt%
233 MgO with no detectable zoning. Spinel is nearly MgAl_2O_4 with ≤ 0.1 wt% FeO . Pyroxene
234 interstitial to spinel appears consistently Al-Ti-rich. However, its Al_2O_3 and TiO_2 contents could
235 not be determined accurately due to inclined grain boundaries of Al-Ti-rich diopside shared with
236 hibonite and spinel in the FIB section. In contrast, the rim pyroxene exhibits compositional
237 variations within and between grains, with an overall range of ≤ 13 wt% Al_2O_3 and ≤ 4.5 wt% TiO_2 .
238 Figure 9 shows heterogeneous distributions of Al and Ti contents in pyroxene grains, revealing a
239 complex intergrowth of zoned and unzoned diopside grains. Some grains are Al,Ti-poor, pure
240 diopside constantly throughout the grains, but others are zoned, showing a progressive decrease in
241 Al and Ti contents outward over a distance less than 1 μm .

242

243 **3.4. Melilite-Rich CAI 2-112**

244 CAI 2-112 is a melilite-rich inclusion 135×70 μm in size (Fig. 10). In the thin section, this
245 CAI appears as two inclusions separated by fine-grained matrix, which may be fragments of a
246 larger single inclusion, due to their close proximity and textural similarities. This CAI is a rare
247 inclusion that shows a poikilitic texture with euhedral to subhedral spinel grains (1.5-8 μm in size)

248 enclosed in melilite, rather than the layered structures that are common in other ALHA77307
249 CAIs, as described above. No diopside rim is observed. Melilite is gehlenitic (Ak_{5-15}) and appears
250 zoned; our electron microprobe data show its akermanite contents decrease gradually over a
251 distance of $\sim 100 \mu\text{m}$ from one end of the crystals to another (Fig. 10c). Spinel is nearly pure
252 MgAl_2O_4 with 0.15-0.48 wt% FeO (Table 1).

253

254 **3.5. Oxygen Isotopic Compositions**

255 Oxygen isotopic compositions of minerals in the four ALHA77307 CAIs are listed in Table
256 2 and shown in Figure 11. Based on our NanoSIMS measurements, all the CAIs contain phases
257 that are uniformly ^{16}O -rich with an average $\Delta^{17}\text{O}$ value of $\sim -22 \pm 5\text{\textperthousand}$, regardless of the significant
258 difference in their primary mineralogy and texture. The following ims-1290 analysis of CAI 2-112
259 melilite yielded $\Delta^{17}\text{O} = -26.8 \pm 0.5\text{\textperthousand}$, in a good agreement with the average $\Delta^{17}\text{O}$ value of
260 $-22.6 \pm 5.0\text{\textperthousand}$ that were derived from the NanoSIMS measurements within errors. No systematic
261 differences in oxygen isotopic compositions are observed between individual CAIs or between
262 different minerals within the CAIs. The observed homogeneous oxygen isotopic compositions are
263 similar to those previously reported from CAIs in the same meteorite ALHA77307 (Bodénan et
264 al., 2014; Needham et al., 2017), as well as other pristine CO3.0 chondrites such as Colony,
265 Yamato 81020, and Dominion Range 08006 (Wasson et al., 2001; Itoh et al., 2004; Ushikubo et
266 al., 2017; Simon et al. 2019 a, b). Moreover, very similar oxygen isotopic compositions ($\Delta^{17}\text{O}$
267 $\leq -20\text{\textperthousand}$) were also reported from the least-altered, fine-grained CAIs in CM, CR, CH, and Acfer
268 094 chondrites (Aléon et al., 2002; Matzel et al., 2013; Krot et al., 2017; Ushikubo et al., 2017)
269 and, in particular, from spinel and pyroxene in fine-grained CAIs from CV3 chondrites (Fagan et
270 al., 2004; Aléon et al., 2005), which are highly resistant to subsequent oxygen isotopic exchange
271 in the parent body setting (Ryerson and McKeegan, 1994).

272

273 **4. DISCUSSION**

274 **4.1. CAIs 05, 1-65, and 2-119: High-temperature Condensates**

275 The textural and mineralogical differences between the core and the mantle in melilite-rich
276 CAI 05 (Fig. 1) suggest different formation processes or conditions for these two different zones.
277 The core shows compact and equilibrated textures and has relatively narrow range of melilite
278 compositions ($\text{Ak}_{\leq 10}$), suggesting its formation under conditions very close to equilibrium. We

279 therefore infer that, after condensation of minor perovskite and spinel, condensation of gehlenitic
280 melilite occurred to form the core. In contrast, the nearly rounded shape of this CAI (Figs. 1a, b)
281 may indicate that its porous mantle is a zone that was processed by partial melting and evaporation
282 after the formation of the compact core. As discussed in detail by Han and Brearley (2017), a
283 melting origin for the mantle seems highly unlikely for several reasons: (1) all phases share highly
284 curved grain boundaries with each other (Fig. 2a); (2) abundant pores are present and concentrated
285 in the mantle (Figs. 1c, d); (3) its bulk composition ($17.34 \text{ SiO}_2 + 5.89 \text{ TiO}_2 + 38.88 \text{ Al}_2\text{O}_3 + 8.50$
286 $\text{MgO} + 29.40 \text{ CaO}$) lies very close to that predicted for equilibrium condensates from a solar gas
287 with no evident MgO and SiO_2 deficiencies (Grossman et al., 2000), indicating no or minimal
288 modification of the mantle composition by evaporation that could have occurred during melting;
289 (4) the crystallization sequence and path of a melt of its bulk composition inferred from the Stolper
290 (1982) phase relations (spinel > melilite > anorthite > pyroxene, no perovskite expected) are not
291 consistent with the observed textural relationships between phases (perovskite > spinel > melilite
292 > pyroxene, no anorthite observed); and (5) the Stolper (1982) phase relations also expect melilite
293 crystallized from a melt of its bulk composition to be strongly zoned with a starting composition
294 $\text{Ak}_{>20}$, which is inconsistent with the observed composition range of unzoned melilite (Ak_{1-17}) in
295 the mantle. Therefore, we conclude that the mantle of CAI 05 formed by a later stage of
296 condensation onto the core of the initial inclusion. Dynamic and rapidly changing conditions (e.g.,
297 Ciesla, 2010; Boss et al., 2012) may have disturbed the condensation path of a gas reservoir,
298 enabling perovskite, spinel, and melilite to resume condensation after the core formation by
299 equilibrium condensation of melilite with minor perovskite and spinel. Melilite was a late phase
300 that condensed interstitially to early-formed phases such as perovskite and spinel in the mantle,
301 but did not entirely fill the void spaces, forming a porous aggregate. The observed compositional
302 variation in melilite (Ak_{1-17}) may indicate that it condensed over a temperature range in a gas of
303 constant composition (Han and Brearley, 2017); that is, melilite began to condense as nearly pure
304 gehlenite, but underwent reactions with gaseous Mg to form more åkermanitic melilite, as
305 temperature fell (Yoneda and Grossman, 1995; Grossman, 2010). Later, minor Al-Ti-rich diopside
306 formed by a small degree of a reaction involving perovskite with minor spinel and melilite in the
307 mantle. Finally, a thin layer of diopside formed on the mantle by a reaction of melilite with gaseous
308 Mg and SiO (Yoneda and Grossman, 1995).

309 The spinel-rich CAI 1-65 (Fig. 3) shares many textural and mineralogical characteristics

310 with those in CM, CV, and CR chondrites (MacPherson et al., 1983; Aléon et al., 2002; Krot et
311 al., 2004a), but is smaller and has no evidence for secondary parent body alteration processes. The
312 nebular processes that affected such spinel-cored, pyroxene-rimmed inclusions in carbonaceous
313 chondrites appear to be very similar and widespread. Therefore, this inclusion can be interpreted
314 as a primary condensation product that experienced no or a low degree of partial melting. We
315 propose that distinct textures, mineral assemblages, and mineral chemistry through the zonal
316 sequence observed in CAI 1-65 reflect a complex nebular history that involved an initial stage of
317 the core formation by condensation under conditions close to equilibrium, followed by a dynamic
318 stage of reactions of refractory solids in the cores with a nebular gas that produced complex fine-
319 grained intergrowths in the rim. A similar two-stage formation history was also inferred based on
320 TEM analyses of similar spinel-rich CAI-like objects in an amoeboid olivine aggregate from
321 ALHA77307 (Han and Brearely, 2016). Our TEM observations of CAI 1-65 show a high degree
322 of textural and compositional disequilibrium of the complex intergrowth layer of highly irregular
323 Al-Ti-rich diopside, spinel, and melilite and its corroded appearance at the interface with the spinel
324 core (Fig. 4). This intergrowth layer is best explained as a reaction zone in which spinel and
325 melilite at the periphery of the cores reacted with a nebular gas to form Al-Ti-rich diopside (Han
326 and Brearley, 2016). Because early-condensed Ti-rich solid phases are completely absent, the gas
327 was probably saturated with Ti, as well as Mg, and Si, and resulted in partial replacement of
328 melilite and spinel by Al-Ti-rich diopside under conditions far from equilibrium (Krot et al.,
329 2004b). Spinel in the cores, the earliest-formed primary condensation phase, was consumed as the
330 main solid phase in the reaction with the nebular gas. The occurrence of minor melilite surrounded
331 by spinel suggests that melilite may have reacted extensively with spinel and the gas to supply Ca
332 during diopside formation. Alternatively, only a small amount of melilite condensed during the
333 core formation and therefore played only a minor role in the evolution of the CAI. As the reaction
334 proceeded, the Ti in the gas phase was incorporated rapidly into diopside so that the condensing
335 diopside composition evolved outward from Al,Ti-rich, through Al-rich, to Al,Ti-poor. A small
336 amount of forsterite condensed directly from a nebular gas onto diopside (Krot et al., 2004b),
337 followed by condensation of diopside, forsterite, and finally diopside. Thermodynamic
338 equilibrium condensation models predict that forsterite begins to condense ~5-15 K lower than
339 diopside (Ebel, 2006). Such oscillating condensation of diopside and forsterite on the inclusion
340 exterior implies a rapid fluctuation in a narrow range of temperatures of a gas reservoir where

341 these two phases were condensing alternatively, as the final stage in the formation sequence for
342 CAI 1-65. In addition, the columnar morphology of forsterite grains is consistent with their
343 nucleation and growth from a gas phase (Kobatake et al., 2008; Nozawa et al., 2009). Similar
344 morphology were also observed from forsteritic olivine grains in the final layer of a Wark-
345 Lovering rim (Keller et al. 2013).

346 The irregular shape and layered structure of hibonite-rich CAI 2-119 (Fig. 6) and the
347 absence of detectable compositional zoning in hibonite (Fig. 7b) clearly indicate a condensation
348 origin with hibonite as the first condensate, followed by perovskite, spinel, and finally diopside.
349 Minor Al-Ti-rich diopside occurs interstitially to spinel (Figs. 7c, d), suggesting its metastable
350 formation after hibonite and before or with spinel. This is inconsistent with thermodynamic
351 equilibrium condensation models that predict that Al-Ti-rich diopside condenses as the first
352 composition of pyroxene after spinel and melilite (Ebel, 2006). Like the majority of hibonite-rich
353 CAIs in ALHA77307 (Russell et al., 1998; Han et al., 2015), melilite is completely absent, which
354 is also inconsistent with thermodynamic equilibrium condensation models that predict that melilite
355 condenses after hibonite and before spinel and diopside (Ebel, 2006). These inconsistencies
356 between the observed and predicted formation sequence of spinel, melilite, and Al-Ti-rich diopside
357 may have arisen as the result of disequilibrium condensation from a super-cooled nebular gas
358 (Petaev and Wood, 2005). In addition, hibonite is embayed by spinel, in which most grains are
359 elongated normal to the c^* axis of hibonite (Figs. 7c, d). The crystallographic orientation
360 relationships between hibonite and spinel (Fig. 8) were found from CAI 2-119, as well as from
361 similar hibonite-rich inclusions from ALHA77307 (Han et al., 2015) and from the Murchison and
362 Paris CM chondrites (Han et al., 2017). According to the crystal structures of hibonite and spinel
363 indexed from diffraction patterns in Figure 8, the (111) plane of spinel consists of a hexagonal-
364 close-packed array of oxygen ions with Al in octahedral sites, which resembles the oxygen
365 arrangement in the (001) plane of hexagonal-structured hibonite. These lines of evidence suggest
366 that epitaxial nucleation and growth of spinel on hibonite was favored by a structural similarity
367 between the two phases, which enabled the direct replacement reaction of hibonite and gaseous
368 Mg by spinel (Beckett and Stolper, 1994; Han et al., 2015). Instead, melilite condensation was
369 kinetically inhibited after hibonite (Beckett and Stolper, 1994; Han et al., 2015), resulting in the
370 complete lack of melilite in hibonite-rich inclusions in ALHA77307 including CAI 2-119, as well
371 as in CM chondrites (Simon et al., 2006). Suppression of melilite condensation could have

372 produced excess Ca in the gas phase (i.e., supersaturation), which kinetically stabilized diopside
373 after spinel by taking up Ca in the gas phase. As a final step, diopside formed onto spinel by
374 reaction of spinel with a gas where Mg, Si, and Ca with minor Ti had not already condensed. As
375 discussed above, Al and Ti were readily incorporated into diopside, forming minor Al,Ti-rich
376 diopside as the first composition, followed by condensation of pure diopside (Han and Brearley,
377 2016).

378 Interestingly, all three CAIs 05, 1-65, and 2-119 lack anorthite (Figs. 1, 3, 6), which
379 commonly replaces melilite in CAIs and amoeboid olivine aggregates in carbonaceous chondrites.
380 Thermodynamic equilibrium condensation models predict that anorthite condenses after spinel,
381 pyroxene, and olivine (Ebel, 2006). The simplest explanation is that the inclusions did not remain
382 in contact with a nebular gas at temperatures where anorthite begins to condense ($\sim 1,420$ K at P^{tot}
383 = 10^{-3} atm; Ebel, 2006), prohibiting an anorthite-forming reaction of melilite and a nebular gas
384 (Petaev and Wood, 2005). The common occurrence of a diopside rim on the exterior of fine-
385 grained inclusions in ALHA77307 (Figs. 1, 3, 6) and in other carbonaceous chondrites suggests
386 that condensation of pyroxene was kinetically favored instead of anorthite under disequilibrium
387 conditions. The diopside rim normally shows the zonal sequence of Al,Ti-rich > Al-rich, Ti-poor
388 > Al,Ti-poor towards the inclusion core, despite differences in its thickness and compositional
389 range (Han and Brearley, 2017; this study). We therefore infer that many inclusions experienced
390 a very similar final stage to form zoned diopside by a reaction of spinel and melilite with a gas
391 where Ti, Mg, and SiO had not completely condensed yet, but preserve evidence of distinct
392 formation processes and conditions for each of their primary core assemblages (hibonite,
393 perovskite, spinel, and/or melilite).

394

395 **4.2. CAI 2-112: Igneous Inclusion**

396 The observed texture and mineral assemblage of CAI 2-112 (Fig. 10) are consistent with
397 an igneous origin; spinel crystallized first from a refractory melt, followed by melilite, as
398 experimentally demonstrated by Stolper (1982). The melt origin of this CAI is also inferred by its
399 textural similarities to compact type A CAIs in CV3 chondrites where subhedral to euhedral spinel
400 grains are poikilitically enclosed in melilite, most of which are gehlenitic with $\text{Ak}_{\sim 45}$ (Simon et
401 al., 1999). The presence of very gehlenitic melilite (Ak_{5-15}) with its observed zonation (Fig. 10c)
402 may reflect the compositional evolution of melilite crystallized from a refractory melt during

403 cooling from very high temperatures; melilite may have begun to crystallize at temperatures higher
404 than 1,500°C and become more åkermanitic with decreasing temperature down to ~1,450°C
405 (Stolper, 1982; Grossman et al., 2002; Mendybaev et al., 2006). At such high temperatures, some
406 degree of evaporation may also have produced a relative depletion in Mg and Si from the surface
407 of a molten CAI precursor, and more gehlenitic melilite would have crystallized preferentially
408 there (Mendybaev et al., 2006).

409

410 **4.3. ^{16}O -Rich Fine-Grained CAIs in ALHA77307**

411 Our oxygen isotope data of the fine-grained CAIs in ALHA77307, together with their
412 mineralogy and petrology, suggest that they originally formed and evolved in a common ^{16}O -rich
413 gas reservoir over a large temperature interval. Melilite in CAIs 05 and 2-112 are consistently ^{16}O -
414 rich ($\Delta^{17}\text{O} < -19\text{\textperthousand}$) and isotopically indistinguishable from spinel in the same inclusions (Fig. 2;
415 Table 2). This supports the well-established view that fine-grained CAIs in CO3.0 chondrites,
416 including ALHA77307, retain primary ^{16}O -rich compositions with $\Delta^{17}\text{O}$ ranging from $-30\text{\textperthousand}$ to
417 $-20\text{\textperthousand}$ (Wasson et al., 2001; Itoh et al., 2004; Ushikubo et al., 2017), which may have reflected
418 the local heterogeneity in the CAI-forming reservoir (e.g., Yurimoto et al., 1998; Young and
419 Russell, 1998; Simon et al., 2011, 2016). The pristine nature of the ALHA77307 CAIs studied is
420 also supported by the presence of highly refractory phases with no or little Fe and Na enrichments
421 and the complete absence of secondary alteration phases such as nepheline or sodalite that are
422 commonly observed in CAIs from metamorphosed CO3 and CV3 chondrites (Brearley and Krot,
423 2013), even down to the TEM scale (Han et al., 2015; Han and Brearley, 2017). In contrast, fluid-
424 assisted thermal metamorphism in the parent body setting results in appreciable enrichments in
425 heavy oxygen isotopes in melilite and anorthite, relative to spinel and pyroxene (e.g., Wasson et
426 al., 2001; Fagan et al., 2004; Itoh et al., 2004; Aléon et al., 2005; Simon et al., 2019b; Krot et al.,
427 2019). For example, melilite in almost all CAIs in Kainsaz (CO3.2) and Ornans (CO3.3) has $\Delta^{17}\text{O}$
428 $> -15\text{\textperthousand}$, which is well correlated with its FeO contents (Wasson et al., 2001).

429 The rare CAI 2-112 is an igneous inclusion that shows petrologic evidence for melting.
430 However, this inclusion has an average $\Delta^{17}\text{O}$ value of $\sim -22.6 \pm 5.0\text{\textperthousand}$ (Fig. 2; Table 2), very similar
431 to other ALHA77307 CAIs analyzed in this study that most likely represent condensation products.
432 Wasson et al. (2001) also reported ^{16}O -rich compositions ($\Delta^{17}\text{O} = -30\text{\textperthousand}$ to $-26\text{\textperthousand}$) of spinel and
433 melilite from a melilite-rich CAI C1 in Colony (CO3.0) whose textural characteristics were

434 interpreted as crystallization from a partial melt. Therefore, we infer a similar ^{16}O -rich gas
435 reservoir during the formation of these two igneous inclusions, as inferred for other fine-grained
436 CAIs in ALHA77307 analyzed in this study. Such ^{16}O -rich compositions may have been inherited
437 from precursor CAIs that were originally ^{16}O -rich and never experienced a significant oxygen
438 isotope exchange with the surrounding nebular gas during subsequent melting event. An exception
439 is given by Itoh et al. (2004) who observed a poikilitic texture of CAI Y20-1 in Yamato 81020
440 (CO3.0) with an ^{16}O -rich spinel relict ($\Delta^{17}\text{O} = -21\text{\textperthousand}$) enclosed in ^{16}O -depleted diopside and
441 anorthite ($\Delta^{17}\text{O} = -12\text{\textperthousand}$ to $-8\text{\textperthousand}$). This was inferred as evidence for an oxygen isotope exchange
442 between an ^{16}O -rich, partially molten precursor and an ^{16}O -poor gas. Collectively, these
443 observations suggest that fine-grained CAIs in CO3.0 chondrites formed by condensation in a
444 primary ^{16}O -rich gas reservoir, but some experienced later, episodic melting event(s) in reservoirs
445 of different oxygen isotopic compositions that caused various degrees of oxygen isotopic
446 exchange. Aléon et al. (2002) reached a similar conclusion based on the apparent correlation
447 between the oxygen isotopic compositions of fine-grained CAIs in CR chondrites and their textural
448 type: most igneous CAIs are relatively ^{16}O -poor ($\Delta^{17}\text{O} = -18\text{\textperthousand}$ to $-3\text{\textperthousand}$), whereas most other CAIs
449 interpreted as condensates are uniformly ^{16}O -rich ($\Delta^{17}\text{O} \leq -22\text{\textperthousand}$). In particular, two melilite-rich
450 inclusions 18-2 and -3 from the Graves Nunataks 95229 CR2 chondrite that have textural and
451 mineralogical similarities to CAI 2-112 from ALHA77307 have relatively ^{16}O -depleted
452 compositions ($\Delta^{17}\text{O} = -14\text{\textperthousand}$ and $-18\text{\textperthousand}$, respectively; Aléon et al., 2002). Such ^{16}O -poor isotopic
453 compositions of igneous CAIs are most likely a later overprint that resulted from melting of
454 originally ^{16}O -rich CAIs in a relatively ^{16}O -poor nebular gas, as inferred for some coarse-grained
455 Type B CAIs in CV3 chondrites (e.g., Yurimoto et al., 1998; Fagan et al., 2004; Yoshitake et al.,
456 2005; Aléon, 2016; Kawasaki et al., 2018).

457 Complex oxygen isotopic zoning across CAIs and their rims in CV3 chondrites has been
458 observed in several studies (e.g., Yoshitake et al., 2005; Ito et al., 2010; Needham et al., 2015;
459 Simon et al., 2011, 2016). However, the mechanism(s) and environment responsible for this
460 internal oxygen isotope heterogeneity remain controversial. These variations may be attributable
461 to high-temperature nebular processing involving both ^{16}O -rich and ^{16}O -poor gas reservoirs (e.g.,
462 Simon et al., 2011, 2016) or to low-temperature parent body processing involving ^{16}O -poor
463 aqueous fluids (e.g., Bodénan et al., 2014; Krot et al., 2017; Krot et al., 2019) due to pervasive
464 parent body metasomatic and metamorphic effects on CV3 CAIs (Brearley and Krot, 2013). The

465 uniformity of oxygen isotopic compositions across the interior and rim of least-altered, fine-
466 grained CAIs from CM, CO, CR, CH, and Acfer 094 chondrites (Matzel et al., 2013; Bodénan et
467 al., 2014; Krot et al., 2017; Ushikubo et al., 2017; this study) clearly indicates that an ^{16}O -rich gas
468 reservoir(s) existed during the entire period of formation of these CAIs and their rims. However,
469 there are significant variations in mineralogy and complexity of rims among CAIs, indicative of
470 their different formation processes and conditions. For example, fine-grained CAIs in CO3
471 chondrites have a simple rim composed predominantly of zoned diopside (Russell et al., 1998;
472 Han and Brearley, 2017), compared to some CV3 CAIs that have a well-developed sequence of
473 successive monomineralic layers composed at least of spinel, melilite, and zoned diopside (Wark
474 and Lovering, 1977). Additional studies are therefore required to evaluate if primordial rims on
475 individual CAIs from different chondrite groups commonly share the same, homogeneous ^{16}O -
476 rich signature.

477

478

5. CONCLUSIONS

479 We conducted a coordinated analysis of mineralogy, petrology, and oxygen isotopic
480 compositions of four fine-grained CAIs in ALHA77307 that represent three major groups, melilite-
481 rich, spinel-rich, and hibonite-rich, in CO3 chondrites based on their primary core mineralogy
482 (Russell et al., 1998; Simon and Grossman, 2015; Han and Brearley, 2017). The observed
483 difference in the primary core mineralogy of the ALHA77307 CAIs studied indicate that each of
484 these inclusions reflects unique nebular environments in which multiple high-temperature
485 processes occurred during the formation of primary core mineral assemblages. The three CAIs 05,
486 1-65, and 2-119 are interpreted as fine-grained aggregates of high-temperature nebular
487 condensates that formed under non-equilibrium conditions, whereas CAI 2-112 appears to
488 represent fragments of a larger melilite-rich inclusion that crystallized from a refractory melt.
489 Previous trace element and isotopic studies of fine-grained CAIs in CO3 chondrites provide
490 additional support for their common condensation origin (Fahey et al., 1994; Russell et al., 1998).
491 However, fine-grained inclusions with distinct igneous textures such as CAI 2-112 are extremely
492 rare in CO3 chondrites, suggesting that most CAIs incorporated into the CO3 chondrite parent
493 body escaped later thermal processing such as melting and evaporation.

494 Despite their mineralogical and textural differences, all four fine-grained CAIs in
495 ALHA77307 are uniformly ^{16}O -rich, with an average $\Delta^{17}\text{O}$ value of $\sim 22\text{\textperthousand}$, suggesting a

496 prevalent ^{16}O -rich gas reservoir throughout their formation. However, evidence for an oxygen
 497 isotopic exchange between a ^{16}O -rich, partially molten precursor and a ^{16}O -poor nebular gas was
 498 inferred from a single inclusion from Yamato 81020 (Itoh et al., 2004). This suggests that fine-
 499 grained CAIs in CO3 chondrites formed in a primary ^{16}O -rich gas reservoir, but a few of them
 500 interacted with gas reservoir(s) of different oxygen isotopic compositions during the course of
 501 transport of refractory precursors or evolution of a gas reservoir surrounding refractory precursors.

ACKNOWLEDGMENTS

504 We thank Dr. Noriyuki Kawasaki and an anonymous reviewer for their constructive
505 reviews and Dr. Alexander Krot for his editorial handling. We gratefully acknowledge the access
506 to the Electron Microbeam Analysis Facility at Department of Earth and Planetary Sciences and
507 Institute of Meteoritics, University of New Mexico and at Astromaterials Research and
508 Exploration Science Division, NASA Johnson Space Center. This work was supported by NASA
509 grants 17-EW17_2-0148 (L.P.K.), NNG06GG37G, NNX12AH59G, and NNX15AD28G
510 (A.J.B.), and 80NSSC18K0602 (M.-C.L.). The UCLA ion microprobe facility is partially
511 supported by a grant from the NSF Instrumentation and Facilities program. The work performed
512 at Lawrence Livermore National Laboratory (B.J. & J.E.M) was supported by NASA grants
513 NNH10AO05I and NNH10AO48I and by the Laboratory Directed Research and Development
514 grant 17-ERD-001. This work was performed under the auspices of the U.S. Department of Energy
515 by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LPI
516 contribution No. 2223.

REFERENCES

519 Aléon, J., 2016. Oxygen isotopes in the early protoplanetary disk inferred from pyroxene in a
520 classical type B CAI. *Earth Planet. Sci. Lett.* 440, 62–70.

521 Aléon, J., Krot, A.N., McKeegan, K.D., 2002. Calcium-aluminum-rich inclusions and amoeboid
522 olivine aggregates from the CR carbonaceous chondrites. *Meteorit. Planet. Sci.* 37, 1729–
523 1755.

524 Aléon, J., Krot, A.N., McKeegan, K.D., MacPherson, G.J., Ulyanov, A.A., 2005. Fine-grained,
525 spinel-rich inclusions from the reduced CV chondrite Efremovka: II. Oxygen isotopic
526 compositions. *Meteorit. Planet. Sci.* 40, 1043–1058.

527 Beckett, J.R., Stolper, E., 1994. The stability of hibonite, melilite, and other aluminous phases in
528 silicate melts: Implications for the origin of hibonite-bearing inclusions from carbonaceous
529 chondrites. *Meteoritics* 29, 41–65.

530 Bodénan, J.-D., Starkey, N.A., Russell, S.S., Wright, I.P., Franchi, I.A., 2014. An oxygen isotope
531 study of Wark–Lovering rims on type A CAIs in primitive carbonaceous chondrites. *Earth*
532 *Planet. Sci. Lett.* 401, 327–336.

533 Boss, A.P., Alexander, C.M.O'D., Podolak, M., 2012. Cosmochemical consequences of particle
534 trajectories during FU Orionis outbursts by the early Sun. *Earth Planet. Sci. Lett.* 345–348,
535 18–26.

536 Brearley, A.J., Krot, A.N., 2013. Metasomatism in the early solar system: the record from
537 chondritic meteorites. In *Metasomatism and the Chemical Transformation of Rock* (eds.
538 D. E. Harlov and A. Austrheim). Springer, Berlin Heidelberg, pp. 659–789.

539 Ciesla, F.J., 2010. The distributions and ages of refractory objects in the solar nebula. *Icarus* 208,
540 455–467.

541 Clayton, R.N., Onuma, N., Grossman, L., Mayeda, T.K., 1977. Distribution of the pre-solar
542 component in Allende and other carbonaceous chondrites. *Earth Planet. Sci. Lett.* 34, 209–
543 224.

544 Connelly, J.N., Bizzarro, M., Krot, A.N., Nordlund, Å., Wielandt, D., Ivanova, M.A., 2012. The
545 absolute chronology and thermal processing of solids in the solar protoplanetary disk.
546 *Science* 338, 651–655.

547 Ebel, D.S., 2006. Condensation of rocky material in astrophysical environments. In *Meteorites and*
548 *the Early Solar System II* (eds. D. S. Lauretta and , Jr.H. Y. McSween). University of

549 Arizona Press, Tucson, pp. 253–277.

550 Fagan, T.J., Krot, A.N., Keil, K., Yurimoto, H., 2004. Oxygen isotopic alteration in Ca-Al-rich
551 inclusions from Efremovka: Nebular or parent body setting? *Meteorit. Planet. Sci.* 39,
552 1257–1272.

553 Fahey, A.J., Zinner, E.K., Kurat, G., Kracher, A., 1994. Hibonite-hercynite inclusion HH-1 from
554 the Lance (CO3) meteorite: The solar nebula processing of an ultra-refractory CAI.
555 *Geochim. Cosmochim. Acta* 58, 4779–4793.

556 Grossman, J.N., Brearley, A.J., 2005. The onset of metamorphism in ordinary and carbonaceous
557 chondrites. *Meteorit. Planet. Sci.* 40, 87–122.

558 Grossman, L., 2010. Vapor-condensed phase processes in the early solar system. *Meteorit. Planet.*
559 *Sci.* 45, 7–20.

560 Grossman, L., Ebel, D.S., Simon, S.B., Davis, A.M., Richter, F.M., Parsad, N.M., 2000. Major
561 element chemical and isotopic compositions of refractory inclusions in C3 chondrites: the
562 separate roles of condensation and evaporation. *Geochim. Cosmochim. Acta* 64, 2879–
563 2894.

564 Grossman, L., Ebel, D.S., Simon, S.B., 2002. Formation of refractory inclusions by evaporation
565 of condensate precursors. *Geochim. Cosmochim. Acta* 66, 145–161.

566 Han, J., Brearley, A.J., 2016. Microstructural constraints on complex thermal histories of
567 refractory CAI-like objects in an amoeboid olivine aggregate from the ALHA77307 CO3.0
568 chondrite. *Geochim. Cosmochim. Acta* 183, 176–197.

569 Han, J., Brearley, A.J., 2017. Microstructures and formation history of melilite-rich calcium–
570 aluminum-rich inclusions from the ALHA77307 CO3.0 chondrite. *Geochim. Cosmochim.*
571 *Acta* 201, 136–154.

572 Han, J., Brearley, A.J., Keller, L.P., 2015. Microstructural evidence for a disequilibrium
573 condensation origin for hibonite-spinel inclusions in the ALHA77307 CO3.0 chondrite.
574 *Meteorit. Planet. Sci.* 50, 2121–2136.

575 Han, J., Liu, M.-C., Kööp, L., Keller, L.P., Davis, A.M., 2017. Correlations among microstructure,
576 morphology, chemistry, and isotopic systematics of hibonite in cm chondrites (abstract).
577 80th Annual Meeting of the Meteoritical Society, 6380.

578 Ito, M., Messenger, S., Keller, L.P., Rahman, Z.U., Ross, D.K., Nakamura-Messenger, K., 2010.
579 FIB-NanoSIMS-TEM coordinated study of a Wark-Lovering rim in a Vigarano type A

580 CAI (abstract). *Lunar Planet. Sci.* 41, 1177.

581 Itoh, S., Kojima, H., Yurimoto, H., 2004. Petrography and oxygen isotopic compositions in
582 refractory inclusions from CO chondrites. *Geochim. Cosmochim. Acta* 68, 183–194.

583 Kawasaki, N., Itoh, S., Sakamoto, N., Yorimoto, H., 2017. Chronological study of oxygen isotope
584 composition for the solar protoplanetary disk recorded in a fluffy Type A CAI from
585 Vigarano. *Geochim. Cosmochim. Acta* 201, 83–102.

586 Kawasaki, N., Simon, S.B., Grossman, L., Sakamoto, N., Yurimoto, H., 2018. Crystal growth and
587 disequilibrium distribution of oxygen isotopes in an igneous Ca-Al-rich inclusion from the
588 Allende carbonaceous chondrite. *Geochim. Cosmochim. Acta* 221, 318–341.

589 Keller, L.P., Needham, A.W., Messenger, S., 2013. A FIB/TEM study of a complex Wark-
590 Lovering rim on a Vigarano CAI (abstract). 76th Annual Meteoritical Society Meeting,
591 5300.

592 Kobatake, H., Tsukamoto, K., Nozawa, J., Nagashima, K., Satoh, H., Dold, P., 2008.
593 Crystallization of cosmic dust from highly supersaturated silicate vapor in a rapidly cooled
594 environment. *Icarus* 198, 208–217.

595 Krot, A.N., MacPherson, G.J., Ulyanov, A.A., Peraev, M.I., 2004a. Fine-grained, spinel-rich
596 inclusions from the reduced CV chondrites Efremovka and Leoville: I. Mineralogy,
597 petrology, and bulk chemistry. *Meteorit. Planet. Sci.* 39, 1517–1553.

598 Krot, A.N., Petaev, M.I., Russell, S.S., Itoh, S., Fagan, T., Yurimoto, H., Chizmadia, L., Weisberg,
599 M.K., Komatsu, M., Ulyanov, A.A., Keil, K., 2004b. Amoeboid olivine aggregates in
600 carbonaceous chondrites: records of nebular and asteroidal processes. (Invited review).
601 *Chem. Erde* 64, 185–239.

602 Krot, A.N., Nagashima, K., van Kooten, E.M.M., Bizzarro, M., 2017. High-temperature rims
603 around calcium–aluminum-rich inclusions from the CR, CB and CH carbonaceous
604 chondrites. *Geochim. Cosmochim. Acta* 201, 155–184.

605 Krot, A. N., Nagashima, K., Fintor, K., Pál-Molnár, E., 2019. Evidence for oxygen-isotope
606 exchange in refractory inclusions from Kaba (CV3.1) carbonaceous chondrite during fluid-
607 rock interaction on the CV parent asteroid. *Geochim. Cosmochim. Acta*, 246, 419–435.

608 MacPherson, G.J., 2014. Calcium-aluminum-rich inclusions in chondritic meteorites. In
609 *Meteorites, Comets and Planets*, vol. 1 (ed. A. M. Davis) *Treatise on Geochemistry* (eds.
610 H. D. Holland and K. K. Turekian). Elsevier, Oxford. pp. 201–246.

611 MacPherson, G.J., Grossman, L., 1981. A once-molten, coarse-grained, Ca-rich inclusion in
612 Allende. *Earth Planet. Sci. Lett.* 52, 16–24.

613 MacPherson, G.J., Bar-Matthews, M., Tanaka, T., Olsen, E., Grossman, L., 1983. Refractory
614 inclusions in the Murchison meteorite. *Geochim. Cosmochim. Acta* 47, 823–839.

615 Matzel, J.E.P., Simon, J.I., Hutcheon, I.D., Jacobsen, B., Simon, S.B., Grossman, L., 2013. Oxygen
616 isotope measurements of a rare Murchison type A CAI and its rim (abstract). *Lunar Planet.*
617 *Sci.* 44, 2632.

618 Mundybaev, R.A., Richter, F.M., Davis, A.M., 2006. Crystallization of melilite from CMAS-
619 liquids and the formation of the melilite mantle of Type B1 CAIs: Experimental
620 simulations. *Geochim. Cosmochim. Acta* 70, 2622–2642.

621 Needham, A.W., Messenger, S., Keller, L.P., Simon, J.I., Han, J., Mishra, R.K., 2015. Systematic
622 oxygen isotope variations within a single Vigarano CAI surrounded by a uniformly ^{16}O -
623 rich Wark-Lovering rim (abstract). *Lunar Planet. Sci.* 46, 2865.

624 Needham, A.W., Messenger, S., Han, J., Keller, L.P., 2017. Corundum–hibonite inclusions and
625 the environments of high temperature processing in the early Solar System. *Geochim.*
626 *Cosmochim. Acta* 196, 18–35.

627 Nozawa, J., Tsukamoto, K., Kobatake, H., Yamada, J., Satoh, H., Nagashima, K., Miura, H.,
628 Kimura, Y., 2009. AFM study on surface nanotopography of matrix olivines in Allende
629 carbonaceous chondrite. *Icarus* 204, 681–686.

630 Russell, S.S., Huss, G.R., Fahey, A.J., Greenwood, R.C., Hutchison, R., Wasserburg, G.J., 1998.
631 An isotopic and petrologic study of calcium-aluminum-rich inclusions from CO3
632 meteorites. *Geochim. Cosmochim. Acta* 62, 689–714.

633 Ryerson, F.J., McKeegan, K.D., 1994. Determination of oxygen self-diffusion in akermanite,
634 anorthite, diopside, and spinel: implications for oxygen isotopic anomalies and the thermal
635 histories of Ca–Al-rich inclusions. *Geochim. Cosmochim. Acta* 58, 3713–3734.

636 Park, C., Wakaki, S., Sakamoto, N., Kobayashi, S., Yurimoto, H., 2012. Oxygen isotopic
637 composition of the solar nebula gas inferred from high-precision isotope imaging of
638 melilite crystals in an Allende CAI. *Meteorit. Planet. Sci.* 47, 2070–2083.

639 Petaev, M.I., Wood, J.A., 2005. Meteoritic constraints on temperatures, pressures, cooling rates,
640 chemical compositions, and modes of condensation in the solar nebula. In *Chondrites and*
641 *the protoplanetary disk*, edited by Krot A. N., Scott E. R. D. and Reipurth B. ASP

642 conference series. 341. San Francisco: Astronomical Society of the Pacific. pp. 373–406.

643 Simon, J.I., Hutcheon, I.D., Simon, S.B., Matzel, J.E.P., Ramon, E.C., Weber, P.K., Grossman, L.,

644 DePaolo, D.J., 2011. Oxygen isotope variations at the margin of a CAI records circulation

645 within the solar nebula. *Science* 331, 1175–1178.

646 Simon, J.I., Matzel, J.E.P., Simon, S.B., Hutcheon, I.D., Ross, D.K., Weber, P.K., Grossman, L.,

647 2016. Oxygen isotopic variations in the outer margins and Wark–Lovering rims of

648 refractory inclusions. *Geochim. Cosmochim. Acta* 186, 242–276.

649 Simon, S.B., Grossman, L., 2015. Refractory inclusions in the pristine carbonaceous chondrites

650 DOM 08004 and DOM 08006. *Meteorit. Planet. Sci.* 50, 1032–1049.

651 Simon, S.B., Davis, A.M., Grossman, L., 1999. Origin of compact Type A refractory inclusions

652 from CV3 carbonaceous chondrites. *Geochim. Cosmochim. Acta* 63, 1233–1248.

653 Simon, S.B., Grossman, L., Hutcheon, I.D., Phinney, D.L., Weber, P.K., Fallon, S.J., 2006.

654 Formation of spinel-, hibonite-rich inclusions found in CM2 carbonaceous chondrites. *Am.*

655 *Mineral.* 91, 1675–1687.

656 Simon, S.B., Krot, A.N., Nagashima, K., Kööp, L., Davis, A.M., 2019a. Condensate refractory

657 inclusions from the CO3.00 chondrite Dominion Range 08006: Petrography, mineral

658 chemistry, and isotopic compositions. *Geochim. Cosmochim. Acta* 246, 109–122.

659 Simon, S.B., Krot, A.N., Nagashima, K., 2019b. Oxygen and Al-Mg isotopic compositions of

660 grossite-bearing refractory inclusions from CO3 chondrites. *Meteorit. Planet. Sci.* 54,

661 1362–1378.

662 Stolper, E., 1982. Crystallization sequences of Ca–Al-rich inclusions from Allende: an

663 experimental study. *Geochim. Cosmochim. Acta* 46, 2159–2180.

664 Ushikubo, T., Tenner, T.J., Hiyagon, H., Kita, N.T., 2017. A long duration of the ^{16}O -rich reservoir

665 in the solar nebula, as recorded in fine-grained refractory inclusions from the least

666 metamorphosed carbonaceous chondrites. *Geochim. Cosmochim. Acta* 201, 103–122.

667 Wark, D., Lovering, J.F., 1977. Marker events in the early evolution of the solar system: evidence

668 from rims on Ca–Al-rich inclusions in carbonaceous chondrites. *Proc. Lunar Planet. Sci.*

669 *Conf.* 8, 95–112.

670 Wasson, J.T., Yurimoto, H., Russell, S.S., 2001. ^{16}O -rich melilite in CO3.0 chondrites: Possible

671 formation of common, ^{16}O -poor melilite by aqueous alteration. *Geochim. Cosmochim.*

672 *Acta* 65, 4539–4549.

673 Yoneda, S., Grossman, L., 1995. Condensation of CaO–MgO–Al₂O₃–SiO₂ liquids from cosmic
674 gases. *Geochim. Cosmochim. Acta* 59, 3413–3444.

675 Yoshitake, M., Koide, Y., Yurimoto, H., 2005. Correlations between oxygen-isotopic composition
676 and petrologic setting in a coarse-grained Ca, Al-rich inclusion. *Geochim. Cosmochim. Acta* 69,
677 2663–2674.

678 Young, E.D., Russell, S.S., 1998. Oxygen reservoirs in the early solar nebula inferred from an
679 Allende CAI. *Science* 282, 452–455.

680 Yurimoto, H., Ito, M., Nagasawa, H., 1998. Oxygen isotope exchange between refractory inclusion
681 in Allende and solar nebula gas. *Science* 282, 1874–1877.

FIGURES

683 **Figure 1.** BSE images (a, c, d) and combined x-ray map (b) in Mg K α in red, Ca K α in green, and
684 Al K α in blue of melilite-rich CAI 05 from ALHA77307. The regions outlined in (a) are shown in
685 detail in (c, d). This inclusion has a distinct zonal structure that consists of a compact melilite-rich
686 core completely enclosed by a porous mantle, rimmed by a discontinuous layer of diopside.
687 Hereafter, NanoSIMS spots measured for O isotopes are indicated by yellow solid lines.
688 Abbreviations hereafter: hib = hibonite, pv = perovskite, sp = spinel, mel = melilite, di = diopside,
689 fo = forsterite, G = gold coating residues, p=pore.

690

691 **Figure 2.** (a) DF-STEM image of a perovskite grain enclosed by an intergrowth of Al-Ti-rich
692 diopside, spinel, and melilite in the mantle of CAI 05. All phases are highly irregular. Pores are
693 present throughout the mantle and concentrated in melilite. Each phase is outlined by dotted lines.
694 (b) Variations of Al_2O_3 and TiO_2 contents (in wt%) in pyroxene from the mantle that is consistently
695 Al-Ti-rich. Individual points represent single TEM EDX analyses obtained from pyroxene grains
696 present throughout the entire FIB section. A distance of 0 μm corresponds to the outermost edge
697 of the inclusion.

698

699 **Figure 3.** BSE images (a, c, d) and combined x-ray map (b) in Mg K α in red, Ca K α in green, and
700 Al K α in blue of spinel-rich CAI 1-65 from ALHA77307. The regions outlined in (a) are shown
701 in detail in (c, d). This CAI is a mineralogically-zoned inclusion consisting of nodules of spinel
702 cores corroded by layers of Al-Ti-rich diopside and minor melilite, finally rimmed by diopside
703 with minor forsterite.

704

Figure 4. TEM images of a FIB section from CAI 1-65. (a) BF-STEM image and (b, c) combined TEM EDX maps of the FIB section that shows a complex zonal sequence from the spinel core, intergrowth of spinel + Al-Ti-rich diopside + minor melilite, Al-rich diopside with minor spinel and Al-Ti-rich diopside, forsterite, diopside, forsterite, to diopside. (d, e) Elemental Al and Ti map obtained using TEM EDX, revealing the Al and Ti zonation in pyroxene.

710

Figure 5. BF-STEM images of (a) the intergrowth layer of spinel + Al-Ti-rich diopside + melilite and (b) the outermost rim of diopside + forsterite in CAI 1-65. The intergrowth layer at the

713 interface with the spinel core shows highly unequilibrated grain boundary microstructures, in
714 contrast to the outermost rim having equilibrated grain boundary microstructures. Each phase is
715 outlined by dotted lines. Diopside grains enclosed by spinel are outlined by red dotted lines, and
716 melilite grains are outlined by green dotted lines.

717

718 **Figure 6.** BSE images (a, c) and combined x-ray map (b) in Mg K α in red, Ca K α in green, and
719 Al K α in blue of hibonite-rich CAI 2-119 from ALHA77307. The regions outlined in (a) are shown
720 in detail in (c). In this CAI, individual nodules consist of hibonite grains partially to completely
721 surrounded by spinel with minor perovskite.

722

723 **Figure 7.** TEM images of a FIB section from CAI 2-119. (a) DF-STEM image and (b) combined
724 TEM EDX map of the FIB section that consists of a hibonite crystal embedded in spinel with minor
725 Al-Ti-rich diopside and perovskite. In (a), A-C indicate selected areas where diffraction patterns
726 shown in Figure 8 were obtained from the interfaces between hibonite and spinel. (c, d) higher-
727 magnification BF-STEM images of the interfaces of hibonite with spinel and minor Al-Ti-rich
728 diopside. Al-Ti-rich diopside grains are outlined by red dotted lines, whereas the hibonite-spinel
729 grain boundaries are outlined by green dash lines. In (d), inset diffraction patterns are indexed as
730 [110]_{hibonite}. Note that many spinel and Al-Ti-diopside grains appear elongated normal to the c^*
731 axis of hibonite.

732

733 **Figure 8.** (a-c) diffraction patterns obtained from three sets of the interfaces between hibonite and
734 adjacent spinel grains in CAI 2-119, showing the same crystallographic orientation relationships
735 between them such that [110]_{hibonite}//[011]_{spinel} and (001)_{hibonite}//(111)_{spinel}. Selected areas where the
736 diffraction patterns shown in (a-c) were obtained are indicated in Figure 7. Bright, larger spots
737 indicated by yellow arrows are indexed as the [011] zone axis of spinel, whereas smaller spots are
738 from [110] zone axis of hibonite. (d, e) HR-TEM images obtained from the interfaces of hibonite
739 with adjacent spinel and Al-Ti-rich diopside, showing the crystallographic continuity only between
740 hibonite and spinel. In (d), insets are the FFT patterns indexed as [110]_{hibonite} and [011]_{spinel}.

741

742 **Figure 9.** BF-STEM images (a, d) and corresponding Al and Ti maps (b, c, e, f) obtained using
743 TEM EDX of the diopside rim from CAI 2-119. The Al and Ti contents are heterogeneously

744 distributed within and between diopside grains. The dotted lines represent diopside grain
745 boundaries.

746

747 **Figure 10.** BSE images (a, c) and combined x-ray map (b) in Mg K α in red, Ca K α in green, and
748 Al K α in blue of melilite-rich CAI 2-112 from ALHA77307. In (c), åkermanite contents are
749 indicated with positions analyzed using electron microprobe. This CAI shows a poikilitic texture
750 with euhedral to subhedral spinel grains enclosed in melilite, in which its åkermanite contents
751 decrease gradually from one end of the crystals to the other. The ims-1290 ion microprobe spot is
752 not appeared here.

753

754 **Figure 11.** Oxygen isotopic compositions of individual minerals in four CAIs from ALHA77307.
755 The data are plotted on an oxygen three isotope diagram ($\delta^{17}\text{O}$ vs. $\delta^{18}\text{O}$) in (a) and as deviations
756 from the terrestrial fractionation line ($\Delta^{17}\text{O}$) in (b). All data were measured using NanoSIMS,
757 except for one spot of melilite from CAI 2-112 measured using ims-1290 ion microprobe. The
758 carbonaceous chondrite anhydrous mineral (CCAM) and terrestrial fractionation (TF) lines are
759 shown as reference.

TABLES

761 **Table 1.** Average compositions (wt%) of individual minerals in four CAIs from ALHA77307 obtained using electron microprobe.

CAI no. mineral	05 melilite		1-65 spinel		diopside		2-119 spinel		hibonite		2-112 spinel		melilite	
No. of analyses	28	1SD	9	1SD	6	1SD	2	1SD	5	1SD	10	1SD	12	1SD
SiO ₂	23.25	0.29	0.11	0.13	51.73	0.91	0.17	0.03	0.18	0.12	0.07	0.01	24.14	0.88
TiO ₂	0.02	0.01	0.15	0.05	0.13	0.05	0.13	0.06	2.87	1.09	0.17	0.07	0.08	0.03
Al ₂ O ₃	34.41	0.81	70.83	0.35	5.53	1.27	69.42	0.47	85.77	2.36	70.66	0.46	32.74	1.26
Cr ₂ O ₃	bdl	-	0.08	0.01	0.06	0.03	0.09	0.01	0.02	0.01	0.53	0.17	bdl	-
V ₂ O ₃	bdl	-	0.20	0.03	0.04	0.01	0.20	0.04	0.18	0.10	0.03	0.01	0.02	0.01
FeO	0.25	0.03	0.22	0.06	0.27	0.08	0.78	0.01	0.70	0.04	0.27	0.10	0.25	0.08
MnO	bdl	-	bdl	-	0.02	0.01	0.01	0.01	bdl	-	0.01	0.01	bdl	-
MgO	1.04	0.17	27.58	0.08	17.49	0.49	27.26	0.01	1.93	0.59	27.75	0.19	1.59	0.51
CaO	40.78	0.31	0.10	0.05	24.38	0.34	0.17	0.02	8.37	0.07	0.27	0.07	41.06	0.19
Na ₂ O	0.01	0.01	bdl	-	0.01	0.01	bdl	-	bdl	-	bdl	-	0.01	0.01
K ₂ O	0.03	0.01	0.03	0.00	0.03	0.01	0.03	0.01	0.02	0.01	0.02	0.01	0.03	0.01
Total	99.79		99.30		99.69		98.26		100.04		99.78		99.92	
oxygen numbers for the formula														
Si	1.065		0.003		1.870		0.004		0.020		0.002		1.105	
Ti	0.001		0.003		0.004		0.002		0.243		0.003		0.003	
Al	1.857		1.995		0.235		1.982		11.364		1.984		1.767	
Cr	-		0.002		0.002		0.002		0.002		0.010		-	
V	-		0.004		0.001		0.004		0.016		0.001		0.001	
Fe	0.009		0.004		0.008		0.016		0.066		0.005		0.010	
Mn	-		-		0.001		-		-		-		-	
Mg	0.071		0.982		0.942		0.984		0.323		0.986		0.108	
Ca	2.001		0.002		0.944		0.004		1.008		0.007		2.014	
Na	0.001		-		0.001		-		-		-		0.001	
K	0.002		0.001		0.001		0.001		0.003		0.001		0.001	
Total	5.007		2.996		4.009		2.999		13.045		2.999		5.010	
Åk (mol%) ²	5.4-9.6												5.2-15.3	
ranges of contents (wt%)	MgO: 0.82-1.44				Al ₂ O ₃ : 3.81-6.69				TiO ₂ : 1.35-3.89				MgO: 0.74-2.23	

*bdl: below detection limits.

Table 2. Oxygen isotopic compositions of individual minerals in four CAIs from ALHA77307.

CAI no.	mineral	$\delta^{17}\text{O}$	2σ	$\delta^{18}\text{O}$	2σ	$\Delta^{17}\text{O}$	2σ
05	melilite	-46.3	3.8	-43.8	2.2	-23.5	5.6
	melilite	-44.8	3.9	-46.7	2.2	-20.5	5.6
	perovskite	-52.0	3.5	-55.8	2.2	-23.0	5.3
	spinel (core)	-47.8	3.8	-51.7	2.2	-20.9	5.6
	spinel (mantle)	-45.4	3.9	-47.6	2.2	-20.6	5.6
	weighted average					-21.7	5.0
1-65	spinel	-50.2	3.9	-51.9	2.2	-23.2	5.7
	spinel	-49.6	4.0	-51.9	2.2	-22.6	5.7
	spinel	-47.7	4.0	-50.9	2.2	-21.2	5.7
	diopside	-47.9	3.9	-46.6	2.2	-23.7	5.6
	diopside	-47.0	3.8	-47.9	2.2	-22.0	5.5
	olivine	-47.2	3.8	-47.8	2.2	-22.3	5.5
	weighted average					-22.5	4.6
2-119	hibonite	-39.3	3.7	-41.1	2.2	-18.0	5.4
	hibonite	-43.4	3.6	-41.1	2.2	-22.0	5.4
	hibonite	-39.9	3.8	-43.0	2.2	-17.5	5.5
	spinel	-41.8	3.4	-42.5	2.1	-19.7	5.3
	spinel	-44.4	3.7	-42.5	2.2	-22.3	5.5
	weighted average					-19.9	4.8
2-112	spinel	-45.2	4.1	-42.1	2.3	-23.3	5.8
	spinel	-53.3	3.9	-50.3	2.2	-27.1	5.6
	melilite	-34.6	3.7	-29.7	2.2	-19.2	5.5
	melilite	-36.3	3.6	-28.0	2.2	-21.7	5.4
	melilite	-37.1	3.9	-29.0	2.2	-22.0	5.6
	weighted average					-22.6	5.0
	melilite (1290)*	-36.9	0.8	-19.4	0.6	-26.8	0.5

* One spot of melilite was measured using the CAMECA ims-1290 ion microprobe at UCLA.