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Numerical simulation
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Numerical simulation has evolved to be a powerful tool in science and
engineering

• Contributed to new scientific discoveries

• Revolutionized the engineering design process

• Numerical simulation of multiscale systems is an outstanding
challenge!

1 ) NASA: ww.nas.nasa.gov/SC11/demos/demo20.html
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Properties of multiscale systems

Disparate length and time-scales

■ Display many orders of length and
time scales

Many systems do not have scale
separation

■ Very challenging to develop models

■ Direct computations are expensive

■ Often rely on reduced-complexity
models

Reduced-complexity simulation is a pacing item in
computational physics
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Reduced-complexity numerical simulation

■ Many types of reduced-complexity modeling:

1. Projection-based reduced order models
2. Coarse numerical simulation
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Reduced-complexity numerical simulation

• Many types of reduced-complexity modeling:

1. Projection-based reduced order models
2. Coarse numerical simulation

• Reduced-complexity methods for multiscale systems suffer
from

• Stability
• Accuracy
• issues stem from truncation ("closure problem")
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Reduced-complexity numerical simulation

• Many types of reduced-complexity modeling:

1. Projection-based reduced order models
2. Coarse numerical simulation

• Reduced-complexity methods for multiscale systems suffer
from

• Stability
• Accuracy
• issues stem from truncation ("closure problem")

• Problems are amplified in complex multiscale/multiphysics
problems
• Developed and tuned for canonical systems
• Often inaccurate in important regimes
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Talk Overview

■ Main focus is on the "closure problem":

■ Primarily address this in the context of Galerkin methods

1. Outline the MZ-VMS Framework

■ Subgrid-scale modeling framework for reduced-order methods

2. Develop a data-driven machine learning MZ-VMS model

■ Apply to advection diffusion equation
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Galerkin Problem Statement (Global Case)
• Nonlinear initial value problem

Ou

+R(u)= f 
x in Q

• The state variable is expressed as

N

u(x, = .(x)aj(t), w, u E V
j=1

• a are the modal coefficients
• Galerkin method leads to the weighted residual form

(vv, Lit) (w, 1?,(u) — 7') = 0

• (•, •) is an inner product

• Challenge in multiscale systems:
• For accurate answers N is often prohibitively large

• co for continuum problems)
• How can we reduce N to M?
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Variational Multiscale Method

• Projection-based multiscale splitting framework

• Developed by Hughes et al. for multiscale phenomena

• Relies on scale separation projectors

• Main idea: sum decomposition of the solution space

• Sum decomposition:

V = ®

• Leads to state decomposition:

u(x, t) =
j=1

J J 
W

J

j=M+1

Hughes, T. J., Feijoo, G., Mazzei, L., and Qunicy, J., "The variational multiscale method - a paradigm for
computational mechanics," Computer methods in applied mechanics and engineering, Vol. 166, 1998, pp.
173-189.
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Variational Multiscale Method

• VMS decomposition of solution space V =

u(x, = u(x, +

• Splitting leads to two sub-problems
• M-dimensional coarse-scale equation:

+ — = — 'R,(u) — 7?,(1.0

• N — M dimensional fine-scale equation:

(W, ti) (W,R,(u) — R.(b)) = (W, R.* —

• Goal is to solve the coarse-scale problem
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Modeling Challenge

• Unclosed coarse-scale equation:

(17v, "U) + (17v, 7?,(D) — = — (cv, R(u) — R.(b))

• Model for unresolved physics:

A 4(0 — (f , — 7?-(0)

• Closed coarse-scale equation:

(f/if, + (Cy, — 0 = M(D)

• How can we construct M in a systematic way?

• We use the Mori-Zwanzig formalism
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Mori-Zwanzig: A Basic Example

12/4/18

Mori (1961), Zwanzig (1966)

• Basic linear system

dx 

dt 
= ii 

„
iix + Ai2y, dt

= A21x + A22.11
dy

• Seek ROM where y is unresolved

dx

dt 
= Aux + M(x)

• Solve y equation with integrating factors (superposition)

dx t

2 
-( = Aiix+ i Ai2eA 2(t 5 )A2ix(s)ds+ Ai2yoeA22 t

13

• Model reduction leads to memory effects!

• Mori-Zwanzig formalism generalizes to non-linear 10



Mori-Zwanzig Formalism

• Unclosed coarse-scale equation:

(6/, (iiii,R,(b)— = (cv,R.(u)— R.(b))

• Mori-Zwanzig process for closed coarse-scale equation:

(i7v, — 0 = C/if. , f K(a(t s), s))

• Challenge: Memory term is not computable

• Memory term is a starting point to develop models
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Mori-Zwanzig Models

• t-model

fo K(1.0 — s), s)ds tK(U(t), 0)

• Benefits: Model is complete (no parameters)
• Drawbacks: Model can be inaccurate

• T-model

K(1.(t — s), s)ds 7-1{(10),

• Benefits: More accurate than the t-model
• Drawbacks: Requires user defined parameters

• Can we use machine learning to do better?
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Mori-Zwanzig Machine Learning Model

• Can we approximate the MZ memory intergral with a machine

learning model?

jot
K(ii(t — s), s)ds S(z(ii(t))

• Important Questions

• What ML architecture should we use to construct S?
• What input features should we use?
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Neural Network Model
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• Neural networks are a popular ML model

zl ->

• >0—> Output
Z2

• Relies on function composition

8(z(dA,[0)= gN(•;71N) 0 gN_A-; 0 ... 0 go(z(dA, tt); no),

• 7li : weights at the ith layer
• gi: activation functions at the ith layer

• Can't capture non-Markovian effects
14



Recurrent Neural Network Model

• Generalization of NNs for sequential problems

• Capable of capturing memory effects

z(tn) • • • 0(tn)

z(tn+ 1) • • • 0(tn+i)

12/4/18 15



Input Features

• Accuracy of machine learning algorithms depends on input
features

• Input feature selection is often an art

• MZ-VMS provides a promising feature

z = K(ii(t), 0)
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Training the Machine Learning Model

• Neural network is coupled to the forward model
• Standard techniques (backprop) can't be used to train the

neural network
• Training needs to be coupled to the forward model

• Training is performed with the adjoint equations,

of, T 06 T
AA(t) =   A(t)— A(t)+ We„d(d —
dt

A(tf) = 0

06T
= qo c77

77 a Adt.
(-177

Steepest decent update:

06T
Tin+1 = Tin E f crp7 Adt
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Numerical Example: Advection Diffusion ROM

• Examine the parameterized advection-diffusion equation

—
0

u(x = + 
au 1 02 u

Ot 
, 

box Re Ox2

u(0, = u(2, = 0, u(x, 0) = x(2 — x) exp(2x),

• Parameters:

• Re E [5,250] : Reynolds number

• Truth model is a finite difference scheme

duk Uk+1 Uk Uk+1 — 2Uk Uk-1

dt 
= PO + P1

Ax Ax2

• Truth model is 100 dimensional
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Numerical Example: Advection Diffusion ROM
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• Generation of Reduced Model:
• Solve truth model for Re = [5,85,170,250]
• Search solution snapshots for low dimensional basis

• eg. POD, PCA,

• Galerkin projection of truth model onto low dimensional basis

• Mathematically:

du 
= Au,

dt
u E Rioo

da 
= 

dt 
Aa, a E R3

• Dimensionality of the system reduced by 30x

• However, ROM has error
19



ML Closure Model

■ We augment our ROM with a closure term:

■ Input features are:

da -

dt = Aa 6(z(a))

z(t) = {K(d(t), 0), Re}

■ Network details:
■ Employ a combined NN + RNN network
■ Recurrent activation function: linear
■ Markovian activation functions: ReLU
■ One hidden layer, one neuron in RNN
■ One hidden layer, eight neurons in NN
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Training: Regression Results

■ Markovian and recurrent networks are trained individually for
various Reynolds numbers

111
Sk.'

Re Re

■ Recurrent network leads to > 98% error reduction for
high Reynolds numbers
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Training: Physical insight
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• Recurrent neural network has the recursion:

hn+1 Co hn Cle+1

• Parameter co can be interpreted as the "forget" parameter
• Defines the memory length

-1°

g'

Re

• Memory length grows with increasing Reynolds numbers
22



Testing

• RNN is tested for Re E [20, 250]

• Compared to state of the art MZ model

• 6434DM

• 64•11M+MN 
M

•

0

:

do.

-• • •

-30

=o
•••

•

.•••
.0 •• .m • m •

„0
Re

• Recurrent network leads to > 90% error reduction for
high Reynolds numbers

• Model is predictive at new Reynolds numbers
• Low generalization error
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Summary

■ Quantifying and reducing errors in reduced-order models is of

critical importance

■ We outlined the MZ-VMS method for reduced-order models

■ VMS is used to isolate the "subgrid" errors
■ MZ is used a starting point to develop models

■ Outlined a data-informed approach that combines MZ-VMS
with machine learning

■ We use recurrent neural networks to model memory effects
■ MZ-VMS memory is used as an input into the RNN

■ Demonstrated method on advection diffusion equation

• > 98% error reduction on training data
• > 90% error reduction on testing data
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Thank you for your time!
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