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Numerical simulation

Numerical simulation has evolved to be a powerful tool in science and
engineering

m Contributed to new scientific discoveries
m Revolutionized the engineering design process

m Numerical simulation of multiscale systems is an outstanding
challenge!

1.) NASA: wuw.nas.nasa.gov/SC11/demos/demo20.html
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Properties of multiscale systems

Disparate length and time-scales

m Display many orders of length and
time scales

Many systems do not have scale
separation
m Very challenging to develop models
m Direct computations are expensive

m Often rely on reduced-complexity
models

Reduced-complexity simulation is a pacing item in
computational physics
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Reduced-complexity numerical simulation

m Many types of reduced-complexity modeling:

1. Projection-based reduced order models
2. Coarse numerical simulation
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Reduced-complexity numerical simulation

m Many types of reduced-complexity modeling:

1. Projection-based reduced order models
2. Coarse numerical simulation

m Reduced-complexity methods for multiscale systems suffer
from
m Stability
m Accuracy
m Issues stem from truncation (”closure problem”)
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Reduced-complexity numerical simulation

m Many types of reduced-complexity modeling:

1. Projection-based reduced order models
2. Coarse numerical simulation

m Reduced-complexity methods for multiscale systems suffer
from
m Stability
m Accuracy
m Issues stem from truncation (”closure problem”)

m Problems are amplified in complex multiscale/multiphysics
problems

m Developed and tuned for canonical systems
m Often inaccurate in important regimes
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Talk Overview

m Main focus is on the "closure problem”:
m Primarily address this in the context of Galerkin methods

1. QOutline the MZ-VMS Framework

m Subgrid-scale modeling framework for reduced-order methods

2. Develop a data-driven machine learning MZ-VMS model
m Apply to advection diffusion equation
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Galerkin Problem Statement (Global Case) =
m Nonlinear initial value problem
ou .
T +Ru)=f xinQ
m The state variable is expressed as

N

u(x, t) = Z w;(x)aj(t), w,u eV

j=1
a are the modal coefficients
Galerkin method leads to the weighted residual form

(w,ue) + (w,R(u) — ) =0

(+,+) is an inner product

Challenge in multiscale systems:
m For accurate answers N is often prohibitively large
m (N = co for continuum problems)

m How can we reduce N to M?
12/4/18 6
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Variational Multiscale Method -

m Projection-based multiscale splitting framework
m Developed by Hughes et al. for multiscale phenomena
m Relies on scale separation projectors

m Main idea: sum decomposition of the solution space

m Sum decomposition:
V=VaV
m Leads to state decomposition:

waaﬁ Z

j=M+1

Hughes, T. J., Feijoo, G., Mazzei, L., and Qunicy, J., "The variational multiscale method - a paradigm for
computational mechanics,” Computer methods in applied mechanics and engineering, Vol. 166, 1998, pp.
173-189.
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Variational Multiscale Method

m VMS decomposition of solution space V =V & 1%
u(x, t) = b(x, t) + b(x, t)

m Splitting leads to two sub-problems
m M-dimensional coarse-scale equation:

(W, @) + (# R(0) - f) = = (% R(v) — R(@))
m N — M dimensional fine-scale equation:
(W) + (W.R(W) ~ R(B)) = — (W R(@) — )

m Goal is to solve the coarse-scale problem
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Modeling Challenge

m Unclosed coarse-scale equation:
(w, o) + (W, R(0) — f) = —(w, R(u) — R(1))

m Model for unresolved physics:

M(1) = —(w, R(u) — R(@))

m Closed coarse-scale equation:

!

(W, @) + (W, R(T) — ) = M(D)

m How can we construct M in a systematic way?

m We use the Mori-Zwanzig formalism
12/4/18 9




Mori-Zwanzig: A Basic Example BE.

Mori (1961), Zwanzig (1966)
m Basic linear system

dx dy
g 11X+ A12Y, i 21X+ A2y

m Seek ROM where y is unresolved

dx
A
o 11X+ M(x)

m Solve y equation with integrating factors (superposition)

b _

t
7 Ap1x+ / A12€A22(t_s)A21X(S)d5 + AlgygeA”t
0

m Model reduction leads to memory effects!

12415 ™ Mori-Zwanzig formalism generalizes to non-linear 0
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Mori-Zwanzig Formalism —
m Unclosed coarse-scale equation:
(W, ) + (W, R(&) — f) = —(W, R(u) — R(1))
m Mori-Zwanzig process for closed coarse-scale equation:
(w, ) + (w, R(1) /K (t—s),9))
m Challenge: Memory term is not computable
m Memory term is a starting point to develop models
12/4/18 11




Mori-Zwanzig Models

m t-model .

K(u(t—s),s)ds ~ tK(u(t),0)
0

m Benefits: Model is complete (no parameters)
m Drawbacks: Model can be inaccurate
m 7-model .

K(u(t—s),s)ds ~ 7K(u(t),0)
0

m Benefits: More accurate than the t-model
m Drawbacks: Requires user defined parameters

m Can we use machine learning to do better?
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Mori-Zwanzig Machine Learning Model

m Can we approximate the MZ memory intergral with a machine
learning model?

/K (t— 5), 5)ds ~ 8((@(t))

m Important Questions

m What ML architecture should we use to construct §7
m What input features should we use?
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Neural Network Model @ E=.

m Neural networks are a popular ML model

¥4 —»./7’\
‘7.—> Output

\.

m Relies on function composition

zy ——

0(z(aa, 1) = gn(-mn) o gn—1(3mnv—1) ©. ..o go(z(aa, 11); M0),

m 7); : weights at the iy, layer
m g;: activation functions at the iy, layer

m Can’t capture non-Markovian effects
12/4/18 14




Recurrent Neural Network Model

m Generalization of NNs for sequential problems

m Capable of capturing memory effects

=(t,) — @) O @ o)

|

2(tnr1) — @) O @ o)
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Input Features

m Accuracy of machine learning algorithms depends on input
features

m Input feature selection is often an art

m MZ-VMS provides a promising feature

z = K(u(1),0)

12/4/18 16
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Training the Machine Learning Model
m Neural network is coupled to the forward model

m Standard techniques (backprop) can't be used to train the
neural network
m Training needs to be coupled to the forward model

m Training is performed with the adjoint equations,

- T

d OF s T -

a_)\(t) = —% )\(t) — % )\(t) +W€d€d(d — a).
Atp) =0

6T
n=mno+ / C,ma—nAdt.
Steepest decent update:

o7
n+1 n
=n"+e | C,——M\dt
12/4/18 4 K / A on
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Numerical Example: Advection Diffusion ROM

m Examine the parameterized advection-diffusion equation
0 (x,1 du N 1 0%u
—ulx,t) = —+ ——
ot Ox  Redx®’
u(0,t) = u(2,t) =0, u(x,0) = x(2 — x) exp(2x),

m Parameters:
m Re € [5,250] : Reynolds number

m Truth model is a finite difference scheme

duy Upp1 — Uk Ukl — 2Up + Uk
— = Po + + P1 + D) ’
dt Ax AX

m Truth model is 100 dimensional

12/4/18 18
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Numerical Example: Advection Diffusion ROM

m Generation of Reduced Model:

m Solve truth model for Re = [5, 85,170, 250]
m Search solution snapshots for low dimensional basis

m eg. POD, PCA, ...
m Galerkin projection of truth model onto low dimensional basis

m Mathematically:

d
& _Au,  ueR®
dt
|
da _ Aa, acR?
dt

m Dimensionality of the system reduced by 30x

m However, ROM has error
12/4/18




ML Closure Model e

m We augment our ROM with a closure term:

da  ~ . o
i Aa+4(z(a))

m Input features are:
z(t) = {K(a(t),0), Re}

m Network details:

Employ a combined NN + RNN network
Recurrent activation function: linear
Markovian activation functions: ReLU
One hidden layer, one neuron in RNN
One hidden layer, eight neurons in NN

12/4/18 20
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Training: Regression Results e
m Markovian and recurrent networks are trained individually for
various Reynolds numbers
e i "
= [~
& 5
ut_l—)c
104 R -w
= Recurrent network leads to > 98% error reduction for
high Reynolds numbers
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Training: Physical insight
m Recurrent neural network has the recursion:

hn-‘rl — hn + ClZn+1

m Parameter ¢y can be interpreted as the "forget” parameter
m Defines the memory length

99% Memory length

m Memory length grows with increasing Reynolds numbers 55
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Testing e
m RNN is tested for Re € [20, 250]
m Compared to state of the art MZ model
N $ ST pncid - - * :7“, ®  GROM + RNN
. g
e . S
Sl e 5 NN
Qo .' Lk - = ; . '.. Cd
oos] @ o -
‘:- "o oo .. we o ® o . .~ "o o0 .- -e o & o
’ " Rem ” . ! " Rem . v
m Recurrent network leads to > 90% error reduction for
high Reynolds numbers
m Model is predictive at new Reynolds numbers
m Low generalization error
12/4/18 23
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Summary

m Quantifying and reducing errors in reduced-order models is of
critical importance
m We outlined the MZ-VMS method for reduced-order models

m VMS is used to isolate the "subgrid” errors
m MZ is used a starting point to develop models

m Qutlined a data-informed approach that combines MZ-VMS
with machine learning

m We use recurrent neural networks to model memory effects
m MZ-VMS memory is used as an input into the RNN

m Demonstrated method on advection diffusion equation

m > 98% error reduction on training data
m > 90% error reduction on testing data
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Thank you for your time!

m Funding sources:
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