This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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A Priori Methods for Assessing the
Nonlinearity of a Jointed Structure




Overview

What if we could remove the uncertainty associated with the nonlinearity of a novel joint?
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Observations from Previous Research

1. 2017 study on interfacial effects
« Interfaces with high, uniform contact pressure - “Linear” dynamics
« Interfaces with transitions from high to low contact pressure - Strongly nonlinear

168

1 64 / Wimiz;z;z;gz::;;_b

160 |

"**l
el
\

wl.l T
E..,:‘__g

.
llllll

™
(9))
D

0

(Hz)

Natural Frequency

M a2 e, <o L T IR S W 9 2K i
(“ ‘ ‘I) ] 152 |
148 +
144
10° 10°
Amplitude
(m/s?)

Introduction ’ . Numerical . Experimental ’ Characterization . Conclusion




Observations from Previous Research

. 25
2. 2017 study on far-field effects —
« ‘“ldentical” interfaces have very different responses S
«  Far-field structure affects how interface is loaded
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Observations from Previous Research

3. 2018 study on interfacial pressure during dynamic loading
Moderate contact pressure regions - fluctuate during dynamic loading

time = 0.60751 s time = 0.60905 s time = 0.61059 s
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4. 2018 study on interface roughness as a variability
 Low contact pressure regions - Source of energy dissipation
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A Priori Methods Hypothesis

We hypothesize that the strength of nonlinearity for a given mode of an
assembly can be determined by:

1. The interfacial contact pressure
2. The modal strain energy

To test this hypothesis, we:

1. Measured the nonlinear characteristics of multiple modes for 11 different
systems

2. Simulated the interfacial contact pressure and modal strain energy of each
system
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Benchmark Systems: The Brake-Reuld Beam and Variations

MNominal BRB
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= Hertzian Contact (HZ)

= Reverse Pad Contact (RPD)

= Large Pad Contact (LPD)

= Small Pad Contact (SPD)
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Benchmark Systems: The C-Beam and 4-Bolt Interface

The 4-Bolt Interface

The C-Beam
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Experimental Methods
1. Impact Testing 2. Bandpass Filtering and Hilbert Transform
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Numerical Methods

= Goal: easy-to-access data from FEA model

= Contact pressure and area calculated from a nonlinear frictionless static loading
= Modal strain calculated from a linear modal analysis (tied interface)

= Statistical metrics used to characterize results
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Defining Strength of Nonlinearity (SNL)

= Method 1: frequency and damping shift

" SNL=a=2+pA]

C Beam Mode 2/ 20Nm / 400N

e
N

=
-
(%3]

0.999 1

A¢

Damping Ratio [%]
o
[

e
=]
"

0.998 |

Natural Frequency Normalized

10° 10! 102

10° 10! 10
Amplitude [m/s?]

Amplitude [m /s2]

11

Introduction . Overview . Numerical » Experimental . Characterization ’ Conclusion




Defining SNL: Frequency and Damping Shift

Introduction
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Defining SNL: Perturbations Approach

= Method 2: Based off of a mass-spring-damper system
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Defining SNL: Perturbations Approach

CBM Mode 2 / 20Nm / 100N
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Analysis

= Two analyses
* Machine learning
« Statistical hypothesis testing

= MATLAB's built-in neural network used to develop a predictive equation for SNL

Added variable plot for whole model

= 70% of variance explained by
 Mean modal strain
« Standard deviation of modal strain
« Skewness of modal strain

« Standard deviation of contact pressure
« Contact area
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Analysis

= 82% of stiffness nonlinearity can be explained by modal strain and contact pressure
= 55% of damping variance can be explained by same analysis

For stiffness variance For damping variance
Significant Factors Insignificant Factors Significant Factors
1. Mean of modal strain 13. Kurtosis of contact pressure 1. Contact area
2. Standard deviation of modal strain  12. Maximum of contact pressure 2. Mean of modal strain
3. Skewness of modal strain 11. Standard deviation of contact 3. Standard deviation of contact pressure
4. Skewness of contact pressure pressure 4. Maximum of modal strain
5. Contact area 10. Maximum of modal strain 5. Maximum of contact pressure
6. Kurtosis of modal strain 6. Skewness of modal strain
7. Mean of contact pressure 7. Kurtosis of contact pressure
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The Roughness Factor

= “Flat” interfaces are not flat
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The Roughness Factor

= We included microscale parameters in a set of nonlinear regression models

= 99% of stiffness variation can be explained using either a Gaussian or Stepwise
Linear regression

= 97% of damping variation can be explained using a cubic support vector machine
regression (90% can be explained via a Stepwise Linear regression)

. - . . %1073 Predictions: model 1.18 . . . Predictions: model 1.10
Significant Factors for Stiffness . Significant Factors for Damping

1. Std. dev. of contact pressure 2 1. Std. dev. of contact pressure

2. Number of bolts 2. Mean modal strain

3. Macroscale curvature 3. Maximum of contact pressure
4. Maximum asperity height 4. Kurtosis of modal strain
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Conclusion

= The A Priori Hypothesis stated that the strength of nonlinearity for a given mode of
an assembly can be determined by

1. The interfacial contact pressure
2. The modal strain energy

= The purely numerical a priori estimates can explain
« 82% of stiffness
« 55% of damping variance

= A combination of a priori estimates and microscale parameters can explain
* 99% of stiffness
*  97% of damping variance

19

Introduction Overview Numerical Experimental Characterization Conclusion




Acknowledgements

This research was conducted at the 2018 Nonlinear Mechanics and Dynamics

Research Institute hosted by Sandia National Laboratories and the University of
New Mexico.

This research was assisted by the research of previous NOMAD teams and
research ongoing at Rice University.

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA-0003525.

20

Introduction Overview Numerical Experimental Characterization Conclusion







Observation 2: Far-Field Effects
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Experimental Methodology

= CBM = 4S0
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Experimental Methodology

= |Impact hammer tests using free-free boundary conditions
= Bolt torques ranging from 5Nm to 20Nm
= Impact levels from 60N to 900N

= Standardize by maximum mode shape
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