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Overview

What if we could remove the uncertainty associated with the nonlinearity of a novel joint?
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Observations from Previous Research

1. 2017 study on interfacial effects
• Interfaces with high, uniform contact pressure 4 "Linear" dynamics
• Interfaces with transitions from high to low contact pressure 4 Strongly nonlinear
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Observations from Previous Research

2. 2017 study on far-field effects
• "Identical" interfaces have very different responses
• Far-field structure affects how interface is loaded
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Observations from Previous Research

3. 2018 study on interfacial pressure during dynamic loading
• Moderate contact pressure regions 4 fluctuate during dynamic loading

time = 0.60751 s time = 0.60905 s

4. 2018 study on interface roughness as a variability
• Low contact pressure regions 4 Source of energy dissipation

time = 0 61059 s
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A Priori Methods Hypothesis

We hypothesize that the strength of nonlinearity for a given mode of an
assembly can be determined by:

1. The interfacial contact pressure
2. The modal strain energy

To test this hypothesis, we:
1. Measured the nonlinear characteristics of multiple modes for 11 different

systems
2. Simulated the interfacial contact pressure and modal strain energy of each

system
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Benchmark Systems: The Brake-Reuß Beam and Variations
NI cnall BI

• BRB
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• Hertzian Contact (HZ)

• Reverse Pad Contact (RPD)

• Large Pad Contact (LPD)

• Small Pad Contact (SPD)
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Benchmark Systems: The C-Beam and 4-Bolt Interface

The 4-Bolt Interface
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Experimental Methods
1. Impact Testing

F - nneoe.

F - MRCP.

3. Frequency and Damping Extraction
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2. Bandpass Filtering and Hilbert Transform
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Numerical Methods

• Goal: easy-to-access data from FEA model

• Contact pressure and area calculated from a nonlinear frictionless static loading

• Modal strain calculated from a linear modal analysis (tied interface)

• Statistical metrics used to characterize results
• Mean

• Max

• Standard Deviation

• Skew

• Kurtosis
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Defining Strength of Nonlinearity (SNL)

• Method 1: frequency and damping shift

• SNL = a° + flg
(L)
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Defining SNL: Frequency and Damping Shift

1

\ 2

SNL4 = 7 (20 *12 + 002 + (20 *12 + 002
(A)

Change in Damping -0.015

Change in Frequency
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Defining SNL: Perturbations Approach

• Method 2: Based off of a mass-spring-damper system
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Defining SNL: Perturbations Approach

CBM Mode 2 / 20Nm / 100N
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Analysis

• Two analyses
• Machine learning

• Statistical hypothesis testing

• MATLAB's built-in neural network used to develop a predictive equation for SNL

• 70% of variance explained by
• Mean modal strain

• Standard deviation of modal strain

• Skewness of modal strain

• Standard deviation of contact pressure

• Contact area
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Analysis

■ 82% of stiffness nonlinearity can be explained by modal strain and contact pressure

■ 55% of damping variance can be explained by same analysis

For stiffness variance

Significant Factors Insignificant Factors

1. Mean of modal strain
2. Standard deviation of modal strain
3. Skewness of modal strain
4. Skewness of contact pressure
5. Contact area
6. Kurtosis of modal strain
7. Mean of contact pressure

13. Kurtosis of contact pressure
12. Maximum of contact pressure
11. Standard deviation of contact

pressure
10. Maximum of modal strain

For damping variance

Significant Factors

1. Contact area
2. Mean of modal strain
3. Standard deviation of contact pressure
4. Maximum of modal strain
5. Maximum of contact pressure
6. Skewness of modal strain
7. Kurtosis of contact pressure
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The Roughness Factor

■ "Flat" interfaces are not flat
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The Roughness Factor

• We included microscale parameters in a set of nonlinear regression models

• 99% of stiffness variation can be explained using either a Gaussian or Stepwise
Linear regression

• 97% of damping variation can be explained using a cubic support vector machine
regression (90% can be explained via a Stepwise Linear regression)

Significant Factors for Stiffness

1. Std. dev. of contact pressure
2. Number of bolts
3. Macroscale curvature
4. Maximum asperity height
5. Kurtosis of roughness
6. Skewness of roughness
7. Mean modal strain
8. Mean contact pressure
9. Bolt torque
10. Maximum modal strain

Pr
ed
ic
te
d 
re

sp
on

se
 

0

-2

-4

-6

-8

-10

-12

xio3 Predictions: model 1.18

-12 -10 -8 -6 -4

True response

-2 0

10

Significant Factors for Damping
0.25

1. Std. dev. of contact pressure
2. Mean modal strain
3. Maximum of contact pressure
4. Kurtosis of modal strain
5. Number of bolts
6. Skewness of contact pressure
7. Kurtosis of contact pressure
8. Maximum asperity height
9. Skewness of roughness
10. Kurtosis of roughness
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Conclusion

■ The A Priori Hypothesis stated that the strength of nonlinearity for a given mode of
an assembly can be determined by

1. The interfacial contact pressure

2. The modal strain energy

■ The purely numerical a priori estimates can explain

• 82% of stiffness

• 55% of damping variance

■ A combination of a priori estimates and microscale parameters can explain

• 99% of stiffness

• 97% of damping variance
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Observation 2: Far-Field Effects

DB: C en_Des k_CompderPh.. =,Freeiree1BFBINesN2.odb

5. 513
[Ad,: 1.5711"

Mewpert: l ODB: C7klen_Ces .rnp s..Free FreeIBFBIDiesr2

U. Magi..
*,.11111e*111
*,.11111e+111

+8.333e-111

5. 513
(Aag: MI)

+1.5/11e*O1
*Mlle *DI
1-7.1e,
*7333e*D1

*,.55Ie*C6
*,.16.7e*

*C0
C6

*731re 
.1.885e*C0

Meg. :rude

+250Ce-DI

USE; B
*LDOCe *OD

L ERBIL BRB_Mesh2.odb rrputerlPh ...ireelO BR BB B RB_Mesh2.odb

-3B89e*DO

Ob ' 1 • Tort: 9 0 B: en_Oes k_Con-puteriF

Introduction Overview Numerical Experimental Characterization Conclusion



Experimental Methodology

• CBM

• 4LS

• 4S0
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Experimental Methodology

• Impact hammer tests using free-free boundary conditions

• Bolt torques ranging from 5Nm to 20Nm

• Impact levels from 60N to 900N

• Standardize by maximum mode shape
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