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ABSTRACT

In this report a process using existing technologies at Sandia National Laboratories (SNL) to
simulate the six degrees-of-freedom (6DOF) trajectories of explosive fragments is described and
tested. First, aerodynamic forces and moments as functions of orientation are computed using the
SIERRA/Aero supersonic flow solver. The forces and moments are normalized and tabulated in a
database. Second, this the aerodynamic coefficient database is imported into a 6DOF rigid body
dynamics solver in order to compute the resulting trajectories. The supersonic flow simulations
are tested for simple geometries and show good agreement with literature values. The simulation
procedure is then demonstrated for an example fragment. The results of the example fragment
indicate that the distance traveled in the early flight (from 2.5 km/s until decreasing down to 1
km/s) varies widely depending on the initial orientations. The fragment trajectory distribution and
steady tumbling rate is explored. The study indicates that a 6DOF analysis will yield information
about a spread of possible trajectories, while using an average drag coefficient can only represent
the most likely trajectory.
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1. Introduction

Upon detonation of a cased explosive, the case breakup and failure causes fragments of multiple
shapes and sizes to be launched outward at high speeds, typically in the supersonic or transonic
range. The flight distance, trajectory, and possible tumbling modes of a single fragment depend
on the forces and moments experienced by the interaction with the air flow field during the
fragment’s uncontrolled flight. As transient high-speed airflows may involve highly non-linear,
multi-physical phenomena such as shock waves, turbulence, rarefied gas flows, and multi-modal
heat transfer, a complete understanding of the trajectory of a single fragment in flight has not been
fully established. To this end, the main goal of this study is to use existing computational tools at
Sandia National Laboratories (SNL) to compute the trajectory and understand the physics of a
single fragment in uncontrolled flight.

Figure 1-1 (Left) Image of a fragment field resulting from an explosive munition.
(Right) Image of a recovered fragment whose complex geometry is representative
of typical fragments.

Figure 1-1 illustrates a typical fragment field resulting from an explosive munition as well as the
complex geometry of a single recovered fragment. The highest fidelity simulations require these
fragments to be used in fully-coupled numerical solvers. However, such simulations are highly
expensive. Because of the computational cost and complex fragment geometry, historical
estimations of fragment trajectories usually employ a single drag coefficient to characterize the
aerodynamic forces. As Figure 1-1 shows, fragment shape and geometry are highly variable,
often with large aspect ratios. For such shapes, such as flat plates, the drag may differ by orders of
magnitude depending on the plate orientation. Thus, a single drag coefficient approximation may
be inaccurate for large aspect ratio fragments. Furthermore, a single drag coefficient does not
capture the aerodynamic moments, which induce rotations and tumbling in flight. A more
accurate solution methodology is to use steady-state simulations to measure the forces and
moments on the fragment during flight as a function of orientation. This quasi-steady
approximation is valid if the speed of the fragment rotation is small compared to its flight
speed.

In this report a quasi-steady simulation approach for determining fragment trajectories is outlined
and shown to be feasible using existing technologies at SNL. First, the problem statement and
description of the geometry are described. Then the details of the quasi-steady simulation
methodology are explained, and supersonic flow test cases are detailed. Finally, several sample
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trajectories of example fragment shapes are computed and shown. The simulation results may be
validated in future work by an experimental procedure to measure the fragment trajectories for
simple shapes. The results of this work opens the possibility of automating the simulation
procedure in order to compile a large database of trajectory predictions for a large number of
fragments.

2. Problem Statement

2.1. Geometry

An arbitrary-shaped fragment flies through the air as shown in Figure 2-1. Several coordinate
systems are defined that characterize the fragment’s position. First, a set of inertial axes (xyz)I is
placed at point O, the starting location of the fragment. This coordinate system serves as an
inertial reference point for the other coordinate systems. Second, a set of body-fixed axes (xyz)b,
is attached to the fragment with its origin at the center of mass, C. The center of mass is located at
position −→r C relative to the inertial axis. Also, the fragment has instantaneous angular velocity −→ω ,
which is consequently the angular velocity of the body-fixed axes. Finally, the fragment is also
traveling at instantaneous velocity

−→
V . A separate wind coordinate system (xyz)w (not shown in

Figure 2-1) characterizes the direction of travel, where
−→
V is in the direction of x̂w. The origin of

(xyz)w is also at the fragment’s center of mass.

xb 

yb 

zb 

!
V

!
ω

xI 

zI 

yI 

C

!rC O

Figure 2-1 Schematic of arbitrary fragment in flight with associated inertial and body-
fixed coordinate systems.

The relationship between (xyz)I and (xyz)b is characterized by three rotational angles, yaw angle
Ψ, pitch angle Θ, and roll angle Φ. To obtain the (xyz)b axes, rotate the (xyz)I axes about the
zI-axis by Ψ, then about the new y-axis by Θ, and finally about the new x-axis by Φ. These three
angles uniquely identify the fragment orientation relative to the inertial frame. Mathematically,
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the relationship can be expressed asx̂b
ŷb
ẑb

=

1 0 0
0 cosΦ sinΦ

0 −sinΦ cosΦ

cosΘ 0 −sinΘ

0 1 0
sinΘ 0 cosΘ

 cosΨ sinΨ 0
−sinΨ cosΨ 0

0 0 1

x̂I
ŷI
ẑI

 (2.1)

This equation can be succinctly written as

x̂b = Rx̂I (2.2)

where x̂i =
[
x̂i ŷi ẑi

]T are the unit vectors in the coordinate systems (i replaced by b or I) and
the rotation matrix R is the matrix product of the three rotation component matrices. Note that R
is orthogonal so R−1 = RT , which facilitates computation of the inverse relationship.

Furthermore, the (xyz)b and (xyz)w axes are related by a pair of aerodynamic angles, angle of
attack α and Euler sideslip angle βE . The wind axes (xyz)w can be obtained by rotating the body
fixed axes (xyz)b first by angle α about the yb-axis and then by angle βE about the new z-axis. The
transformation is given byx̂b

ŷb
ẑb

=

cosα 0 −sinα

0 1 0
sinα 0 cosα

cosβE −sinβE 0
sinβE cosβE 0

0 0 1

x̂w
ŷw
ẑw

 (2.3)

Note that only two rotation angles (α and βE) are necessary to characterize the fragment’s
direction of travel with respect to its orientation.

2.2. Equations of Motion

Initial fragment speeds need to experimentally measured or estimated using computational tools.
From preliminary data, speeds are estimated to be approximately 2.5 km/s, well into the
supersonic range. The forces and moments experienced by a fragment are dictated by its
interaction with the surrounding air. In particular, the drag on a bluff body is heavily influenced
by the pressure difference, which is affected by the shock wave location, while the drag on a
streamlined body is dictated by the turbulent eddies and flow separation point. The velocity,
temperature, and pressure field of the airflow surrounding the fragment are governed by the
compressible Navier-Stokes equations, whose exact solution at such high Reynolds and Mach
numbers are not currently obtainable. Therefore, the widely used Reynolds Averaged
Navier-Stokes (RANS) equations in addition to a proper turbulence model provide a useful
approximation to compute the flow field.

The surrounding air exerts forces and moments on the fragment, causing the fragment to
decelerate, turn, and tumble in a chaotic manner. The exact six degrees-of-freedom (6DOF)
dynamics of the fragment can be determined by integrating the Newton-Euler equations of
motion:

−→
F =

d
dt

(
m
−→
V
)

(2.4)
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−→
MC =

d
dt

(
IC ·−→ω

)
(2.5)

Here,
−→
F and

−→
MC are the aerodynamic forces and moments about center of mass C experienced by

the fragment. IC is the inertia tensor at C represented by a symmetric 3×3 matrix with 6
independent components (see section 3.3).

Solving the Newton-Euler equations with appropriate initial conditions yields the position,
velocity, angular orientation, and angular position time histories. Compared to solving for the air
flow field, solving the rigid body equations is computationally inexpensive. Thus, if the exact
aerodynamic loads and initial conditions were known, the trajectories can be readily computed
with high accuracy. The computational challenges arise from determining accurate flow fields and
fragment loading conditions.

2.3. Model Assumptions

Note that these set of governing equations carry the assumptions that a) the air is still properly
described as a continuum and b) the fragment stays rigid. For small objects moving at hypersonic
speeds, the wake directly behind the fragment has high temperature and very low pressure. At
sufficiently high temperatures and low pressures, the flow may become rarefied and the
continuum model may break down. A scaling estimate shows that this is unlikely. From kinetic
theory, the mean free path is proportional to temperature and inversely proportional to pressure:
λm ∼ T/p. From high speed ballistics simulations, the temperature increase may be up to 10
times and pressure decrease up to 100 times [1]. Using this worst case scenario and noting that
the mean free path at STP is 68 nm [2], the mean free path of the gas at its largest is estimated to
be 0.068 mm. For a fragment with characteristic length lc of 1 cm for example, the Knudsen
number Kn = λm/lc is 0.0068, which is sufficiently small so that the continuum approximation is
still valid.

The second assumption is that the fragment stays rigid during the flight duration of interest. The
fragment can only deform significantly if it has either yielded or has melted. As bullets do not
significantly deform during flight, it is unlikely that a fragment, if it is a self-contained piece of
metal, can deform based on the loading during flight. The yield stress of metals is on the order of
10 MPa, while the stresses experienced by the fragment are on the order of 10-100 kPa, so the
fragment is unlikely to yield. One possible exception is a fragment that has two sections
connected by a thin filament at the initial stages of flight. In this case it may break apart into two
separate fragments. This type of fragment is probably very rare, and its frequency of occurrence
may be verified by experimental tests. It is more plausible that the fragment generated from the
explosion is at high enough temperature that it has partially melted. In this case, fragment
temperature would be higher than the surrounding air temperature (even after local compression),
so the heat loss due to convection would likely allow the fragment to solidify quickly.
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3. Simulation Procedure

3.1. Quasi-steady Model

As was described in the previous section, the fluid flow is governed by the compressible
Navier-Stokes equations, while the fragment flight dynamics is governed by the Newton-Euler
equations, assuming that the fragment remains rigid. In theory, the solution to this set of coupled
partial differential equations will yield the correct trajectory, but solving the equations directly is
currently infeasible due to computational limitations of resolving turbulent eddies. Fortunately,
the problem can be made tractable by using modeling assumptions with varying levels of
complexity.

The most basic modeling approach is to use a single drag coefficient to characterize the
aerodynamic loading. This is best used as a first approximation to the problem. Although the
fragment dynamics is indeed dominated by the drag force, this model limits the trajectory to a
straight line and also does not take into account rotational degrees of freedom. Fragment shapes
may have varying aspect ratios, leading to a complex tumbling motion that would not be captured
in this model. This single drag coefficient model is most useful for simpler geometries such as a
spin-stabilized bullet in ballistics. On the other hand, the most accurate modeling approach is to
solve the coupled equations directly with an appropriate turbulence model as the only simplifying
assumption. The advantage of this approach is that the transient dynamics and 6DOF rotational
motion can be accurately captured. Despite its accuracy, this procedure is the most
computationally expensive by a large margin.

The quasi-steady simulation approach is a compromise. Here, the flow field and 6DOF rigid body
dynamics simulations are decoupled. The fragment is held at a fixed orientation and immersed
into a uniform supersonic flow at a specified velocity. The aerodynamic forces and moments are
computed for this specific orientation. These simulations and aerodynamic load calculations are
repeated for all possible unique orientations of the fragment, resulting in a large aerodynamic
database consisting of forces and moments as a function of orientation and possibly velocity.
Once this database is complete, the trajectory is then integrated forward with the fragment’s
aerodynamic loading continuously updated from the database.

Note that this quasi-steady assumption is valid if the rigid body tumbles at a relatively slow rate
compared to its forward velocity, which is indeed the case for a tumbling fragment traveling at
very high forward speeds. Suppose that the fragment has a length scale of 1 cm and is traveling at
1,000 m/s. The angular frequency corresponding to a comparable rotational velocity is about
16,000 rad/s. It has been observed that fragments can tumble on the order of 500 rad/s [3]. Even
with this angular frequency doubled to 1,000 rad/s, the maximum velocity due to rotation is still
an order of magnitude slower than the fragment’s forward velocity. This quasi-steady approach
has also been used in a trajectory analysis of aircraft store separation, and it was shown that the
fully coupled transient dynamics offered little extra accuracy [4]. Thus, the quasi-steady approach
is used to obtain the most accurate solution within a reasonable time-frame.
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3.2. Supersonic Flow Simulations

The supersonic flow simulations are performed using SIERRA/Aero, part of the SIERRA
Mechanics suite developed at SNL [5]. Aero uses a node-centered finite volume method to solve
the compressible Reynolds Averaged Navier-Stokes (RANS) and energy equations on an
unstructured three-dimensional mesh [6]. The Shear Stress Transport (SST) model is used as the
turbulence model [7]. This model has been demonstrated to be more robust than standard k-ε and
k-ω formulations. Although the fragment in most orientations would likely behave like a bluff
body in which pressure drag dominates (which can be calculated using an inviscid model), the
turbulence model is necessary to account for skin friction drag if the fragment is traveling at a
streamlined orientation and also to approximate the flow separation point.

3.2.1. Mesh

The solution for the supersonic flow requires an appropriate mesh for the domain. Pointwise R© [8]
is used in this study for the mesh generation, although any appropriate meshing tool will suffice.
A brief discussion of the mesh is included here, while a more detailed discussion regarding the
specific steps in the software is included in Appendix A.

As shown in Figure 3-1, the origin of the body-fixed frame is placed at the center of mass of the
arbitrary shaped rigid fragment. The fragment surface is defined by an appropriate triangulation
(shown as darker colored lines) with average spacing ∆i. Far away from the fragment, the far-field
surface is a spherical with radius r f , triangulated with average spacing ∆ f (lighter colored lines).
A spherical far-field is conveniently chosen because the goal of the simulations is to build an
aerodynamic database depending on the fragment orientation. Instead of generating a new mesh
for every fragment orientation, the flow direction is simply changed. The spherical far-field
boundary allows for a comparable resolution when the flow direction is changed because the
distance from the boundary to the fragment is approximately the same for every flow direction.
The solution domain is thus the interior volume in between the far-field surface and fragment. A
tetrahedral mesh is used to discretize the interior domain. Near the surface of the fragment, a
wedge layer is created by extruding the fragment surface outward by Ne steps of increment ∆e in
order to create a small wedge layer.

Note that the meshing process requires an appropriate geometric representation of the fragment
surface in order for triangulation to succeed. For simple shapes, the fragment surface can be
created directly in the meshing software or imported from a Computer-Aided Design (CAD)
model. For more complicated fragment shapes that are output from computer models or scanned
from real fragments, the meshing procedure is much more difficult. Possible solutions are
discussed in Appendix A.

3.2.2. Simulation Parameters

With the mesh established, the flow field and aerodynamic forces are determined using
SIERRA/Aero, a finite-volume supersonic flow solver [6, 5]. The fluid properties chosen for the
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Figure 3-1 Schematic of mesh used in supersonic flow simulations.

simulations are summarized in Table 1. The free stream is initialized with the quantities shown
with the ()∞ subscript. Density is calculated using the ideal gas law, ρ = P/RT , and the dynamic
viscosity is modeled as a function of temperature using Sutherland’s law, µ =C1T 3/2/(T +C2).
Since the fragment travels in the x̂w direction, the free stream velocity is therefore initialized in
the −x̂w direction. In terms of orientation angles α and βE , the flow direction is given by

−x̂w =−cosαcosβE x̂b− sinβE ŷb− sinαcosβE ẑb (3.1)

The free stream Mach number, Ma∞, is also specified, leading to free stream velocity
U∞ = Ma∞

√
γRT∞. Lastly, the specific turbulent kinetic energy, k, is related to the turbulence

intensity, Tu, as k = 3/2(TuU)2, and the dissipation rate is given by ω = ρk/µt .

In the simulations a steady state solution (in an averaged sense) is assumed. A local time-stepping
method is used to achieve faster convergence. Furthermore, to achieve shorter runtimes with
higher accuracy, simulations are performed for a number of time steps (usually 1,000) with first
order spatial accuracy, and then continued with second order accuracy. For first order accuracy,
the solution value is assumed to be constant across the local control volume. For second order
accuracy, a MUSCL scheme determines a linear variation of the solution value across the control
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Table 3-1 Fluid properties for simulations

Parameter Value
Free stream temperature, T∞ 298 K
Free stream pressure, P∞ 101325 Pa
Gas constant, R 287.097 J/kg-K
Heat capacity ratio, γ 1.4
Prandtl number, Pr 0.72
Sutherland constant, C1 1.458×10−6 kg/m-s-K1/2

Sutherland constant, C2 110.4 K
Turbulence intensity, Tu∞ 0.01
Turbulent viscosity ratio, (µt/µ)∞ 0.1

volume. In the second order scheme, a van Albada flux limiter is used. To compute the surface
advective flux in this compressible finite volume method, a modified Steger-Warming flux
function was employed. The no-slip, no-penetration wall boundary condition is applied on the
fragment surface, while the far-field boundary condition is applied to the outside spherical
boundary surface. These solution options and parameters are all encapsulated in an input file for
Aero. A sample input file can be found in Appendix B.

Forces,
−→
F , and moments,

−→
MC, are found by integrating stresses along the surface of the fragment

and are expressed in the body-fixed components. Aerodynamic coefficients are calculated by
normalizing the forces and moments:

−→
C F =

−→
F

0.5ρ∞U∞Ar
,
−→
C M =

−→
MC

0.5ρ∞U∞ArLr
(3.2)

Here, Ar is a reference area of the fragment, while Lr is a reference length. The components of the
aerodynamic coefficients are typically denoted by the following:

−→
C F =Cxx̂b +Cyŷb +Czẑb (3.3)

−→
C M =Cl x̂b +Cmŷb +Cnẑb (3.4)

These aerodynamic coefficients are generally a function of α, βE , and also Ma∞. If Mach number
is sufficiently high (Ma∞ ≥ 3), then the aerodynamic coefficients no longer exhibit Mach number
dependence [9]. Thus, an aerodynamic database is built up by calculating force and moment
coefficients for different sampled values of orientation angles α and βE .

3.2.3. Simplification Due to Symmetry

Generally, an arbitrary fragment has no planes of symmetry. However, simple geometries with
symmetry planes may be used for model verification, and exploiting this symmetry can save
considerable computational time. To handle this case, consider a plane of symmetry defined by
normal vector n̂s. Define a mirrored velocity direction, x̂m

w , which is the fragment velocity
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direction, x̂w, mirrored across the symmetry plane. Since there is a combination (α,βE) that maps
to x̂w, then there is a corresponding combination (αm,βm

E ) that maps to the mirrored direction x̂m
w .

The mapping between (αm,βm
E ) and (α,βE) can be determined based on location of the symmetry

plane. The force and moment vectors of the mirrored direction are given by the following:

−→
F (αm,βm

E ) · n̂s =−
−→
F (α,βE) · n̂s (3.5)

−→
F (αm,βm

E ) · t̂s =
−→
F (α,βE) · t̂s (3.6)

−→
MC(α

m,βm
E ) · n̂s =

−→
MC(α,βE) · n̂s (3.7)

−→
MC(α

m,βm
E ) · t̂s =−

−→
MC(α,βE) · t̂s (3.8)

Here, t̂s is any unit vector that is parallel to the symmetry plane and is thus perpendicular to n̂s.

3.3. 6DOF Rigid Body Simulations

The 6DOF rigid body dynamics equations along with the aerodynamic database, described in the
previous section, are used to integrate fragment trajectories forward. The Newton-Euler equations
(2.4 and 2.5) are solved numerically in this part of the simulation procedure. To facilitate the
computations, the equations are rewritten as a set of first order differential equations:[

d−→r C

dt

]
I
=
−→
V (3.9)

m

[
d
−→
V

dt

]
I

=
−→
F (3.10)

IC ·
[

d−→ω
dt

]
b
=
−→
MC−−→ω ×

(
IC ·−→ω

)
(3.11)

The inertia tensor can be represented by a 3×3 symmetric matrix and is defined by

IC =

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

=
∫∫∫

V
ρs(xb,yb,zb)

y2
b + z2

b −xbyb −xbzb
−xbyb x2

b + z2
b −ybzb

−xbzb −ybzb x2
b + y2

b

dxbdybdzb (3.12)

These components of the inertia matrix are computed with respect to the body fixed basis. Also,
the fragment density ρs may not be constant but can vary within the fragment volume V .

With the multiple coordinate systems, it is important to clarify the reference frames and basis
vectors associated with the quantities in these equations. Equations (3.9) and (3.10) are both
solved in the inertial frame. The time derivative, denoted using the [ ]I brackets, is with taken
respect to the inertial frame (x̂I basis vectors are constant as usual). Fragment center of mass
position and velocity vectors are written in terms of the inertial basis vectors:

−→r C = xCx̂I + yCŷI + zCẑI (3.13)
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−→
V =Vxx̂I +VyŷI +VzẑI (3.14)

In (3.10), the aerodynamic force vector
−→
F is however expressed in body-fixed coordinates

(equation 3.3) in the aerodynamic database and will need to be transformed to inertial coordinates
using (2.1).

The rotational dynamics equation (3.11) is solved in the body-fixed frame in order that the inertia
tensor stays constant in time. The time derivative is taken with respect to the body-fixed frame
and written with [ ]b brackets to indicate that the x̂b basis vectors are held constant. All of the
quantities in the equation are already expressed in body-fixed coordinates. In particular, the
angular velocity vector is written as

−→
ω = px̂b +qŷb + rẑb (3.15)

However, note that −→ω is the angular velocity of the fragment with respect to the inertial frame
despite being expressed in body-fixed basis vectors.

An additional set of equations, Poisson’s kinematic equations, relate yaw Ψ, pitch Θ, and roll Φ

to angular velocity components.
dR
dt

= RW (3.16)

W =

 0 −r q
r 0 −p
−q p 0

 (3.17)

Here, R = R(Ψ,Θ,Φ) is the rotation transformation matrix as defined in (2.2). The nine
components are solved separately although they are not all independent.

Equations (3.9)–(3.11) and (3.16) are discretized in time and solved numerically using a fourth
order Runge-Kutta scheme with a constant time step ∆t as part of an internal 6DOF rigid body
dynamics code. In order to solve the equations, 12 initial conditions are required — 3 vector
components each for initial position, velocity, angular orientation, and angular velocity. It is
recommended that the initial position be set to (0,0,0), the location of the inertial frame. The
other quantities are either estimated, sampled, or predicted by shock physics simulations. In
addition, the following mass and geometric properties of the fragment must be known: center of
mass location, total mass, and inertia tensor components about the center of mass.

3.4. Summary of Steps

The quasi-steady simulation procedure to determine the fragment trajectories can be summarized
in the following steps:

1. Represent the fragment as a CAD geometry or stereolithography (STL) file. If a real
fragment is scanned into a high resolution STL file, the resulting wire mesh may be too
coarse and must be smoothed in order to facilitate the meshing process.

18



2. Use Pointwise or another meshing tool to generate the appropriate mesh for the supersonic
flow simulations. The meshing software must be able to export the mesh in the EXODUS
file format.

3. Import the mesh into SIERRA/Aero and apply an initial uniform supersonic flow across the
interior domain. Sampling the entire space of possible fragment orientations, solve for the
steady state RANS solution and compute the aerodynamic coefficients for each orientation.
Create a data file that contains the aerodynamic coefficient database as functions of
orientation angles.

4. Import the aerodynamic database into the 6DOF rigid body dynamics solver. This will
determine the external forces and moments acting instantaneously upon the fragment in
flight. Using known fragment material properties, compute the fragment trajectories by
applying known or estimated initial conditions. Multiple initial conditions may also be
sampled in order to establish the trajectory as a function of initial orientation.

3.5. Model Limitations

In addition to the limitations inherent in the modeling assumptions from section 2.3, there are
further modeling considerations to be aware of. Additional limitations include the following:

• The model solves for the steady state drag at different orientations of the fragment, so
transient flow dynamics and rotational damping effects are not captured. This is mitigated
again if the rotation of the fragment is slow compared to the free stream fluid velocity.

• The quasi-steady model does not allow for the drag or lift due to spin for a fragment with an
axisymmetric geometry. This is a transient effect that will not be captured from the steady
state flow simulations. Fortunately, actual fragment geometries are never perfectly
axisymmetric.

• If the aerodynamic coefficient database is not a function of Mach number, then the
trajectories may only be reliable if the Mach number does not fall below approximately 2 or
3. Near Mach 1, the speed of sound, the drag coefficients increase. In order to capture this
regime the functional relationship between the aerodynamic coefficients and Mach number
must be determined either by creating a larger database or establishing a correlation.

• The actual fragment geometries are likely to have rough surfaces and jagged edges. The
supersonic flow solver is unable to resolve the fine details without an extraordinarily large
computational domain. The fragment geometries must be smoothed before meshing.
Because the drag is most likely dominated by pressure, the surface details should contribute
little to the aerodynamic forces.
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4. Supersonic Flow Test Cases

While SIERRA/Aero is a mature internal code that has been extensively tested and validated, it
was worthwhile to perform supersonic flow simulations on test cases of simple geometries. In
particular, the flow past a bluff body, such as a general shaped fragment, can have complex
structures. These tests verified that the computational software has been capable of capturing the
flow structures and determining the aerodynamic loads accurately. The test cases in this section
include a two-dimensional flow past a cylinder and a three-dimensional flow past a cube. In these
cases the drag was computed and compared to reported literature values.

4.1. 2D Supersonic Flow Past Cylinder

The first test case considered is the flow past a circular cylinder in a two-dimensional domain.
The flow past this simple geometry is a canonical external flow problem used as a first step of
validation. Furthermore, the important features of bluff body external compressible flow are
highlighted. A circular cylinder of diameter D = 6 mm was held in place in a uniform flow with
Mach number 1.7. This particular Mach number was chosen to compare to a drag coefficient
reported in literature. Instead of a spherical domain in 3D as described in section 3.2, a circular
domain was used instead. The cylinder boundary had spacing ∆i = 0.192 mm, domain radius
r f = 4.5D = 27 mm, and outer boundary spacing ∆ f = 0.5 mm. This mesh had a total of 14635
nodes and 28832 cells. Multiple grids had been tested, but this was the smallest grid to yield
accurate results.

The flow was initiated in the x̂b direction (see section 2.1 for the coordinate definitions). The drag
was computed as CD = Fx/0.5ρ∞U2

∞D. Simulations were performed using 1 node with 16
processors in Skybridge with 10,000 timesteps with the first 1,000 using a first order accurate
scheme and the rest second order. Runtime was 3 minutes. The computed drag coefficient was
1.402, which is in excellent agreement with the reported literature value of 1.3962 [10]. The
results show that using a circular shaped mesh is indeed sufficient to capture the drag on a
cylinder and that wake refinement is unnecessary.

In order to verify the accuracy of the solution field, the flow field variables were visualized.
Contours of Mach number, temperature, pressure, and turbulent kinetic energy are plotted in
Figure 4-1. The Mach number contours display the expected pattern for a supersonic flow past a
bluff body. Far upstream of the cylinder, the flow is at the free-stream velocity. A steady bow
shock is formed in front of the cylinder where the flow velocity rapidly decreases to subsonic
speeds. A stagnation point is found at the front tip of the cylinder, and a subsonic turbulent wake
with some recirculation extends behind the cylinder. As the fluid turns past the cylinder, the flow
undergoes Prandtl-Meyer expansion, rising to velocities faster than the free-stream. This faster
flow rapidly decelerates back to the free-stream velocity past the trailing edge shock, which
extends at an angle from the wake.

At the front of the cylinder, the air is compressed, resulting in higher temperature and pressure.
Behind the cylinder, the pressure is lower in the wake, leading to considerable pressure drag,
which is expected for a bluff body. The air temperature is increased to approximately 500K
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Figure 4-1 Contours of flow variables for a supersonic flow past a 2D cylinder at Mach 1.7.

around the cylinder. At these relatively slower supersonic speeds, the heating is therefore not
significant, but the temperature is expected to increase substantially with higher Mach number
flows. Finally, contours of the turbulent kinetic energy are shown, which roughly indicate the
location of strong turbulent eddies. As expected, the turbulence is only significant in the wake
behind the cylinder. There should be a separating turbulent boundary layer near the surface of the
cylinder, which this current resolution may not resolve. Fortunately, this does not appear to
significantly affect the computed drag coefficient because the drag is dominated by pressure.
Thus, the flow structures are found to match well with physical expectations, and the flow
simulation accurately determines the aerodynamic loading.
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4.2. Supersonic Flow Past Cube

The next test case considered is a Mach 3 flow past a cube in three dimensions. This test
demonstrated the capabilities of the flow solver to handle shapes with sharp edges. Furthermore,
the results provided insight on how orientation could affect drag and flight trajectory on a three
dimensional object. As described in section 3.2, the cube was placed at the center of a spherical
domain, and the space between the cube and edges of the sphere form an unstructured tetrahedral
mesh. A wedge layer was extruded from the cube surface for refinement and improved accuracy.
The cube side length and mesh properties are outlined in Table 4-1. The cube size is comparable
to that of a fragment.

Table 4-1 Cube and mesh properties.

Parameter Value
Side length, s 3 cm
Interior mesh spacing, ∆i 0.05 cm
Radius of spherical domain, r f 13.5 cm
Far-field mesh spacing, ∆ f 0.2 cm
Wedge layer spacing, ∆e 0.01 cm
Number of extrusion steps, Ne 20

The flow direction is varied in order to probe how the aerodynamic forces change as the
orientation changes. Because of the cube symmetry (see section 3.2), the angles in ranges
α = [0◦,90◦] and βE = [0◦,90◦] are sufficient to characterize all possible orientations. Equally
spaced points of 11.25◦, spanning the entire domain of angle pairs, are sampled. As described
above, the force and moment coefficients are expressed in the body fixed basis (xyz)b when output
from the flow solver. However, the results can be analyzed more clearly when the coefficients are
transformed in the wind coordinate basis (xyz)V . In this coordinate system, Cx,V is the drag
coefficient, and Cy,V and Cz,V are side force coefficients. The force and moment coefficients in the
wind basis are shown as contour plots as functions of α and βE in Figure 4-2.

First, consider the case when βE = 0◦. When α = 0◦, the flow points directly in the middle of a
face. As α increases, the flow direction rotates, catching the face at an angle, until α = 45◦, when
the flow is completely edge-on. In this case, the drag coefficient for edge-on flow is surprisingly
the highest for constant βE . One would expect that the edge-on orientation be relatively more
streamlined, leading to a lower drag coefficient. This is true, but the higher drag is due to the
increase in projected area. As mentioned earlier, the drag is normalized by the single face area.
Correcting the drag coefficient for the projected area leads to a drag coefficient of 1.2, which
matches quite well with a literature value of about 1.15 [9]. The more-streamlined geometry
cannot overcome the increase in projected area which leads to a larger drag. Note that the drag
coefficient Cx,V should also be symmetric about α = 45◦, which provides an immediate accuracy
check.

When α = π/4, the drag coefficient reaches a maximum that corresponds to
βE = cos−1

(√
6/3
)
≈ 35.3◦. This is the "corner-on" case in which the flow direction is parallel

22



Figure 4-2 Force and moment coefficients in the wind coordinate basis on a cube as
a function of orientation angle. In particular, Cx,V is the drag coefficient.

to a line connecting the corner to the cube center. In this particular orientation, the projected area
is maximized. This shows that the projected area has the most important influence on drag (for a
cube, at least) when changing orientation. Therefore, when a cube flies through the air, it will
experience the least drag resistance face-on because it has the minimum projected area, which is
an interesting and counter-intuitive result.

23



Side force coefficients Cy,V and Cz,V as functions of orientation are also shown in Figure 4-2.
These forces arise due to the asymmetry of the cube from the viewpoint in the flow direction and
act to deviate the cube from a straight-line trajectory. They are much smaller (about 2 orders of
magnitude) than the drag, but these forces are not insignificant and may to lead to O(10 m) flight
path deviations for every 200 – 300 m traveled. Finally, the moment coefficients Cl,V , Cm,V , and
Cn,V are responsible for the rotation in flight.

5. Analysis of Fragment Trajectories

The supersonic flow test cases considered fragments such as circles and cubes whose shapes have
multiple symmetries. Actual fragments, either from explosive tests or shock physics simulations,
can have arbitrary shape. The robustness of the simulation procedure (described in section 3) is
demonstrated in this section by applying it to a test fragment with a complicated shape whose
schematic was shown above in Figure 2-1. This representative fragment was numerically
generated from a shock physics simulation. Its length is 4.4 cm, and it is composed of steel with a
density of 7,800 kg/m3. The flight dynamics of this single fragment is studied in this section
using our simulation methodology described in earlier sections. Detailed material and mesh
properties are shown below in Table 5-1. Note that the body-fixed coordinate system is placed at
the fragment’s center of mass but is not concurrent with the principal axes of inertia.

Table 5-1 Material and mesh properties for test fragment.

Parameter Value
Mass, m 45.0 g
x-Moment of Inertia, Ixx 25.0 g-cm2

y-Moment of Inertia, Iyy 79.2 g-cm2

z-Moment of Inertia, Izz 57.8 g-cm2

xy-Product of Inertia, Ixy 3.74 g-cm2

yz-Product of Inertia, Iyz 2.61 g-cm2

xz-Product of Inertia, Ixz 11.5 g-cm2

Interior mesh spacing, ∆i 0.073 cm
Radius of spherical domain, r f 20.0 cm
Far-field mesh spacing, ∆ f 0.3 cm

The six aerodynamic force and moment coefficients associated with this fragment were computed
and are shown below in Figure 5-1. As in Figure 4-2, which showed the aerodynamic coefficients
for a cube, the contour plots are shown as a function of angle of attack α and Euler side-slip angle
βE . These force and moment coefficients serve as a lookup table for the 6DOF solver.

5.1. Trajectory Uncertainty Due to Initial Orientation

Fragment flight is chaotic and small changes in initial orientation can greatly affect the resulting
trajectory. To better understand these uncertainties, 100 fragment trajectories were simulated with

24



Figure 5-1 Aerodynamic force and moment coefficients for sample fragment.

random initial orientations. All possible initial orientations were assumed to be equally likely, and
the fragment has initial horizontal (x–direction) velocity of 2.5 km/s. Here, the fragments have no
initial angular velocity (this effect will be discussed later in section 5.3). The trajectory
calculations were stopped when the horizontal velocity reached 1 km/s.

5.1.1. 3D Trajectories

The 3D trajectories are plotted in Figure 5-2. On the left, the isometric view shows the variation
of possible chaotic trajectories depending on initial orientation. Note that the axes are not to scale,
so the fragments travel mostly in a straight line over approximately 100 m with about 2 m of drift.
The lateral drift trajectory is shown on the right side of Figure 5-2. This view looks in the
−x–direction. The plot shows that fragments can follow a curved path in any direction, including
upwards. In a practical sense, these fragments would fly much farther than originally expected.
The lateral drift is examined below in section 5.1.3.
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Figure 5-2 Left: Isometric view of fragment trajectories with 100 different initial
orientations. Trajectories ended when velocity reached 1 km/s. Right: yz–plane view
illustrates how far fragments can drift laterally.

Figure 5-3 Fragment velocity as a function of distance for 100 randomly sampled
initial orientations. Trajectories are bounded by minimum and maximum drag of the
fragment. Single DOF trajectory (dark line) using the average drag approximates the
most likely trajectory, although the spread is wide.
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5.1.2. Fragment Velocity vs. Distance Traveled

In Figure 5-3, the fragment horizontal velocity is a plotted as a function of distance for all 100
samples of initial orientation (shown in blue). High variability was found for the trajectories —
the distance traveled after decelerating to 1 km/s varied from approximately 45 m to 160 m. A
histogram representing the distribution of fragment flight distances is shown in Figure 5-4. The
most likely distances ranged from approximately 90 m to 130 m. The histogram also shows that
the distribution is skewed to the left, which suggests that fragments have a higher tendency to fly
shorter distances than fly longer distances.

Figure 5-4 Distribution of horizontal distance traveled for single fragment after decreasing speed to 1 km/s.

A comparison with a single DOF approximation (Appendix C) is also presented in Figure 5-3.
Based on the aerodynamic coefficient surfaces shown in Figure 5-1, the maximum, minimum, and
average drag coefficients were computed. Using these coefficients, the single DOF trajectories
were computed and are shown as dark lines. As expected, the maximum and minimum drag
coefficients bound the possible trajectory space. While some fragment trajectories approach the
lower bound, the upper bound stretches to approximately 600 m (not shown). This opens the
possibility that fragments could fly nearly that far, although based on the observed trajectories, the
farthest fragments do not come close to this bound. The average drag coefficient single DOF
trajectory is also shown in Figure 5-3. This trajectory is found to approximate the most likely
trajectory and distance traveled (Figure 5-4). Thus, a single drag coefficient, which is used in
current methods for characterizing fragment transport, is useful for predicting the most likely
trajectory and serves as a first approximation. The 6DOF simulations are able to extend the
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information presented by a 1DOF model, capture the spread of probable trajectories, and measure
uncertainties associated with fragment velocity and distance.

Figure 5-5 Box plots showing distributions of lateral drift at various distances for 100
fragment trajectories with varying initial orientation.

5.1.3. Lateral Drift vs. Distance Traveled

The lateral drift, δ, is defined as the perpendicular distance away from a straight-line trajectory.
Specifically,

δ(x) =
√

y(x)2 + z(x)2 (5.1)

Figure 5-5 shows a box plot of the lateral drift distributions every 20 m in the 100 fragment
trajectories. The mean and max drift increase nearly quadratically with distance. The mean drift
ratio ranges from 0.8% for 20 m to 1.5% for 100 m, and the max drift ratio ranges from 1.6% for
20 m to 3.3% for 100 m. For longer distances though, the rate of increasing drift may be faster
than quadratic. The distributions are observed to be nearly symmetric with some fragments
staying near a straight-line trajectory and others curving away. For farther distances, the
distribution exhibits a slight right skew, which is expected as some outlier fragments may follow a
highly curved path away from a horizontal trajectory.
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Figure 5-6 Distribution of final angular velocities for 100 trajectories sampled with
different initial orientations after slowing down to 1 km/s from 2.5 km/s.

5.2. Analysis of Fragment Tumbling

In addition to capturing the spread of 3D trajectories, the 6DOF simulations are capable of
capturing the rotational dynamics of the fragment flight. Rotations affect the trajectory because
the aerodynamic forces, particularly drag, depend on the fragment orientation with respect to its
direction of travel. The fragment may possibly also reach a spin-stabilized state and travel farther
than expected.

As a first step in assessing the rotational dynamics, the final angular velocity (magnitude) was
measured for each fragment for the set of simulations described in the previous section. The final
angular velocity magnitude is recorded when the center of mass velocity reaches 1 km/s. While
not shown explicitly, most of the fragments have reached a steady tumbling frequency by this
time in the trajectory. In Figure 5-6, a histogram of the final angular velocities is shown, and the
final angular velocity is found to follow a distribution centered around 100,000 deg/s with a
spread ranging from approximately 50,000 deg/s to 250,000 deg/s (or approximately 0.14 to 0.69
rev/ms). Regardless of the differing fragment trajectories, the angular velocities are found to be in
the same order of magnitude.

The angular velocity can be written out as vector components in a body-fixed basis as
−→
ω = px̂b +qŷb + rẑb. In order to understand how the fragment tumbles during the trajectory,
these components are plotted as "rotation trajectories" in space in Figure 5-7. One rotation
trajectory represents the path traced out by the tip of the fragment angular velocity vector (with its
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base at the origin) as it evolves in time. For example, a single point in this angular velocity space
indicates a rotation about a fixed axis. The dark lines indicate the principal axes of inertia, where
the numbered subscripts are ordered by decreasing values of the principal moments of inertia (I1
corresponds to the maximum moment of inertia).

Figure 5-7 Vector components of angular velocity (body-fixed basis) plotted in
angular velocity space. Rotation trajectories converge to near-circular orbits around
maximum and minimum principal inertia axes (I3 and I1, respectively), while they
diverge about the middle principal axis I2.

The rotation trajectories tend to converge to a near-circular orbit around the maximum and
minimum principal axes of inertia, (I1 and I3, respectively). The angular velocities are found to be
higher near I3, which is expected as this is the axis with the least resistance to rotations.
Interestingly, the rotation trajectories diverge about the middle principal axis I2. By performing a
stability analysis of the rigid body equations of motion under torque-free conditions, it can be
shown that rotations about the intermediate axis are indeed unstable [11]. This is a well-known
phenomenon in satellite design, sometimes called the "Tennis Racquet Theorem." Though the
fragment in flight is clearly experiencing torque, this condition still appears to hold and the
fragment does not tumble about the intermediate axis. The rotation trajectories clearly show that
while fragments tumble chaotically (in the sense of initial condition sensitivity), the steady
rotations in late-time flight follow a semblance of structure, especially those that converge to
near-circular orbits about the principal axes.

The nature of the circular orbits in the rotation trajectories can be explained with a simple system
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shown in Figure 5-8a. Here, assume a rigid body is spinning about its body-fixed x̂b–axis with a
rotation rate s. The rigid body also undergoes steady precession about a fixed axis Ẑ. Then the
angular velocity can be written as the following:

−→
ω = sx̂b +ΩẐ (5.2)

Converting to body-fixed basis vectors,

−→
ω = sx̂b +Ωsin(st)ŷb +Ωcos(st)ẑb (5.3)

When this angular velocity vector is plotted in space (Figure 5-8b), the tip traces a circle about the
spin axis. The angular velocity can be decomposed into spin and precession components as
shown. Thus, a circular orbit of a rotation trajectory represents a combination of spin about an
axis and a precession about another axis (not necessarily perpendicular).

Figure 5-8 a) Illustration of rigid body undergoing spin and precession. b) A
combination of spin and precession leads to a circular orbit in angular velocity space,
thus explaining the observed rotation behavior from Figure 5-7.

Thus, the fragment tumbling dynamics can be explained. After initial transient motion, the
fragments settle into a spin-precession state about either the maximum or minimum principal axes
of inertia. By inspection of the rotation trajectories, it appears that the minimum axis is preferred.
Note that the plots are relative to a body-fixed axis, so this does not include information on the
principal axes orientation relative to the flight trajectory. The tumbling motion and preferred
orientations relative to the inertial reference frame could be a subject of future investigation.

5.3. Trajectory Uncertainty Due to Initial Angular Velocity

In the previous sections, the fragment trajectories were investigated with zero initial angular
velocity. However, upon fragment formation after detonation and case breakup, it is likely the
fragments hold an initial angular velocity. Without advanced diagnostics, it is difficult to
determine the initial angular velocity, but the results of this section show that understanding the
initial rotation rate is important because it affects the trajectory distributions.

Since the initial rotation rate is currently not well understood, simulations were conducted to
determine the resulting trajectories as a function of initial angular velocities spanning multiple
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orders of magnitude. Similar to the previous section, initial orientations were assumed to be
equally likely and randomly sampled. The initial velocity was 2.5 km/s, but an additional constant
angular velocity magnitude was imposed with a randomized initial rotation axis. 100 fragment
trajectories were sampled, and this procedure was repeated for angular velocities ranging from
103 to 106 deg/s.

Figure 5-9 Box plots showing distributions of final angular velocity after fragment has
decelerated to 1 km/s for various initial angular velocities. A zero angular velocity
initial condition is listed under the value of 0 in the horizontal axis.

First, the final angular velocity distributions (after the fragment has slowed to 1 km/s) are shown
in box plots for various initial rotation rates in Figure 5-9. From Figure 5-6, the most probable
final angular velocity for no initial rotation was found to be approximately 105 deg/s. This will be
referred to as the "steady tumbling rate." When the fragment initially spins with a rate below the
steady tumbling rate, the final angular velocity distributions are nearly identical and centered
around the steady tumbling rate. However, when the fragment has an initial angular velocity at or
above the steady tumbling rate, the final rotation rate distributions change. At 105 deg/s initial
rotation rate, the final rotation rate is slightly above the steady tumbling rate, and the spread has
decreased. At 106 deg/s, the difference is clear — the final rotation rate is centered about the same
initial rotation rate with a smaller percentage spread.

These patterns suggest that when the initial rotation rate is below the steady tumbling rate, the
aerodynamic moments dictate the rotational dynamics and cause the fragment to spin up to the
steady tumbling rate regardless of the initial angular velocity. When the initial rotation rate is
above this threshold steady tumbling rate, the rotational inertia dominates, and the rotational
kinetic energy does not have enough time to dissipate.
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Figure 5-10 Box plots showing distributions of distance traveled after fragment has
decelerated to 1 km/s for various initial angular velocities. A zero angular velocity
initial condition is listed under the value of 0 in the horizontal axis.

To determine how the initial rotation rate affects the fragment flight trajectory, box plots in Figure
5-10 show the distributions of distance traveled after the fragment has slowed to 1 km/s for
various initial rotation rates. Similar to Figure 5-9, the distance distributions are nearly identical
for initial rotation rates below the steady tumbling rate of 105 deg/s. At or above the steady
tumbling rate, the distance distributions have a slightly larger mean flight distance. More
importantly though, the spread is much larger, and the distribution transitions from a left skew to
a right skew. In this regime above the steady tumbling rate, more fragments are observed to fly
farther. This can happen because the larger initial angular momentum can cause the fragment to
stabilize in certain spin-precession states about the largest principal axis similar to a spinning
Frisbee R©. If the fragment is traveling in a direction that the thin edge is opposing the flow, the
fragment would experience lower drag throughout the course of its trajectory.

5.4. Size Effects on Fragment Velocities

The effect of fragment size on its trajectories is investigated in this section. The fragment size is
characterized by the longest length of the minimum-volume bounding box of the fragment. In
order to simulate different sizes of the same fragment in Figure 2-1, the geometric and material
properties are scaled properly. 100 sample trajectories of fragments of each specified size with
randomized initial orientations and no initial angular velocities were simulated. The velocity was
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Figure 5-11 Box plots showing the distributions of velocity after the fragment has
traveled 25 meters for various fragment sizes.

computed after the fragment traveled 25 meters with an initial velocity of 2.5 km/s. This process
was repeated for fragments ranging in size from 1 cm to 5 cm.

In Figure 5-11, box plots show the distribution of final velocities as a function of fragment size.
The plots show that the velocity decreases with decreasing fragment size. The distributions are
left skewed, similar to that in Figure 5-4. The prediction of velocity vs. size using a single
average drag coefficient is also plotted. This curve can be expressed as v(L) = v0 exp(−C/L),
where C is a constant proportional to the average drag coefficient (details in Appendix C). The
single DOF solution is found to slightly over-predict the mean velocity. This is consistent with
Figure 5-3 in which the single DOF solution approximates the most probable trajectory, but this
lies above the mean because of the left skew. Furthermore, the exponential curve shows that
smaller fragments can lose significant speed in a short distance.

The lateral drift distribution vs. fragment size is plotted in Figure 5-12. The plot shows that
smaller fragments have slightly higher mean lateral drift and also an increased spread. One
probable explanation is that the smaller fragments decelerate more quickly and thus take a longer
time to travel the horizontal distance. This leads to a longer drift time and more opportunity to
change course. There is also a competing effect. The slower speed of the fragment means that
when the fragment does make a turn, it would also drift away more slowly than a larger fragment.
The competing effects appear to balance out for a fragment size of 3 cm and higher. For example,
the 3 cm fragment has almost 5 times less mass than the 5 cm fragment, but the lateral drift
distribution stays almost the same between those sizes. Note that the fragment shape was
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Figure 5-12 Box plots showing the distributions of lateral drift after the fragment has
traveled 25 meters for various fragment sizes.

unchanged in this study. For fragments of different aspect ratios the lateral drift distributions may
change.

Figure 5-13 also shows box plots that depict the final angular velocities as a function of fragment
size. The plots show that the angular velocities decrease with increasing size, which confirms that
the fragment moments of inertia decrease more quickly with fragment size than aerodynamic
moments. Note that the unscaled fragment size of 4.4 cm is not shown in this plot, but as
discussed earlier, it has a late-time steady tumbling rate of approximately 105 deg/s (Figure 5-6).
By inspecting the box plot in Figure 5-13, the final angular velocity for the unscaled fragment
after 25 meters is approximately 60,000 deg/s. After 25 m, the fragment has already attained 60%
of its steady tumbling rate.

6. Summary and Outlook

Predicting the trajectories of explosive fragments is an important problem especially in the area of
range safety. Modeling efforts and the understanding of the 6DOF fragment trajectories are
currently limited. The simplest model uses a single drag coefficient and computes the trajectory
without any knowledge of the rotational dynamics. On the other hand, a fully coupled solution
that simultaneously solves both the flow field and rigid body motion is most accurate but
computationally too expensive. Thus, a quasi-steady model is adopted in which the 6DOF
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Figure 5-13 Box plots showing the distributions of angular velocity after the fragment
has traveled 25 meters for various fragment sizes.

fragment trajectory is computed by integrating aerodynamic forces and moments from a database
established using steady flow simulations sampled at multiple orientations.

Supersonic flow simulations were performed for simple geometries such as a 2D cylinder and a
3D cube. The computed aerodynamic coefficients were shown to match well with literature
values. Then the full quasi-steady simulation procedure was performed for a generated test
fragment. The fragment trajectories and tumbling mechanics were analyzed. The analysis shows
that the 6DOF simulations can capture the spread of trajectories that the fragment can travel,
while an average drag coefficient can approximate the most likely trajectory. After sufficient time
and regardless of initial orientation and angular velocity, the fragment reaches a steady tumbling
rate undergoing spin and precession about one of its 2 stable principal axes. If it spins about the
largest principal axis, it might fly farther than expected due to a lower presented area. Varying the
size of the fragment shows that larger fragments fly more quickly and drift less, while smaller
fragments slow down more quickly and drift more on average at the same distance traveled.

Potential areas for future work are to a) validate the model with experimental data and b)
automate and parallelize the entire simulation process in order to create a large data set
characterizing the distance traveled for multiple fragments. The experiments would involve
recording high speed videos of fragments that are shot through the air. Multiple cameras may be
placed judiciously in order to record the position, velocity, and rotational characteristics of the
fragment. The measured trajectories would be compared to the simulation results to establish the
simulation accuracy. With accurate simulations, fragment trajectory characterization could be
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performed without excessive time consuming and expensive experimental tests. The automation
effort would involve writing scripts and using software wrappers to transfer data seamlessly
between different pieces of software. Ultimately, the trajectories and behaviors of fragments in
flight would be statistically analyzed from a large data set and therefore be more clearly
understood to aid in applications of interest.
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APPENDIX A. Meshing Procedure

The meshing procedure applies to Pointwise [8], and the description assumes familiarity with the
software terminology.

0. Set software parameters. Before beginning, set the grid dimension to "3D", the solver to
"EXODUS II", and the grid type to "Unstructured."

1. Generate or import a fragment surface triangulation. For a simple shape such as a sphere,
box, or an extrusion, the ShapeWizard plug-in [12] can quickly generate a domain with a
triangular mesh. For a CAD geometry with a closed surface, import the CAD geometry into
Pointwise as a database and create the connectors and triangular mesh domain from the database.
For an arbitrary shaped fragment specified by facets such as STL files, the process is much more
difficult. Unless the STL surface triangles can function as a suitable mesh, Pointwise is likely to
have trouble sizing and meshing the surface. One possible solution is to use CUBIT [13], which
contains more robust STL features. The TriMesh algorithm in CUBIT can often work to re-mesh
faceted geometries with perhaps some geometry clean-up. The resulting surface mesh can be
saved as an STL and imported into Pointwise as a domain.

2. Generate the far field domain. After the fragment domain is successfully imported or
generated in Pointwise, use ShapeWizard to quickly generate a spherical far field surface
triangulation with radius approximately 4.5 times the characteristic length of the fragment. Use a
spacing no more than 4 times the spacing of the fragment domain.

3. Extrude the fragment domain. This is an optional step for improved stability and accuracy,
especially for some objects with sharp corners. Extrude the fragment surface outward with
approximately 10–20 steps to create wedge layers.

4. Initialize a block in the interior space. Select the far field domain and the outer wedge layer
domain. Then assemble and initialize a block. This step will create a tetrahedral volume mesh
and may take significant compute time.

5. Create and label side set boundary conditions. Label the far field domain farfield and
the fragment surface domain wall. These are chosen to match the example input script in
Appendix B.

6. Export as EXODUS file. Select all blocks, domains, and connectors. Export as "CAE",
which will save an EXODUS file to be used with SIERRA/Aero.
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APPENDIX B. Sample SIERRA/Aero Input File

The following is an example input file for SIERRA/Aero to compute the flow field at a single
fragment orientation at Mach 3. Specific file names have been omitted and replaced with
placeholders:

• [MESHNAME] — EXODUS input mesh file

• [DATARESTART] — SIERRA/Aero restart file name

• [DATAOUT] — EXODUS output data file

Begin Sierra FlowFrag

$--------------------------------------------------------
$ Procedure domain - solution control , region settings
$--------------------------------------------------------

Begin Conchas Procedure AeroProcedure

$---------------------------------------------------
$ Define temporal solution parameters
$---------------------------------------------------

Incremental Steps = 4000
Begin Run Schedule

ITs step_type ramp_type ramp step_max step spatial_order max_pi limiter
1 cfl_local_dt increment 0.01 20 2 first 6 node_va
401 cfl_local_dt increment 0.01 20 2 second 6 node_va

end

$------------------------------------------------------
$ Region domain - EQs, BCs, ICs, post -processing
$------------------------------------------------------

Begin Conchas Region AeroRegion

$---------------------------------------------------
$ Specify mesh name and decomposition
$---------------------------------------------------

Mesh Database Name = [MESHNAME]
Mesh Decomposition Method = RIB

$---------------------------------------------------
$ Define material properties to be used
$---------------------------------------------------

Begin Gas Properties
Gamma = 1.4
Specific_r = 287.097384767
Sutherland_c1 = 1.458e-06
Sutherland_c2 = 110.4
Prandtl = 0.72

End Gas Properties

$--------------------------------------------------------
$ Solution options - equations , solver options
$--------------------------------------------------------

Begin Solution Options

$---------------------------------------------------
$ Specify equations to solve
$---------------------------------------------------

Activate Equation NavierStokes
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$-----------------------------------------------------------
$ Define additional variables to post -process
$-----------------------------------------------------------

Post Process yplus on wall
Post Process mach_number on all_blocks

$---------------------------------------------------
$ Define turbulence model parameters
$---------------------------------------------------

Begin Turbulence model Specification SST
Turbulence Model = SST
Clip Turbulence Variables

End Turbulence model Specification SST

$---------------------------------------------------
$ Other options
$---------------------------------------------------

Inviscid Flux Type = MSW
Gradient Method = WeightedLeastSquares

End Solution Options

$---------------------------------------------------
$ Specify flow state variables
$---------------------------------------------------

Begin Flow State Infinity
Pressure = 101325.0
Temperature = 298.0
Mach Number = 3.0
Direction = -1.0, 0.0, 0.0
Turbulence Intensity = 0.01
Turbulent Viscosity Ratio = 0.1

End Flow State Infinity

$---------------------------------------------------
$ Specify initial conditions
$---------------------------------------------------

Begin Initial Condition Block FlowInit
All Volumes
Use Flow State Infinity

End Initial Condition Block FlowInit

$---------------------------------------------------
$ Specify boundary conditions
$---------------------------------------------------

# Far - Farfield
Begin Characteristic Projection on Surface farfield

TYPE is farfield
Use Flow State Infinity

End Characteristic Projection on Surface farfield

# Frag Surface - Wall
Begin Wall Boundary Condition on Surface wall
End Wall Boundary Condition on Surface wall

$---------------------------------------------------
$ Calculate force and moment on walls
$---------------------------------------------------

Begin Force and Moment FoMo
Moment Center = 0, 0, 0
Use Solid Walls
Split Contributions

End Force and Moment FoMo

$---------------------------------------------------------
$ Define parameters for checkpoint/restart file
$---------------------------------------------------------
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Begin Restart Output
Database Name = [DATARESTART]
At Step 0, Increment = 500

End Restart Output

Begin Restart Input
Database Name = [DATARESTART]

# activate restart
# restart instance = 1

End Restart Input

$---------------------------------------------------
$ Define contents of binary plot file
$---------------------------------------------------

Begin Results Output Label AeroOutput
Database Name = [DATAOUT]
At Step 3000, Increment = 1000
Nodal Variable = Density as rho
Nodal Variable = Pressure as P
Nodal Variable = Velocity as U
Nodal Variable = Temperature as T
Nodal Variable = Turbulent_Kinetic_Energy as TKE
Nodal Variable = Turbulent_Dissipation as SDR
Nodal Variable = Turbulent_Viscosity as muT
Nodal Variable = Yplus as yPlus
Nodal Variable = MACH_NUMBER as Ma

End Results Output Label AeroOutput

End Conchas Region AeroRegion

End Conchas Procedure AeroProcedure

End Sierra FlowFrag
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APPENDIX C. Fragment Trajectory with a Single Drag Coefficient

This appendix documents the solution of a fragment trajectory with a single drag coefficient.

Consider a rigid fragment with mass m, volume V , density ρs = m/V , and surface area A. It
travels in a fluid with density ρ, and its trajectory can be characterized by velocity v, position r,
and time t. Generally, the drag CD(α,βE) depends on orientation relative to its velocity vector.

C.1. Computing Average Drag Coefficient

The average drag CD is computed by averaging over a spherical surface and can be expressed
analytically as

CD =
1

4π

∫ π

2

− π

2

∫
π

−π

CD(α,βE)cosβE dαdβE (C.1)

For sampled pairs of (α,βE)
i with evenly spaced angles ∆αi and ∆βi

E , this integral can be
approximated as

CD ≈
1

4π
∑

i
CD(α,βE)

i cosβ
i
E∆α

i
∆β

i
E (C.2)

This average drag CD is used for a single drag coefficient approximation.

C.2. Governing Equations

By Newton’s Second Law and expressing drag as proportional to the square of the velocity, the
governing equations to solve for v(t), v(r), and r(t) are

m
dv
dt

=−bv2 (C.3)

mv
dv
dr

=−bv2 (C.4)

m
d2r
dt2 =−b

(
dr
dt

)2

(C.5)

where
b = 0.5CDρA (C.6)
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C.3. Velocity vs. Time

With initial condition v(t = 0) = v0, the solution to equation C.3 is

v(t) =
v0m

v0bt +m
(C.7)

C.4. Velocity vs. Position

With initial condition v(r = 0) = v0, the solution to equation C.4 is

v(r) = v0 exp
(
− b

m
r
)

(C.8)

C.5. Position vs. Time

With initial conditions v(t = 0) = v0 and r(t = 0) = 0, the solution to equation C.5 is

r(t) =
m
b

ln
(

v0b
m

t +1
)

(C.9)

C.6. Velocity Scaling with Size

This section shows how velocity scales with fragment size for a fixed flight distance d.

From equation C.4, substitute for b and m:

v = v0 exp
(
−0.5ρCDA

ρsV
d
)

(C.10)

Define characteristic fragment length L, which for example, can be the fragment minimum
bounding box longest side length. The volume and surface area then scale with L as V = c1L3 and
A = c2L2. Substituting into C.10 yields

v(L) = v0 exp
(
−C

L

)
(C.11)

where C is a constant, given by

C ≡ 0.5ρCDdc2

ρsc1
(C.12)
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