This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 0974C

Creating a User-centric Data Flow Visualization:
A Case Study

Karin Butler!, Michelle Leger!, Denis Bueno!, Christopher Cuellar!, Michael
J. Haass!, Timothy Loffredo!, Geoffrey Reedy!, and Julian Tuminaro®

Sandia National Laboratories, Albuquerque NM 87123, USA,
kbutle@sandia.gov, maleger@sandia.gov

Abstract. Vulnerability analysts protecting software lack adequate tools
for understanding data flow in binaries. We present a case study in which
we used human factors methods to develop a taxonomy for understand-
ing data flow and the visual representations needed to support decision
making for binary vulnerability analysis. Using an iterative process, we
refined and evaluated the taxonomy by generating three different data
flow visualizations for small binaries, trained an analyst to use these visu-
alizations, and tested the utility of the visualizations for answering data
flow questions. Throughout the process and with minimal training, ana-
lysts were able to use the visualizations to understand data flow related
to security assessment. Our results indicate that the data flow taxonomy
is promising as a mechanism for improving analyst understanding of
data flow in binaries and for supporting efficient decision making during
analysis.

Keywords: visualization, data flow, vulnerability analysis, reverse en-
gineering, taxonomy development, requirements, binary analysis

1 Introduction

1.1 Background

Society increasingly relies on software that both interacts with security-critical
data and communicates with external networks (e.g., in the military, in medicine,
in education, and at home). Further, software complexity, size, variety, and mod-
ification rate continue to increase. More efficient and effective processes that will
assure that software does not have vulnerabilities are needed [1].

Ideally, automated tools would assess and protect binary software statically,
without executing the program. Static binary analysis avoids 1) needing access
to all of the supporting systems required to run the binary, 2) missing vulner-
abilities introduced during the translation from source code to binary [2], and
3) introducing threats from actually running the code. Unfortunately, automatic
static binary analyses do not scale to real-world software [3].

Currently, experts assess and protect systems by performing binary vulnera-
bility analysis manually with assistance from automated tools [4]. These experts

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

use extensive domain knowledge of binary code, operating systems, hardware
platforms, programming languages, and vulnerabilities; they engage in reverse
engineering to understand binary programs [5], combining their extensive knowl-
edge, and that of their colleagues, with automated tool results and line-by-line
analysis. Binary vulnerability analysis is cognitively demanding, requires per-
sistent attentional resources, and lacks prescribed approaches or tools. Binary
code analyst support tools must be effectively integrated into their workflows to
support their decision-making processes [6].

Current analyst tools have been developed and optimized to support un-
derstanding program control flow, the order in which individual statements, in-
structions, or function calls are executed or evaluated in a program. However, as
the capability to detect control flow vulnerabilities has improved, attackers have
started to take advantage of how data passing through program functions influ-
ences other program data and program decisions [7]. Programmers write source
code, using comments and variable and function names to explain the purpose
of parts of the code and to help model the control flow and data flow. When
translating from source to binary code, compilers remove these comments, they
may remove all names, and they change the code to make it faster or smaller or
safer - and usually less understandable.

Unfortunately, data flow is difficult to understand, particularly when working
from a binary. Analysts find that the current set of tools for understanding data
flow is inadequate.

To begin to fill this gap in the analyst toolset, we used human factors methods
to derive requirements for an analyst-centric interprocedural data flow visual-
ization to assist binary reverse engineers in identifying and mitigating vulner-
abilities in code. Working with experienced binary analysts, we used a rolling
discovery process to derive our requirements through semi-structured interviews,
applied cognitive task analysis knowledge audits, cognitive walkthroughs, and a
two-stage modified sorting task. Our contributions include:

— a description of a modified sorting task, a human factors method to achieve
consensus about mental models used across diverse tasks (Section 2.2),

— ataxonomy of essential features to support vulnerability analyst understand-
ing of data flow in static analysis of binary code (Section 3),

— and an informal evaluation of the static requirements of our taxonomy,
through proof of concept and analytic evaluation (Section 4).

1.2 Related Work

Current Inadequate Data Flow Visualizations Traditional static data flow
analyses use unwieldy mathematical representations for computation [8]. Most
visualizations of these analyses overlay data flow or other information onto a con-
trol abstraction, the control flow graph (CFG) [9][10][11], the call graph [12][13],
a file view [14] or a condensed text-based view of the code [15][16]. The former
two sets of visualizations do not provide fine-grained interprocedural views; the
latter set does not support interactive updates from the analyst (e.g., correct-
ing the disassembly). Several past visualizations helped analysts filter, organize,

and abstract overwhelming control flow graphs [17][18], delocalized data flow
relationships [19][20], historical animated views [21] and hierarchical interactive
views [22], and even hypothesis-driven understanding [23][24], but many of those
visualization mechanisms do not appear to be implemented in the common re-
verse engineering platforms of today [9][25][26].

Visualizations of program dependence graphs (PDG) [27], annotated system
dependence graphs (interprocedural PDGs) [28] and static value flow graphs [29]
provide a reasonably intuitive view of many important data flow relationships.
However, these are statically computed graphs that are not designed to be up-
dated, they are cognitively overwhelming, and they tend to ignore values. One
visualization of a dynamic data flow graph shows location, execution time, and
certain values [7], making some relationships easier to understand than in other
representations. However, these dynamic representations cover one potential set
of relationships associated with a single execution, and thus they do not general-
ize well to static analyses. Other recent work provides insight into values [30], but
these visualizations support source code understanding around variables rather
than locations. Such work complements our proposed requirements by exposing
more information about value sets.

Decompilers such as HexRays [9] and Dream [31] provide the most intu-
itive advanced data flow representations today, encoding data flow information
in automatically selected variable names. The Dream++ extension [32] even se-
lects names to reduce cognitive load on analysts parsing the decompiled code.
However, these text-based visualizations still use a control flow-based layout,
encoding control flow depth using whitespace indentation just as in code devel-
opment. They also display all of the code rather than providing code folding
[33], and analysts inject knowledge at a different layer of representation than
that displayed (i.e., on the disassembly).

User-centered Design Our work is heavily influenced by two individuals who
have thought deeply about supporting user decision making and understanding;:
Storey [5] and Victor [34]. Storey provides a taxonomy of 14 cognitive design
elements to support mental model construction during reverse engineering of
source code for code maintenance, focusing on program understanding, and she
points out the extensive background knowledge required by reverse engineers.
Victor argues for immediate feedback, particularly from tools supporting indi-
viduals who are engaging in a creative process (such as source code development,
or, in our case, reverse engineering) [34]; easy movement between multiple levels
of abstraction [35]; and natural interactive control mechanisms [36]. However,
our work is focused in the more limited domain of answering data flow questions
about a binary.

Groups considering the human as a part of the binary or vulnerability analysis
system are growing in number. For example, the angr group is exploring ways
to offload analysis tasks to non-experts [4]. The DARPA CHESS program is
building research to support humans and computers working together to reason
about the security of software artifacts [37]. Research groups such as [38] are

exploring ways to allow users who are not experts in analysis algorithms to better
control the analysis. Much (though not all) of this work is focused on building
analytic systems to support more targeted allocation of work; in contrast, we
focus on the externalization of human analysts’ mental models.

2 Approach

To begin to understand the different ways that vulnerability analyses are per-
formed, and to derive some initial requirements for a data flow visualization, we
used standard cognitive task analysis methods, including semi-structured inter-
views, applied cognitive task analysis, and cognitive walkthroughs. We describe
these activities in more detail in Section 2.1.

These activities showed that vulnerability analysts need to understand a
range of characteristics of data flow: to identify 1) where specific data influences
the code, 2) how data is parsed and manipulated through the code, 3) how
the code controls and checks data to prevent problematic effects, and 4) un-
intended or obfuscated data flow paths. We considered conducting additional
cognitive walkthroughs to identify essential data flow characteristics across the
broad range of data flow understanding tasks, but we decided not to for three
reasons. First, our requirements were to enable a new type of visualization, not
an analysis environment; walkthroughs of other data flow tasks required more
understanding of and interaction with the analysis environment and would have
yielded little specific data flow information. Second, we wanted to capture in-
formation critical to understanding data flow across a wider array of program
types. Third, we wanted to utilize an analysis technique that would rely less on
recall and explicit reporting of thought processes and, perhaps, reveal automatic
processing associated with data flow analysis and understanding.

To develop visualization requirements that would support a range of data
flow analysis tasks, we next focused on gathering information about analyst
mental models from artifacts of their own projects spanning such tasks.

An activity that can reveal the mental models of users is a sorting task, a task
that is more commonly used to inform the grouping and naming of categories in
an interface [39]. In a typical sorting task, the elements (e.g., words or functions)
to be sorted are known before the task is conducted. Each participant sorts the
same elements into groups; consensus grouping, if revealed, reflects similarities in
how the participants think about the given elements. We hypothesized that bi-
nary analysts might reveal general purpose data flow elements through a sorting
task [39] over their own meaningful data variable and value names.

In our case, however, we did not have a consistent set of elements for an-
alysts to sort. Instead, we had artifacts that analysts had created to record
analysis-relevant information from various completed projects. These artifacts
were created using specialized reverse engineering tools, which allow analysts
to add comments, to rename code elements like functions and variables, and
to propagate assessment-relevant names through binary code. When an analyst
encounters a previously-renamed element in another context, an assigned name

can provide important information that has already been discovered about that
element. Assigned names might reveal the general purpose data flow elements
analysts needed to see in a visualization. However, these names vary across
projects and across analysts according to analysis goals and personal preference,
and they include information about other program features as well (e.g., memory
utilization or control flow). Thus, we needed to overcome two main challenges:
analysts name both data flow elements and categories of elements according to
analysis goals and personal preference, making it difficult for someone unfamiliar
with all the projects to find commonalities; and analysis projects span weeks,
making it infeasible for analysts to independently analyze the same binaries.

To address these challenges, we created a two-stage modified sorting task.
We had analysts sort the names they gave to data flow-related functions and
variables taken from diverse, previously analyzed binaries, and we had experts
perform a second stage of evaluation to find the commonalities and essential data
flow information shared across these analysis projects. We describe the two-stage
modified sorting task in more detail in Section 2.2.

In Section 3, we present the derived requirements and an example visual-
ization, and in Section 4, we describe our informal evaluation. Specifically, we
evaluated our visualization through a proof of principle by using the derived
static requirements to generate data flow visualizations for small binaries. We
then tested the utility of one of these visualizations with an analytical test to
gain confidence in the produced requirements.

This research was reviewed and approved by the Sandia National Laborato-
ries Human Studies Board.

2.1 Requirements Development from Interviews and Walkthroughs

To begin to identify tasks, sub-tasks, important cognitive processes, and data
flow elements, we conducted two rounds of semi-structured interviews with ex-
perienced binary code analysts in individual sessions.

The first round of semi-structured interviews were general cognitive task
analysis interviews with three experienced analysts to identify the process steps,
tools, and some of the cognitive challenges associated with binary reverse engi-
neering, in general. Subsequent interviews and cognitive walkthroughs focused
on the attack surface characterization task [40]. This data flow analysis task
requires identifying where an attacker might control the data in a program and
whether that data may influence security-relevant parts of code. The attack sur-
face characterization task was chosen for the cognitive walkthroughs because it
is 1) representative of many of the considerations when evaluating data flow and
2) amenable to a two-hour cognitive walkthrough.

In the second round of semi-structured interviews, three experienced analysts
answered questions from an applied cognitive task analysis knowledge audit [41].
The knowledge audit revealed the most important goals of attack surface char-
acterization, cues in the binary code that indicate possible vulnerability or that
contribute to program understanding, judgments being made during analysis,
and tools used to support the work.

Building on results from these interviews, we designed a cognitive walk-
through task to capture information, in situ, about attention allocation, decision
making, and processes used by analysts during attack surface characterization.
We selected the UNIX file utility version 5.10 [42][43], choosing from the AFL
(American Fuzzy Lop) fuzzer bug-o-rama trophy case [44], a listing of vulner-
abilities in real programs that were found by the program AFL-fuzz.! Three
different experienced binary analysts with no experience with the chosen pro-
gram were asked to characterize the attack surface of the file binary using static
analysis only. They were tested individually. To focus our data collection on the
cognitions and processes used in understanding data flow, we asked analysts to
begin analysis at the file_buffer function in libmagic, treating the array argument
and length as attacker-controlled, i.e., as the inputs for the exercise. We did not
require analysts to discover the vulnerability; rather, we asked analysts to pro-
duce, as if for future analysis, 1) a ranked list of (internal) functions or program
points where the inputs are processed and may affect the security of the system,
including specific concerns at each point, and 2) any comments, notes, or dia-
grams that might support a formal report for a full vulnerability analysis. We
asked analysts to focus on depth over breadth (i.e., following data flow). During
the two-hour test session, analysts were observed working in their chosen analy-
sis environment while they thought aloud and answered questions posed by the
human factors expert. See Appendix A for additional protocol details for the
cognitive walkthrough.

We compiled the results of the interviews and walkthrough into a preliminary
list of static data flow elements and interaction requirements for our data flow
visualization.

2.2 Requirements Development from Modified Sorting Task

Next, we needed to develop the list of requirements, or a list of essential data
flow elements and relationships, that generalized across diverse binary programs
and analysis goals. To leverage the previous work of the expert binary analysts,
we modified a sorting task [39] to take analyst-specific inputs and reveal men-
tal models shared across analysts and projects. To determine the essential data
flow elements across analysts and projects, we added a second stage to the sort-
ing task. In this second stage, experts identified the commonalities and unique
data flow elements that are essential for vulnerability analysis, informing our
requirements for our data flow visualization.

The first stage of our modified sorting task consisted of analysts sorting
the products of one of their own past projects into categories important for
understanding data flow. To help the analysts in this sorting task, we created
a program that pulled analyst-assigned variable names from a code base and

! Selecting a vulnerability found by AFL gives us the opportunity to control further
testing by, e.g., providing an initial problematic input to guide the analyst. Further,
programs listed in the AFL bug-o-rama trophy case are real programs rather than
small, designed programs, e.g., the Cyber Grand Challenge challenge binaries.

allowed the analysts to view the contextual information from the decompiled
code for each name. The program displayed the entire list of names and allowed
the names to be sorted into analyst-defined categories one-by-one or in groups.

We asked seven analysts to select a completed project with data flow consider-
ations for the sorting task. See Appendix B for instructions given to participants.
Projects included a variety of applications and operating system drivers. The se-
lected programs provided from 200 to over 500 names that had been assigned
by the analyst. We asked analysts to spend up to 40 minutes going through the
names and binning them into 7 to 10 different groups. This range of groups was
recommended by the sorting task literature [39]. The groups were defined by
the analyst to help teach someone else about how data values flow in the code.
As expected given the time constraint, analysts were only able to categorize
between 72 and 110 names into 6 to 11 categories. To ensure that the impor-
tant categories of data elements had been captured, at the end of the sorting
period we asked analysts to review the entire list of names for missed categories;
no analyst felt that categories were missing. Analysts then assigned category
names to each of their groups and explained why that group was important for
understanding data flow. Our collected data consisted of these category names
and their descriptions. The analyst-created sorting task category names varied
across analysts; program type and analysis goal had a significant impact on the
created Categories.2

To determine which category names described similar data flow elements and
which names described unique aspects of data flow, we added a second stage:
an additional level of categorization by a separate group of analysts. A panel of
six experienced binary analysts (one of whom had participated in the original
categorization task) and one experienced source code developer reviewed the
sorting task categories and descriptions; each member of the panel categorized
the analyst-created categories, and then, working together, the panel identi-
fied similarities and differences across the analyst-created categories that were
important for understanding data flow in binaries. We added these important
similarities and differences to our preliminary list of data flow elements, creating
a list of required data flow elements to be represented in our static data flow
visualization as described below.

3 Results: Data Flow Visualization Requirements

We used the results from our modified sorting task, augmented with results from
the semi-structured interviews and cognitive walkthroughs, to derive a data flow
taxonomy. This taxonomy, or set of static visualization requirements, describes
types of data elements to be represented, types of relationships to be represented,
and types of information to be conveyed via a data flow visualization to support
binary analysts.

2 Because category names and descriptions were derived from proprietary assessments,
we will not share these intermediate results.

To evaluate the utility of our requirements, we assigned visual design speci-
fications to the elements in our requirements (taxonomy). We then produced a
visualization of a binary and evaluated the utility of that visualization.

Because binary analysts are very comfortable working with directed graph
representations, and because the data flow elements were consistent with this
type of representation, we iterated on finding visualization design elements in
an elaborated directed graph representation that could convey the required in-
formation. Using our data flow taxonomy, we assigned data elements like data
values and memory locations to types of nodes; we assigned information about
types of influence or relationship to edges. We assigned conveyance of other
types of information to grouping, layout, or annotation, or left them to be de-
termined. Our final data flow taxonomy, including the elements and their visual
representations are provided in Tables 1 and 2.

Using an iterative process of product creation and evaluation, we further
developed the data flow requirements list while creating a data flow visualiza-
tion for the Cyber Grand Challenge [45] binary CROMU_00034 (Diary_Parser)3,
choosing specific instantiations of visual design elements. Experienced binary re-
verse engineers frequently reviewed design choices and accessibility of data flow
information.

4 Evaluation

Vicente recommended three ways to evaluate requirements developed through
the application of human factors methods [48]: 1) a proof of principle through
a demonstration that the requirements generated through the cognitive work
activities can be used to create a design; 2) an analytical principle that demon-
strates that the design reveals important understanding about the domain of
interest, and 3) an empirical principle that uses experimental testing of the new
design against an existing design or against some benchmark of task performance
to demonstrate utility. We conducted proof of principle and analytical principle
testing, but we decided that experimental testing was premature because the
visualization was not deployed within the analysis environment and only repre-
sented a subset of the information needed for a full vulnerability assessment.
The first test of the list of data flow elements was a proof of principle: could
a visualization be created from the data flow primitives and their visual de-
scriptions for a binary program, and would that visualization represent and con-
vey the important information about the data flow vulnerabilities in the code?
For this test, a novice reverse engineer just out of an undergraduate computer
science program was asked to create a data flow visualization for two Cyber
Grand Challenge binaries CROMU_00065 (WhackJack) and the KPRCA_00052
(pizza_ordering_system) using our list of data flow elements and visualization

3 CGC Challenge binaries for DECREE are provided by DARPA [46]; versions ported
to standard operating systems have been released by TrailOfBits [47]. We use the
DARPA challenge name for binaries, but we provide the TrailOfBits name in paren-
theses.

Type Sub-type Visual Instantiation
value oval or plus sign shape
constant no incoming value flow edges
computed plus sign shape
constraint™® displays constraint description
uncertain*® empty or displays ’7’
location rectangular shape
local dotted outline, when included
heap solid outline
global filled with gray
shared memory* NYR
aggregate general aggregate NYR
array rectangle with double lines on sides
structure vertically stacked field locations
and constraints Boolean AND symbol (shield)
or constraints Boolean OR symbol (pointy shield)
code text-only nodes (no edge or fill)
communication most types NYR
input* STDIN: arrow shape,
outgoing value flow edge
output* STDOUT: arrow shape,
incoming value flow edges
annotation

initial configuration value nodes filled with yellow

data type*

size

NYR
NYR

Table 1. Static requirements for information to be conveyed through nodes in data
flow visualization to support vulnerability analysis of binaries. Sub-types marked with
an asterisk (*) are expected to be updated by analysts throughout an analysis. NYR
designates elements that are not yet represented. STDIN = standard input; STDOUT

= standard output.

Type Sub-type

Visual Instantiation

value flow
function boundary

solid black line from source to destination node

parameter large black dot on edge
return value large black dot on edge
points-to black dashed (one long, two short) line
comparison black dotted line with long spaces
control influence
positive black dotted line
negative gray dotted line
length NYR, except colocation of length (source)
in top-center of destination aggregate
sequencing should not be represented
code influence
allocatable points-to edge from code node to location
freeable points-to edge from code node to location
readable value flow edge from code node to location
writeable value flow edge from code node to location
synchronization
lifetime NYR
sometime NYR
colocation
spatial NYR
subset NYR
overlap NYR
lifetime NYR

Table 2. Static requirements for information to be conveyed through edges in data flow
visualization to support vulnerability analysis of binaries. Analysts are expected to be
able to add and remove edges. NYR designates elements that are not yet represented.

specifications. This test revealed several ways that the data flow primitives were
not specified in enough detail to create the visualization, resulting in minor re-
visions to the list of data flow primitives. For example, we added STDIN and
STDOUT communication nodes as a distinct type of location node, we called
out that value computations and certain logical locations map to a single set
of evidence (e.g., different uses of STDOUT should be represented by different
nodes rather than by a single node throughout the binary), we annotated edges
with function boundaries, we clarified that control flow enabled edges should
come from the value nodes that trigger the related control flow in the binary,
and we specifically relegated sequencing information to second-class information
that is represented only when convenient.

The second proof of principle task identified a third Cyber Grand Challenge
binary, EAGLE_0005 (CGC_Hangman_Game). This visualization was manually cre-
ated for the entire binary and did not require modifications to our set of elements
(see Figure 1); the visualization represents 408 lines of relevant decompiled bi-
nary code. With existing data flow graphs, analysts would not be able to observe
the entire binary at once.

To highlight how this visualization would be useful to binary analysts per-
forming a vulnerability assessment, Figure 2 shows the portion of the EAGLE_0005
graph that includes the two vulnerabilities present in that code. In the upper
left, up to 80 bytes are read from standard input; we denote this by showing
the length of STDIN as 80 bytes. These bytes are read into name, a local array
aggregate (i.e., a stack buffer) that has a length of only 32 bytes. This is an easily
identifiable stack buffer overflow. The location of the name buffer is stored in
the pointer &name as indicated by the black dashed line with one long line and
two short dashes. The uninterrupted solid black line from this pointer to STD-
OUT together with the processing details indicate that the data is being passed
without any checks, resulting in an easily identifiable format string vulnerability.
These two vulnerabilities are relatively straight-forward to identify via a line-by-
line analysis as well because they are wholly contained within a single function.
However, the utility of the visualization is demonstrated in understanding how
an attacker might exercise these vulnerabilities; for this task, an analyst requires
interprocedural data flow understanding of nearly all of the 408 lines of code and
data flow depicted in Figure 1. Current data flow visualizations do not enable
effective visualization of an entire binary in this way. This example demonstrates
how such a visualization might be useful theoretically; we next wanted to gain
some confidence that the visualization did, in fact, allow an analyst to answer
data flow questions.

The second type of testing followed the analytical principle. For these tests,
a list of questions about data flow and important considerations in reverse en-
gineering and vulnerability assessment were derived from the initial project dis-
cussions and cognitive task analysis products (see [49] for the complete list of
questions). An experienced reverse engineer who was not involved in the previ-
ous activities was given a 15-minute primer on understanding the graph elements
using CROMU_00034, and then he was asked to answer the questions using only

FaMacuiously, you have
inaged to prolong Tuco's e’

e conectword s e\
—s1 swour)

T i yoursa{ T the igh scors Tst™

=—+[soour
E—«m‘ S your pame7
A@romr

(B

rr
cgo_terminate | 1
"

)
—ad
[FNew member of the HOF-]

Fig.1. A data flow graph manually constructed using our data flow requirements and final assignment to visual design elements.
Generated from the TrailOfBits port of CGC challenge binary EAGLE_0005, this graph encapsulates all instructions from the binary
except those from libraries.

Fig. 2. The portion of the EAGLE_0005 data flow graph showing the two vulnerabilities
known to be exhibited by that binary: a stack buffer overflow vulnerability, and a format
string vulnerability.

the data flow visualization for the EAGLE_0005 binary. The analyst was able
to answer 11 of the 14 data flow questions correctly within 40 minutes. The
questions that could not be completely answered in the allotted time involved
interpreting pointers and their edges and suggest a possible area for improvement
of the visualization.* Overall, this result gives us some confidence that visual-
izations produced via our static requirements are useful for answering data flow
questions. We believe that such visualizations have the potential to make larger
analysis tasks more manageable without dramatically slowing smaller analysis
tasks, though we have not tested this hypothesis yet.

5 Discussion

In this paper, we report the results of a case study of developing the design re-
quirements for a new visualization, a data flow visualization to aid vulnerability
analysts working with binary code to reason about and understand security-
relevant data-flow information. We utilized several standard methods from hu-
man factors to identify a set of user-centric requirements that would be appli-
cable to a range of real-world binaries and analysis goals. We also developed
a two-stage modified sorting task to identify categories of data flow elements
across heterogeneous work artifacts. During the proof of concept and analyti-
cal evaluation activities, with minimal training, analysts were able to use the
visualizations to understand data flow related to security assessment. Our re-
sults indicate that this data flow taxonomy and visualization are promising for

4 Our experienced analyst looking at the corresponding binary code had similar accu-
racy in the same amount of time. However, the analyst looking at the visualization
tended to miss questions due to mis-interpretation of the visual elements present,
while the analyst looking at the binary code tended to miss questions due to data
influences or uses from other portions of the code.

improving analyst understanding of data flow in binaries and for supporting
efficient decision making during analysis.

Our limited testing revealed some difficulty with the interpretation of point-
ers and their edges. This difficulty may be resolved with changes to how that
information is depicted in our visualization, or it may require a revision to the
taxonomy. We could also evaluate the ease with which analysts can learn and use
the static visualization by using 1) a larger set of vulnerability analysts, 2) data
flow vulnerabilities that are more difficult to identify manually in binaries, or
3) binaries with many more lines of code. As we describe in Section 5.1, though,
we believe that further development of this taxonomy should be pursued us-
ing automated graph-building functions that have been integrated into analyst
workflows.

In this case study we utilized a new procedure to distill heterogeneous ana-
lyst categorizations into consensus about the fundamental elements of the data
flow visualization across varied code and analysis goals. In our two-stage mod-
ified sorting task, we relied on domain experts to identify the similarities and
differences between the categories that resulted from the first stage. The collabo-
rative second-stage grouping revealed important sets of elements and similarities
in how participants think about data flow elements. Artifact analysis, such as
our modified sorting task, can be powerful for understanding the mental models
of experts in a domain; artifacts can be systematically analyzed without incur-
ring the cost of devising controlled but realistic projects with different goals.
Additional artifacts that might be explored similarly include analysts’ change
history for names and analysts’ comments in the binary code, which summarize
their discoveries.

It is difficult to assess the replicability of the results generated from this
work. Several factors may have influenced whether we found all the data flow el-
ements that are important to vulnerability analysis. Our preliminary interviews
and walkthroughs tested only a few people under each protocol and focused on
a single type of data flow task, i.e., attack surface characterization. Further, the
results of the modified sorting task may have been biased by the functionality
of the programs selected or the range of potential vulnerabilities, and the judg-
ments of our panel of experts may have been skewed by their work. Despite these
concerns, we incorporated several strategies to increase the likelihood that our
results are replicable. We used a range of approaches: interviews, walkthroughs,
and the modified sorting task. We captured the essential data flow elements from
a range of projects with different analysis goals. We used an iterative develop-
ment and design process during which reverse engineers frequently reviewed the
effectiveness of the data flow elements and the design choices made in the visu-
alization. We believe that others reproducing this research are likely to develop
a similar set of requirements for understanding data flow in binary analysis.

5.1 Future Work

In this case study, generating the data flow visualizations was a time-consuming,
manual process. Further development of a useful visualization requires determin-

ing how graph building can be integrated into analyst workflows. Binary reverse
engineers in an operational environment already maintain high cognitive loads
without the added burden of creating a visualization. Manually creating the vi-
sualizations is untenable, and, although many of the data flow elements can be
derived automatically, such automation is not incorporated into current work-
flows. Once automation can be used to derive data flow visualization compo-
nents, new insights will need to be easily injectable into the visualization during
line-by-line analysis. For example, the data flow visualization should support the
recording of unknowns and partial insights as they become known during the
analysis. Additionally, during our preliminary data gathering, analysts indicated
that they required interactive features that support using the data flow graph
to navigate through the code base as well as features that allow sections of the
graph to be collapsed when detailed information is not necessary. We believe that
these interactive requirements are most important for successful integration of
this visualization into analyst workflows, but such development remains future
work.

Previous human factors explorations of program understanding have iden-
tified cognitive design elements that are needed to support the construction of
mental models. Storey and colleagues identified two broad classes of design el-
ements important for helping software analysts maintaining code to build their
mental model: those that support comprehension, and those that reduce the cog-
nitive overhead of the analyst [5]. Examples of elements that support comprehen-
sion include tools and features that support the construction of multiple mental
models, and tools and features that provide abstraction mechanisms. Examples
of design features that reduce the cognitive overhead of the analysts include
support for navigation through the code, decision making, and documentation
of findings. Although these insights came from studying software maintainers,
they are relevant for binary reverse engineers as well. Our work represents an
attempt to create a more user-centric abstraction of data flow information to sup-
port comprehension, but further development will need to address the cognitive
overhead of creating this abstraction. The insights from Storey and colleagues
will continue to be important as new tools are developed, automatic analyses
are advanced, and reverse engineering workflows evolve.

Another opportunity for reducing the cognitive overhead of the analyst is to
provide tools that can help them to record the details of their analysis, perhaps
into something like a knowledge transfer diagram [50]. These visualizations can
help to externalize an analyst’s understanding of both the program and the
assessment. A record of this understanding can help maintain the current goal
of the analysis, establishing the mental context that is required for analysis when
returning to a project, or communicating the current state of understanding to
other analysts or customers. Research approaches that support the design of
new decision-making support tools, such as work domain analysis, could support
development of these externalizations.

6 Conclusion

In this case study, we describe using human factors methods to derive require-
ments for interprocedural data flow visualizations that can be used to quickly
understand data flow elements and their relationships and influences. To gen-
eralize requirements produced through semi-structured interviews, and through
task- and program-specific knowledge audits and cognitive walkthroughs, we de-
veloped a two-stage modified sorting task that helps extract commonalities in
analyst mental models of data flow across different types of programs. We used
the results from the modified sorting task, augmented with results from the cog-
nitive task analysis activities, to derive a data flow taxonomy (requirements for
representation). We assigned elements of the taxonomy to visual representations
in an elaborated directed graph representation, and we used these generalized
requirements to manually generate and evaluate data flow visualizations for bi-
nary programs with different vulnerabilities. Analysts were able to use the data
flow visualizations to answer many critical questions about data flow. Our results
indicate that our data flow taxonomy is promising as a mechanism for improving
analyst understanding of data flow in binaries and for supporting efficient deci-
sion making during analysis. However, future work and evaluation will require
integrating the visualization into existing analyst workflows.

7 Acknowledgements

The authors would like to thank Danny Loffredo, Todd Jones, Doug Ghormley,
Andy Wilson, Tiemoko Ballo, Bryan Kennedy, and the many binary analysts who
supported this work. Their suggestions and interactions have been invaluable.

This work was supported by the Laboratory Directed Research and Devel-
opment program at Sandia National Laboratories, a multi-mission laboratory
managed and operated by National Technology and Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration un-
der contract DE-NA0003525.

A Cognitive Walkthrough Setup

We selected the UNIX file utility version 5.10 [42][43], choosing from the AFL
(American Fuzzy Lop) fuzzer bug-o-rama trophy case [44], a listing of vulner-
abilities in real programs that were found by the program AFL-fuzz. We chose
file version 5.10 because 1) the core processing library libmagic is vulnerable to
CVE-2012-1571 [51]%; 2) many functions in the library are involved in parsing
input data from multiple sources; 3) a successful analysis requires understanding

® This known CVE in the binary could allow us to perform cognitive walkthroughs
of other binary analysis tasks, e.g., determining the risk of or mitigating a known
vulnerability.

interprocedural data flow; 4) we had access to source code for both the vulner-
able version 5.10 and the fixed version 5.11;° and 5) file is one of the smallest
UNIX utility binaries listed, making it more likely that a meaningful analysis
could be completed in less than two hours.

Three experienced binary analysts completed the attack surface characteri-
zation task with the file binary in their preferred binary analysis environment.
The binary was compiled on a machine running Ubuntu 16.04 with llvm, creating
a 32-bit binary with symbols. To focus our data collection on the cognitions and
processes used in understanding data flow, we asked analysts to begin analysis
at the file_buffer function in libmagic, treating the array argument and length as
attacker-controlled, i.e., as the inputs for the exercise. We did not require ana-
lysts to discover the vulnerability; rather, we asked analysts to produce, as if for
future analysis, 1) a ranked list of (internal) functions or program points where
the inputs are processed and may affect the security of the system, including
specific concerns at each point, and 2) any comments, notes, or diagrams that
might support a formal report for a full vulnerability analysis. We asked ana-
lysts to focus on depth over breadth (i.e., following data flow) and to think aloud
while performing analysis. Our human factors specialist took notes about task
performance and asked for additional details to understand the thought process
of the analyst, including asking for reasoning behind judgments and decisions,
and asking for clarification about sources of frustration.

Walkthroughs lasted two hours including the time to set up the analysis envi-
ronment. Analysts created the list of functions and concerns, but they produced
few comments and no diagrams or additional notes. Although analysts often use
two to four screens, we captured only the primary screen of each analyst. These
artifacts were not analyzed separately.

B Modified Sorting Task Stage 1 Instructions

We would like to better understand how analysts categorize data flow elements
when they are working on a VA (vulnerability analysis) or RE (reverse engi-
neering) project. We are examining whether the symbols that you have assigned
to various programming elements in a binary can reveal how you were thinking
about data flow through the binary.

In order to do this, we have created a script that will scan a project file and
extract the symbols that you gave to functions, data, and variables.

The script is named GroupRenamedVariables.

Using this script, I am going to ask you to sort the symbols that you as-
signed into categories in a couple of different ways. More details are provided
below. Try to sort the symbols into 7-10 different categories. The program has
extracted all of the symbols that you assigned, but we are only interested in your
categorizations of data value symbols and variable symbols. To focus on these

5 Having source for both versions allowed us to control the binaries analyzed, e.g.,
whether we provided symbols or reduced optimizations.

types of symbols, please sort the symbol list by type of symbol. Just ignore the
function symbols.

You will be able to change and review your category assignments as you like.
You can assign symbols to more than one category. You can change the name of
a grouping at any time. You can split a grouping into more than one group.

Once you have completed the sorting task, we will ask you to provide de-
scriptions of each of your categories.

Imagine that you are teaching someone else about how data values within
a binary flow through a program. Organize the symbols that you have given to
these variables into grouping that would help you teach that person. Try to sort
the symbols into 7-10 different categories.

References

1. Somers, J.: The coming software apocalypse. The Atlantic (September 2017)

2. D’Silva, V., Payer, M., Song, D.: The correctness-security gap in compiler opti-
mization. In: 2015 IEEE Security and Privacy Workshops. 73-87 (May 2015)

3. Song, J., Alves-Foss, J.: The darpa cyber grand challenge: A competitor’s perspec-
tive. IEEE Security & Privacy 13(6) 72-76 (2015)

4. Shoshitaishvili, Y., Weissbacher, M., Dresel, L., Salls, C., Wang, R., Kruegel, C.,
Vigna, G.: Rise of the hacrs: Augmenting autonomous cyber reasoning systems
with human assistance. CoRR abs/1708.02749 (2017)

5. Storey, M.A.D., Fracchia, F.D., Miiller, H.A.: Cognitive design elements to support
the construction of a mental model during software exploration. J. Syst. Softw.
44(3) 171-185 (January 1999)

6. Bainbridge, L.: Ironies of automation. Automatica 19 775-779 (1983)

7. Hu, H., Chua, Z.L., Adrian, S., Saxena, P., Liang, Z.: Automatic generation of
data-oriented exploits. In: 24th USENIX Security Symposium (USENIX Security
15), Washington, D.C., USENIX Association 177-192 (2015)

8. Kildall, G.A.: A unified approach to global program optimization. In: Proceedings
of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages. POPL '73, New York, NY, USA, ACM 194-206 (1973)

9. Hex-Rays, S.: Ida pro disassembler. https://www.hex-rays.com/products/ida/
(2008)

10. Quist, D.A., Liebrock, L.M.: Visualizing compiled executables for malware analysis.
In: 2009 6th International Workshop on Visualization for Cyber Security. 27-32
(Oct 2009)

11. Zynamics: Zynamics binnavi product description page.
https://www.zynamics.com/binnavi.html

12. Rech, J., Schifer, W.: Visual support of software engineers during development
and maintenance. Volume 32., ACM 1-3 (2007)

13. Hardisty, Z.: Radia github page. https://github.com/zoebear/Radia

14. Reddy, N.H., Kim, J., Palepu, V.K., Jones, J.A.: Spider sense: Software-
engineering, networked, system evaluation. In: Software Visualization (VISSOFT),
2015 IEEE 3rd Working Conference on, IEEE 205-209 (2015)

15. Ball, T., Eick, S.G.: Visualizing program slices. In: Visual Languages, 1994. Pro-
ceedings., IEEE Symposium on, IEEE 288-295 (1994)

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

Eick, S., Steffen, J.L., Sumner, E.E.: Seesoft-a tool for visualizing line oriented
software statistics. IEEE Transactions on Software Engineering 18(11) 957-968
(1992)

Miiller, H.A., Klashinsky, K.: Rigi-a system for programming-in-the-large. In:
Proceedings of the 10th International Conference on Software Engineering. ICSE
’88, Los Alamitos, CA, USA, IEEE Computer Society Press 80-86 (1988)

Storey, M..D., Muller, H.A.: Manipulating and documenting software structures
using shrimp views. In: Proceedings of International Conference on Software Main-
tenance. 275-284 (Oct 1995)

Livadas, P.E., Alden, S.D.: A toolset for program understanding. In: [1993] IEEE
Second Workshop on Program Comprehension. 110-118 (July 1993)

Brade, K., Guzdial, M., Steckel, M., Soloway, E.: Whorf: a visualization tool for
software maintenance. In: Proceedings IEEE Workshop on Visual Languages. 148—
154 (Sept 1992)

Baker, M.J., Eick, S.G.: Visualizing software systems. In: Proceedings of the 16th
International Conference on Software Engineering. ICSE '94, Los Alamitos, CA,
USA, IEEE Computer Society Press 59-67 (1994)

Orso, A., Jones, J.A., Harrold, M.J., Stasko, J.: Gammatella: visualization of
program-execution data for deployed software. In: Proceedings. 26th International
Conference on Software Engineering. 699-700 (May 2004)

Rajlich, V., Doran, J., Gudla, R.T.S.: Layered explanations of software: a method-
ology for program comprehension. In: Proceedings 1994 IEEE 3rd Workshop on
Program Comprehension- WPC ’94. 46-52 (Nov 1994)

LaToza, T.D., Myers, B.A.: Visualizing call graphs. In: Visual Languages and
Human-Centric Computing (VL/HCC), 2011 IEEE Symposium on, IEEE 117-124
(2011)

Alvarez, S.: The radare2 book. https://radare.gitbooks.io/radare2book/content,/
(2009)

Vector35: Vector 35 binary ninja product description page. https://binary.ninja
Wiirthinger, T., Wimmer, C., Md&ssenbock, H.: Visualization of program depen-
dence graphs. In: Proceedings of the Joint European Conferences on Theory and
Practice of Software 17th International Conference on Compiler Construction.
CC’08/ETAPS’08, Berlin, Heidelberg, Springer-Verlag 193-196 (2008)

Deng, F., DiGiuseppe, N., Jones, J.A.: Constellation visualization: Augmenting
program dependence with dynamic information. In: 2011 6th International Work-
shop on Visualizing Software for Understanding and Analysis (VISSOFT). 1-8
(Sept 2011)

Sui, Y., Xue, J.: Svf: Interprocedural static value-flow analysis in llvm. In: Pro-
ceedings of the 25th International Conference on Compiler Construction. CC 2016,
New York, NY, USA, ACM 265-266 (2016)

Hoffswell, J., Satyanarayan, A., Heer, J.: Augmenting code with in situ visualiza-
tions to aid program understanding. In: Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, ACM 532 (2018)

Yakdan, K., Eschweiler, S., Gerhards-Padilla, E., Smith, M.: No more gotos:
Decompilation using pattern-independent control-flow structuring and semantic-
preserving transformations. In: NDSS. (2015)

Yakdan, K., Dechand, S., Gerhards-Padilla, E., Smith, M.: Helping johnny to an-
alyze malware: A usability-optimized decompiler and malware analysis user study.
In: 2016 IEEE Symposium on Security and Privacy (SP). 158-177 (May 2016)

33.

34.
35.
36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

47.

48.

49.

50.

51.

Hendrix, T.D., Cross, II, J.H., Barowski, L.A., Mathias, K.S.: Visual support for
incremental abstraction and refinement in ada 95. Ada Lett. XVIII(6) 142-147
(November 1998)

Victor, B.: Learnable programming. http://worrydream.com (2012)

Victor, B.: The ladder of abstraction. http://worrydream.com (2011)

Victor, B.: A brief rant on the future of interaction design. http://worrydream.com
(2011)

Fraze, D.: Computers and humans exploring software security (chess).
https://www.darpa.mil/program/computers-and-humans-exploring-software-
security (2018)

Mangal, R., Zhang, X., Nori, A.V., Naik, M.: A user-guided approach to program
analysis. In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ESEC/FSE 2015, New York, NY, USA, ACM 462-473 (2015)
Sherwin, K.: Card sorting: uncover users’ mental models for better information
architecture. https://www.nngroup.com/articles/card-sorting-definition/
Manadhata, P.K., Tan, K.M.C., Maxion, R.A., Wing, J.M.: An approach to mea-
suring a system’s attack surface. School of Computer Science Technical Report
CMU-CS-08-146, Carnegie Mellon University, Pittsburgh, PA (August 2007)
Militello, L., Hutton, R.: Applied cognitive task analysis (acta): A practitioner’s
toolkit for understanding cognitive task demands. Ergonomics 41(12) 1618-41
(1998)

Darwin, L.: Original source packages for file utility. ftp://ftp.astron.com/pub/file/
(2012)

Darwin, I.: Maintained source for file utility. https://github.com/file/file
Zalewski, M.: American fuzzy lop: a security-oriented fuzzer. http://lcamtuf.
coredump. cx/afl/(visited on 06/21/2017) (2010)

Fraze, D.: Cyber grand challenge (cgc). https://www.darpa.mil/program/cyber-
grand-challeng (2016)

DARPA: Darpa cgce challenges source repository.
https://github.com/CyberGrandChallenge /samples/tree/master/cqe-challenges
(2016)

TrailOfBits: Darpa cgc challenges ported to standard os.

https://github.com/trailofbits/cb-multios (2016)

Vicente, K.J.: Ecological interface design: Progress and challenges. Human factors
44(01) 62-78 (2002)

Leger, M., Butler, K.M., Bueno, D., Crepeau, M., Cuellar, C., Godwin, A., Haass,
M.J., Loffredo, T., Mangal, R., Matzen, L.E., Nguyen, V., Orso, A., Reedy, G.,
Stasko, J.T., Stites, M., Tuminaro, J., Wilson, A.T.: Creating an interprocedu-
ral analyst-oriented data flow representation for binary analysts (ciao). Technical
Report SAND2018-14238, Sandia National Laboratories, Albuquerque, NM (De-
cember 2018)

Zhao, J., Glueck, M., Isenberg, P., Chevalier, F., Khan, A.: Supporting handoff in
asynchronous collaborative sensemaking using knowledge-transfer graphs. IEEE
Transactions on Visualization and Computer Graphics 24(1) 340-350 (2018)
NIST: Cve 2012-1571. https://nvd.nist.gov/vuln/detail/CVE-2012-1571 (2012)

