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Abstract

Mesoscopic simulations of hydrocarbon flow in source shales are challenging, in part due to the

heterogeneous shale pores with sizes ranging from a few nanometers to a few micrometers. Ad-

ditionally, the sub-continuum fluid-fluid and fluid-solid interactions in nano- to micro-scale shale

pores, which are physically and chemically sophisticated, must be captured. To address those

challenges, we present a GPU-accelerated package for simulation of flow in nano- to micro-pore

networks with a many-body dissipative particle dynamics (mDPD) mesoscale model. Based on

a fully distributed parallel paradigm, the code offloads all intensive workloads on GPUs. Other

advancements, such as smart particle packing and no-slip boundary condition in complex pore ge-

ometries, are also implemented for the construction and the simulation of the realistic shale pores

from 3D nanometer-resolution stack images. Our code is validated for accuracy and compared

against the CPU counterpart for speedup. In our benchmark tests, the code delivers nearly perfect

strong scaling and weak scaling (with up to 512 million particles) on up to 512 K20X GPUs on Oak

Ridge National Laboratory’s (ORNL) Titan supercomputer. Moreover, a single-GPU benchmark

on ORNL’s SummitDev and IBM’s AC922 suggests that the host-to-device NVLink can boost

performance over PCIe by a remarkable 40%. Lastly, we demonstrate, through a flow simulation

in realistic shale pores, that the CPU counterpart requires 840 Power9 cores to rival the perfor-
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mance delivered by our package with four V100 GPUs on ORNL’s Summit architecture. This

simulation package enables quick-turnaround and high-throughput mesoscopic numerical simula-

tions for investigating complex flow phenomena in nano- to micro-porous rocks with realistic pore

geometries.

Keywords: digital rock physics, shale, GPU, dissipative particle dynamics, multiphase flow

Program summary

Program title: USER MESO 2.5

Licensing provisions: GNU General Public License 3

Programming language: CUDA C/C++ with MPI and OpenMP

Nature of problem: Particle-based simulation of multiphase flow and fluid-solid interaction in nano-

to micro-scale pore networks of arbitrary pore geometries.

Solution method: Fluid particles and solid wall particles are modeled with a many-body dissipative

particle dynamics (mDPD) model – a mesoscopic model for coarse-grained fluid and solid molecules.

The pore surface wall boundary for arbitrary surface geometries is modeled with a no-slip boundary

condition for fluid particles that prevents fluid particles from indefinitely penetrating in the walls.

The time evolution of the system is integrated using the Velocity-Verlet algorithm.

Restrictions: The code is compatible with NVIDIA GPUs with compute capability 3.0 and above.

Unusual features: The code is implemented on GPGPUs with significantly improved speed.

1. Introduction

Approximately 75% of the sedimentary rocks on Earth are clastic nanoporous tight rocks, which

are often referred to as shale. Shale contains most of the world’s fossil energy sources (e.g. oil and

natural gas). However, only a small fraction of the sources in shale can be recovered so far, in

part due to the gaps of our knowledge in the relevant fundamental physics that ultimately control
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the dynamics of fluids in shale, which manifests extremely low permeability in the micro- to nano-

Darcy range with average pore sizes from a few nanometers (10−9 m) to a few micrometers (10−6

m). Filling these knowledge gaps may help the development of more effective shale source recovery

strategies. Most of the theories of fluid flow in geomaterials (and the predictive models built upon

such theories) have been based on the concepts of classical continuum fluid dynamics and a rigid

porous or fractured solid porous matrix, which assume ideal non-slip boundary conditions for fluid

flow and transport [1]. Those concepts and models have proven adequate for developing the theories

of single- and multi-phase flow in permeable porous media such as aquifers, soils, and conventional

oil and gas reservoirs. Many pore-scale fluid flow models have been developed in either Eulerian or

Lagrangian frame, based on the continuum computational fluid dynamics (CFD), e.g., the models

based on lattice Boltzmann method (LBM) [2, 3], smoothed particle hydrodynamics (SPH) [4, 5],

and volume-of-fluid finite volume method (VOF-FVM) [6, 7]. However, the behavior of fluids in

nanoporous tight shale is very different, as the discreteness of molecules may impact flow and

transport processes at higher scales, and the solid organic materials may play an important role as

mechanical components, sorbents and sources of fluids. Besides, the large specific surface areas can

make surface reactions and surface transport more profound. For example, in an ideal spherical

pore of 100 nm diameter, about 6% of the fluid is within a distance of 1 nm from the solid surface,

whereas in a pore of 10 nm diameter, over 49% of the fluid is within a distance of 1 nm, where the

physical and chemical properties of the fluid can be significantly different from those of bulk fluids.

A good understanding of large-scale flow and transport behaviors in shale requires robust and

accurate multiscale computational models that can bridge the scale gaps between fluid molecular

dynamics (MD) models and nanopore-scale fluid flow models.

Dissipative particle dynamics (DPD) constitutes a relatively new class of mesoscale models

that can be used to simulate single- and multi-phase fluid flow [8–13]. The DPD concept was

originally introduced for microscopic hydrodynamics [14] with its theoretical foundation based on

statistical mechanics [15, 16]. The various DPD models and their applications are summarized

by Moeendarbary et al. [17] and Liu et al. [18], respectively. In DPD, a system can be simulated

with a set of interacting particles, where each particle represents a small cluster of molecules
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instead of a single one. The particle-particle interaction force in a DPD embodiment consists of a

“conservative” (non-dissipative) component, a dissipative component that represents the effect of

viscosity, and a thermal component that represents fluctuation. The distinction between DPD and

SPH is the thermally driven fluctuations that are only detectable on microscopic scales, e.g. pores

with sizes in the nanometer ranges. Conversely, DPD fluids can recover the continuum Navier-

Stokes equations on large scales (scales much greater than the particle size) with the effect of

thermal fluctuations to be negligible. Furthermore, DPD conserves mass and momentum, and also

the energy provided with special treatment [19–22]), and allows much larger time steps than MD

simulations. These features make DPD essentially a mesoscale method between the molecular and

continuum hydrodynamic scales, and facilitates simulations of complex fluid systems with possible

physical scales spanning a wide range. Recently, a so-called “many-body” DPD model [23], namely

mDPD, has been found particularly suitable for multi-phase fluid systems, and thus has been

applied for various multi-phase fluid simulation problems, including liquid-vapor interface, surface

tension, and multi-component fluid flows in micro-scale channels [24–28]. In particular, mDPD

manifests a unique multiscale modeling capability that can model fluid-fluid/solid interfaces in

pores at both continuum- and sub-continuum-scales, as demonstrated in Figure 1.

a) Fluid-fluid and fluid-solid interfaces in a 100-nm-
wide pore are stable.

b) Thermodynamic fluctuation and diffusion in a 2-nm-wide 
pore are profound.

Figure 1: Comparison of pore size effect on the continuum- and nano-scale fluid-fluid/solid interfaces in a slit-shape
pore, as simulated by the mDPD model.

Recently we developed an mDPD based nano to micro-scale pore flow model and applied it

for multiphase flow simulations in source shale [29]. In that model, realistic shale pore geometries

are constructed based on 3D voxel data of shale core samples, which are generated from a focused

ion beam scanning electron microscopy (FIB-SEM) digital rock imaging process [30] with voxel

resolution at tens of nanometers or even a few nanometers. Each voxel contains local composition

information that can be used to identify phase boundaries in shale, e.g. interfaces between inorganic
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and organic solid matrices, between inorganic solid matrix and pores, and between organic solid

matrix and pores. The integration of FIB-SEM to nano-pore flow simulations is a big step forward

as compared with the earlier methods that used either manufactured or analytically described

pore geometries [13]. Furthermore, it is worth noting that though FIB-SEM has been adopted

for analyzing shale samples for a while [31–34], most of the early flow simulation methods applied

to shale were continuum CFD models (e.g. a finite element model by Dewers et al. [35]), whose

theoretical legitimacy yet remain to be fully verified for heterogeneous nanoporous media like

shale. In comparison, the mesoscopic nature of mDPD (as shown in Figure 1) makes the model a

competent candidate for the nano- to micro-pore flow simulations in shale.

In order to use mDPD for predicting the critical material properties of shale micro core sam-

ples such as permeability and relative permeability, pore flow simulations must be conducted at

meaningful space and time scales that may require simulations of a system with 108-109 particles

and 107-108 timesteps. These simulations are computationally demanding and require significant

computing resources. In early exercises we used the DPD package [36] in LAMMPS [37]. The

package takes advantage of the parallel computing readiness of LAMMPS and delivers satisfying

scalability for homogeneous porous systems. However, it is not the case for shale. Due to the highly

non-uniform pore distributions in shale, load imbalance emerges as a result of non-uniform particle

distributions and force calculations across the processing ranks and has been a serious bottleneck

for the package to achieve desired scalability even with adaptive load balancing. Indeed, compared

with the theoretical advances in multiphase DPD models, the development of efficient parallel

strategies for those models is left behind, especially for heterogeneous porous systems at the ap-

propriate physical scales. Efficient HPC strategies such as GPUs are highly encouraged. Because

of the particular suitability of the general-purpose GPUs (GPGPUs) for MD and coarse-grained

MD-like particle simulations, GPU computing has been widely adopted for mesoscale particle mod-

els such as SPH [38–40] and LBM [41–43]. Some basic DPD models have been implemented in

GPU accelerated packages such as HOOMD-blue [44], GROMACS [45] and LAMMPS-GPU [46].

The implementation of more sophisticated DPD models is recently described by Tang and Kar-

niadakis [47] and Blumers et al. [48]. Their GPU codes have demonstrated excellent strong- and
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weak-scalability for DPD simulations.

a) A shale micro core sample 
with size 5 !m × 4 !m × 3 !m

b) DPD particle representation 
of kerogen-hosted nanopores

c) A region of interest selected 
(ROI) for nanopore-flow study

d) Snapshot of nanopore-scale flow 
simulations with 108-109 particles

Pore surface
wall packing

ROI selection Simulation domain

"high"low

Figure 2: Illustration of a production-level shale analysis workflow from nanometer-resolution digital rock imaging
to GPU accelerated mDPD simulations of fluid flow in realistic nanopores in shale.

In this work, a generalized GPU-accelerated implementation of the mDPD based multiphase

pore flow model with a solid wall boundary model for arbitrary pore geometries is developed to

simulate flow dynamics in realistic source shale pores. The software features a tight integration of

our earlier works including a mDPD pore flow model [29], an arbitrary-geometry wall boundary

model [49] and a GPU-accelerated DPD simulator [47, 48], and delivers an efficient rock analysis

throughput from digital rock imaging to pore flow simulations, as shown in Figure 2. With the

new ability to model multiphase flow in arbitrary-shaped, nano- to micro-scale channels, the code

package can be used to investigate the critical material properties of shale such as permeability

and relative permeability with unprecedented time and length scales. Because a GPU can fit a

workload comparable to many CPU codes, the use of GPUs can effectively reduce overhead in

cross-rank/node communication. Consequentially the reduced rank-level parallelism is especially

helpful for reducing load imbalance in mDPD flow simulations in non-uniform porous systems. For

example, investing the same computing capacity, it requires a much smaller number of GPU cards

than CPU cores, and hence much fewer ranks in GPU computing than CPU assuming one GPU

card and one CPU core per rank. As a result, the use of GPUs would greatly reduce the number

of domain decompositions in a non-uniform porous system, and thus is expected to improve load

balance by substantially reducing cross-rank communication and latency in rank synchronization.

The rest of the paper is structured as follows. In section 2, we briefly describe the mDPD

model, a solid wall boundary model and surface wall particle packing for arbitrary geometries. In
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section 3, we present the implementation and innovations of our program. In section 4, we validate

the code with the verification problems. In section 5, we demonstrate the efficiency of our code by

running benchmark cases for uniform and non-uniform nanoporous media. In section 6, we further

demonstrate the capability of the software with pore flow simulations in realistic shale nanopore

networks. Lastly, we conclude the paper in section 7.

2. Pore-scale fluid flow models

2.1. Many-body dissipative particle dynamics

In a generic formulation, DPD particles interact via pairwise central forces, i.e. Fij = FR
ij +

FD
ij +FC

ij , where FR
ij represents a random force, FD

ij a dissipative force, and FC
ij a conservative force

between particle i and j, respectively. If ri and vi are used to denote the position and velocity

of particle i, respectively, the random force FR
ij and the dissipative force FD

ij can be expressed as

FR
ij = σwR(rij)ξij r̂ij and FD

ij = −γwD(rij)(r̂ij · vij)r̂ij , where rij = ri − rj , rij = |rij |, r̂ = rij/rij

and vij = vi − vj . These forces constitute a thermostat if the amplitude σ of the random variable

ξij and the viscous dissipation coefficient γ satisfy a fluctuation-dissipation theorem: σ2 = 2γkBT

and wD(r) = (wR(rij))
2, where kBT denotes the desired temperature in the unit of Boltzmann’s

constant kB. In the original DPD model, the conservative force FC
ij is defined as FC

ij = aijw
C(rij)r̂ij ,

where aij denotes the magnitude of the force, and the weight function wC(r) vanishes when the

inter-particle distance r is larger than a cutoff range rc. The FC
ij is usually derived from a soft and

unspecific weight function wC(rij), thus allowing for a fairly large integration time step. Different

weight functions describe different material properties. A common choice for wC(rij) is wC(rij) =

1 − rij/rc and wR = wC. The standard velocity Verlet algorithm can be employed to integrate

the resulting equations of motion in time. A quadratic equation of state (EOS) is obtained with

respect to the average particle density ρ, as shown in Figure 3a. However, the original DPD model

is not sufficient to model multiphase fluid flow phenomena such as liquid-vapor interfaces, liquid-

liquid interfaces and free capillary surfaces. A more complex EOS needs to be represented with

the DPD model. To achieve this, a long-range attractive and short-range repulsive conservative

force FC is required. The multiphase fluid flow model employed in the present work is the so-called
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many-body DPD method [23], namely mDPD. In mDPD, the FC
ij is augmented from the standard

DPD method by density-dependent contributions, and the resulting model includes the van der

Waals loop in the EOS, as shown in Figure 3b. In the mDPD model, the conservative force FC
ij is

expressed as

FC
ij = Aijw

C(rij)r̂ij +Bij(ρ̄i + ρ̄j)wd(rij)r̂ij (1)

which consists of a long-range attractive part that is density-independent, and a short-range repul-

sive part that depends on a weighted average of the local particle density. The attractive component

Aijw
C(rij)r̂ij can be obtained by simply turning the sign of the original force parameter aij (i.e.,

Aij < 0, with a cutoff range rc = 1). The term Bij(ρ̄i + ρ̄j)wd(rij)r̂ij is a many-body repulsive

component with Bij > 0, and shorter cutoff wd(rij) = 1− r/rd, where rd < rC . The averaged local

density, ρ̄i at the position of particle i can be computed as ρ̄i =
∑

j 6=iwρ(rij), where the normalized

weight function wρ needs to satisfy
∫∞
0 4πr2wρ(r) dr = 1. For a three-dimensional computational

domain, the wρ is defined as wd(r) = 15
2πr3d

(1− r/rd)2.
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Figure 3: Validation of the EOS: (a) p = ρkBT + 0.1aijr
4
Cρ

2 for the original DPD model with kBT = 1, γ = 4.5,
rC = 1, and aij = 25; (b) p = ρkBT + αAijρ

2 + 2ρBijr
4
d(ρ3 − cρ2 + d) for the mDPD model with kBT = 1, γ = 4.5,

rC = 1, rd = 0.75, Aij = −40, Bij = 25, α = 0.101, c = 4.16, and d = 18. Pressure for each particle’s number
density ρ is obtained by averaging over 1000 time steps after equilibrium, in a 10 × 10 × 10 periodic box.

2.2. Solid wall conditions for arbitrary pore geometries

Because of the soft particle-to-particle interaction in DPD models, fluid particles may penetrate

through solid matrix given a fluid-solid interface. Such penetration is not physically possible and

must be avoided. Early development of solid wall boundary models were focused on imposing
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rigorous macroscopic boundary conditions, e.g., a non-slip boundary condition at sharply defined

impenetrable solid surfaces. The idea was from a strict mesoscopic interpretation of DPD models,

where a single DPD fluid particle represents a cluster of fluid molecules on scales well above the

atomistic levels [50]. To model a non-slip boundary, additional forces must be exerted on fluid

particles at the vicinity of solid-fluid interfaces with model parameters carefully calibrated to avoid

spurious behaviors such as artificial slip [51], temperature oscillation [52] and particle layering [53].

To relax the strict non-slip requirement, Henrich et al. [54] proposed a boundary model, which

imposes a weak external repelling force on fluid particles whenever they penetrate in solid matrix

over a thin layer. However, most earlier boundary models are only suitable for solid surfaces that

are either mostly flat, spherically curved, or at best analytically describable. A boundary model

that can treat arbitrary pore geometries is required.

In this work, we adopt a new boundary model recently developed for DPD simulations involving

arbitrarily complex geometries [49]. For simulating pore flow in source rocks, this model enables

construction of DPD systems of realistic nano- to micro-pore channels directly from loading the

3D stack images, so that the many intermediate steps from scanning electron microscopy (SEM)

or transmission electron microscopy (TEM) images to the corresponding numerical models, i.e.,

surface mesh reconstruction, mesh smoothing and remeshing can be avoided. Instead of pre-defin-

ing the position of the wall boundary, the fluid particles can detect the wall surface and compute

wall penetration on-the-fly. This is realized by gathering information on fluid particles’ neighbors.

The geometry of solid boundary can then be computed on-the-fly using local particle configura-

tions. By removing the necessity to pre-define the boundary geometry, arbitrary-shape domains can

be constructed directly from experimental images. In particular, this boundary model computes a

boundary volume fraction of fluid particles and allows the fluid particles to detect solid boundaries

on-the-fly based on local particle configurations. As a result, with a negligible extra computational

cost, the moving fluid particles become autonomous to find the pore surfaces and infer the wall

penetration. A predictor-corrector algorithm is then applied to perfectly prevent the fluid particles

from penetrating the pore surfaces. In addition, it is important to point out that by calculating

and controlling the effective dissipative interactions between fluid and solid particles, the no-slip
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or partially-slip boundary condition are imposed on rough/curved pore surfaces with negligible

density and temperature fluctuations in the vicinity of the solid boundary. For more details, we

refer the interested readers to [49].

2.3. Particle packing for pore surface geometries

To construct bounding walls in DPD based fluid flow simulations, most researchers (e.g. Chen

et al. [25], Li et al. [49], Meakin et al. [55]) have followed a particle packing approach proposed in

Liu et al. [13]. Using this packing approach, the whole simulation system will be first filled with

DPD particles at a particle number density (e.g. ρN = 8) for solid matrix and then equilibrated.

Next, particles located in defined flow regions will be deleted. To reduce cost, particles located in

solid matrix but away from fluid-solid interfaces by over a specified distance will also be deleted, as

those particles will have no interaction with fluid particles. The remaining particles are the so-called

surface wall particles, whose coordinates will be saved and used as input data in wall-bounded flow

simulations. This approach, though easy to use for relatively small systems, is however challenging

for production-scale systems because of a temporary spike of computational and memory cost in

the step of initial whole-system packing. The highest memory temporarily needed could be over

100 times higher than it may be eventually required, making it hardly affordable for most end

users. For example, a shale micro core sample with a meaningful domain size might need billions

of or even over a trillion particles to fill the system temporarily, but at last require no more than

1% of them as surface wall particles because of the sample’s low porosity.

For huge porous systems, to avoid the temporary but prohibitive computing and memory cost

incurred during the solid particle packing process, we introduce a new approach as an improved

version of our early approach [29]. Following our early version, a simulation system is determined

based on voxel data of a shale micro core sample, in which each voxel records a numeric value for

its local composition (e.g. pore, organic matter, or inorganic matter). An algorithm was developed

to sweep through all the voxels to identify the so-called surface wall voxels, with the surface wall

thickness equal to at least rc. In a second sweep, solid particles with a specified number density are

created with a lattice-like distribution at locations corresponding to the surface wall voxels, and

saved to data files for further use. Notice that the lattice-like packing of surface wall particles might
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cause undesired oscillations in fluid temperature in the vicinity of solid-fluid interfaces. Despite

the known artifact, this approach had been probably the only affordable way for huge porous

systems with arbitrary geometric complexity. To partially remedy the artifact, the present work

proposes an improved particle insertion method. For each surface wall voxel, instead of employing

the lattice-like packing, we use a locally equilibrated particle distribution that is randomly chosen

from a database. The database is prepared in advance and is large enough for assembled pores

to resemble sufficient randomness in pore surface roughness. Figure 4 is shown to illustrate this

new packing method. Also notice that the idea of local equilibrium of the particles in each surface

wall voxel makes the quality of packing closer to the one by Liu et al. [13], but meantime would

potentially give rise to non-equilibrium in particles across two neighbor surface wall voxels. Further

improvement of affordable particle packing for pore surface walls in huge porous systems is an open

area in DPD research.

⋯

a) Original voxel data: grey – solid 
matrix; white – pore.

b) Identify surface wall voxels 
(highlighted in red).

c) Solid particles to be filled in
surface wall voxels and save to file.

Before: lattice-like packing for all voxels

Now: locally-equilibrated packing in each voxel

⋯ ⋯

⋯

Figure 4: Illustrations of a new additive particle packing process for constructing pore surface walls of porous systems
based on 3D voxel data. To make it easy to understand, we use 2D pixels instead of 3D voxels in the display.

3. GPU implementation

The present USER MESO 2.5 package builds on USER MESO 2.0 [48], which is a successor to the

original fully GPU-accelerated USER MESO package for DPD. USER MESO 2.0 expanded the capabilities

of the package to simulate different flavors of DPD, as well as cellular dynamics. Although the new

capabilities added in USER MESO 2.5 only require the original USER MESO [47] as base, we feel it more

natural to name our software package USER MESO 2.5 as a progression from USER MESO 2.0 .
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3.1. Core features

The original USER MESO [47] is a GPU-accelerated extension package to LAMMPS for DPD simu-

lations. In the USER MESO framework, all computations and host-device communications are handled

by the extension package while I/O related tasks such as inter-rank communications are attended

by LAMMPS. By offloading computations to GPUs, USER MESO is able to achieves more than 20

times speedup for simple particle simulations [47]. The speedup over the CPU counterpart is

made possible by technical innovations on, but not limited to, neighbor list constructions and

particle reordering, which are intended to boost data locality and increases the chance of cache

hit. Furthermore, data-layout is optimized for coalesced memory access. In LAMMPS, data are

stored in an array-of-structure layout on host memory. To avoid strided access on device memory,

data are stored in a structure-of-array layout. The conversion between the array-of-structure and

structure-of-array layouts is carried out whenever data are transferred.

The notable innovative features of the original USER MESO from which USER MESO 2.5 has inherited

include: 1) an atomics-free warp-synchronous neighbor list construction algorithm, 2) a two-level

particle reordering scheme, which aligns with the cell list lattice boundaries for generating strictly

monotonic neighbor list, 3) customized non-branching transcendental functions (sin, cos, pow,

log, exp, etc.), 4) overlapping calculation (e.g. force evaluation) with communication (e.g. particle

exchange) to reduce latency, and 5) radix sort with GPU stream support.

3.2. New capabilities

To simulate complex single- and multi-phase fluid flow phenomena in realistic nano- to micro-

porous geometries, a number of new features have been implemented in USER MESO 2.5 . For clarity,

an outline that depicts the calculation of the key physical variables has been presented in Algorithm

1 in reference to the Velocity-Verlet algorithm.

First, an important feature that has been implemented in USER MESO 2.5 is the impenetrable

wall boundary described in subsection 2.2 as a general solution to handle complex geometries in

DPD simulations to treat pore surface walls of arbitrary geometric configuration. Because this wall

boundary can be generally applied to any DPD method, we have implemented it as a standalone

procedure that is independent of the DPD method to be used. The main idea is to calculate the
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Algorithm 1 An outline that depicts the calculation of many-body density ρ and wall-particles
density φ in reference to the Velocity-Verlet algorithm.

• Calculate x(t+ δt).
Calculate φ for all fluid-particles.

• Inter-rank communication/particle migration.
Calculate ρ for all local particles.
Synchronize ρ for ghost particles.

• Compute pair forces f(t+ δt).
• Calculate v(t+ δt).

density of solid wall particles, φ, within a fluid-particle’s support, and then to add a correction force

to the fluid particles to counteract the artificial walls. Since φ is computed before the inter-rank

communication, no synchronization is necessary as shown in Algorithm 1.

The major contribution by USER MESO 2.5 is the capability to run many-body DPD simulations.

To recall the formulation in Equation 1, the many-body density ρ that appears in the conservative

force term is needed to calculate the repulsive part of the conservative force. On each rank, a loop

over the particles in the corresponding partition is conducted to calculate the ρ of each particle

prior to the loop over the particles that calculates the inter-particle force. Then an inter-rank com-

munication takes place to synchronize ρ for the partition-ghost particles, as depicted in Algorithm

1. This communication is necessary and cannot be avoided by enlarging the neighbor-search radius

of the particles. For example, a particle j in the neighborhood of particle i may be a partition-ghost

particle; the calculation of ρj depends on its neighbor particles within repulsive force cut-off range

rd of particle j, which though in general can extend beyond the partition-ghost regions.

4. Code verification

In this section, we present two test problems to verify the implementation of the mDPD method

and solid wall boundary condition in USER MESO 2.5 . The numerical results calculated by USER MESO

2.5 were verified with our CPU code, which is implemented based on the standard LAMMPS.

Each problem underwent a comparative verification on two platforms: a workstation that has an

Intel i7-8700K CPU and two NVIDIA TTIAN Xp GPUs, and a DGX-1 server that is equipped

with two Intel Xeon E5-2698 v4 CPUs and eight NVIDIA Tesla V100 GPUs.
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4.1. Liquid-vacuum interface

In this problem, a simulation of water liquid-vacuum interface is presented with the objective

to assess whether USER MESO 2.5 accurately calculates properties of a specific type of fluid. The

water density and surface tension calculated by USER MESO 2.5 will be checked against its CPU

counterpart. We followed the problem setup similar to Ghoufi and Malfreyt [26], but used a large

cubic simulation domain bounded by [−50rc, 50rc] in each direction with a periodic boundary

condition. The simulation was initialized with a face-centered cubic (fcc) based particle allocation

in the region of x ∈ [−10rc, 10rc] and with a lattice spacing of rc in each direction, which resulted

in a total of 820, 000 particles in the system. The mDPD force interaction parameters Aij = −50,

Bij = 25, rd = 0.75rc and γ = 12.4 were used in order to match the water properties reported in

Ghoufi et al. [56]. With those parameters, one DPD particle represents approximately a cluster

of three water molecules (i.e., Nm = 3), and the size of one DPD particle corresponds to about

90 Å3. Details of conversion from the reduced units to their corresponding physical values can be

found in Ghoufi and Malfreyt [26].
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Figure 5: A mDPD simulation of water liquid-vacuum interface: a snapshot of instantaneous particle distribution at
equilibrium (left), and time-averaged density profile along the x direction (right).

In the simulation, a total of 5, 000 timesteps were first carried out to equilibrate the system.

An instantaneous snapshot of of the equilibrated system is displayed on the left side of Figure 5,

depicting a thin liquid slab formed by the particles. Another 5, 000 timesteps were then run to

calculate the time-averaged properties. With a 1D bin size of 2rc along the x axis, a density profile

calculated by USER MESO 2.5 is compared with the one obtained by our CPU code on the right side

of Figure 5. The density near x = 0 (center of the slab) is 6.88 for both USER MESO 2.5 and our CPU
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code, matching the value reported in Ghoufi and Malfreyt [26]. Moreover, thanks to the simple

shape of the liquid slab, the interfacial tension γWV between the water liquid and vacuum can be

calculated by subtracting the mean tangential stresses σyy and σzz from the normal stress σxx:

γWV = Lx〈σxx − 1/2(σyy + σzz)〉. The calculated γWV is 12.4 for both USER MESO 2.5 and its CPU

counterpart, again matching the value reported in Ghoufi and Malfreyt [26]. In addition, the values

for water density and water-vacuum interfacial tension can be converted into the physical units with

the equations: rc = r∗c(ρ∗NmV )1/3 [Å], ρ = ρ∗(NmM)/(Nar
3
c) [kg · m−3], and γ = γ∗(kBT )/(r2c)

[N ·m−1], where the superscript * denote values in the reduced unit, V is the volume of one water

molecule (30 Å), M is the molar weight of a water molecule (18 g · mol−1), Na is Avogadro’s

number, and kB is Boltzmann’s constant, and T is equal to 298 K. Expressed in the converted

physical units, the water density and liquid-vacuum interfacial tension are ρ = 994 kg ·m−3 and

γ = 70.6×10−6 N·m−1, respectively, which agree well with the MD results [26]. Our result indicates

that the implementation of the mDPD method in USER MESO 2.5 achieves consistency with its CPU

counterpart, and delivers accurate predictions of thermodynamic properties for fluids of interest.

4.2. Static contact angle in a slit nano channel

The second test problem is the simulation of static contact angles formed between a single

fluid and its bounding solid walls in a slit nano channel, which demonstrates the flexibility of the

mDPD model to characterize the wetting properties of fluids in the nano-scale pores. In the mDPD

model, the particle interaction force between two types of materials such as solid and liquid can be

modified by adjusting the attractive force parameter ASL, the repulsive force parameter BSL, and

the repulsive force cutoff range rd in Equation 1, where the subscript “S” and “L” denote solid and

liquid, respectively. In a controlled study of the dependence of liquid wetting behavior on certain

mDPD parameters such as ASL, we selected three typical values for ASL listed in Table 1, while

imposing constant values for the rest of the parameters, i.e. BSL = 25 and rc = 1 with a fixed

relation between rd and rc as rd = 0.75rc for all particle interactions.

The simulation domain in this problem is bounded by x ∈ [−30rc, 30rc], y ∈ [−5rc, 5rc] and

z ∈ [−2.5rc, 2.5rc]. A periodic boundary condition is prescribed in the x and z directions. The

simulation consists of two steps. First, 3, 500 solid particles were initially placed in the two re-
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Table 1: Simulations of a single fluid in slid nano pore: specification of the attractive interaction parameters, Aatt.

Aatt Solid Lquid

Solid -40 -40
Liquid -40 -35; -30; -20

gions bounded by y ∈ [−5rc,−4rc] and [4rc, 5rc], respectively, with a random spatial distribution.

These two regions were treated as two subsystems to allow the solid particles to undergo sufficient

timesteps with the mDPD method to reach equilibrium. The locations of the solid particles were

then fixed to represent the bounding walls of the slit pore for the rest of the simulations. The

width of the slit pore (along the y direction) is 8rc, corresponding to 8.616 nm in the physical unit.

Secondly, 4, 000 liquid particles were placed randomly in a region bounded by x ∈ [−13rc, 13rc]

and z ∈ [−4rc, 4rc]. The whole system was run for 4, 000 time steps to reach equilibrium using the

mDPD model along with the solid wall condition. Finally, 10, 000 timesteps were run to obtain

the time-averaged properties of interest. This simulation was performed three times with the three

ASL values, respectively.

Figure 6: Instantaneous particle distribution of a single liquid bounded by solid matter in a nanometer-scale slit
pore, simulated by mDPD with different attractive force parameter ASL

The instantaneous snapshots of the particle distributions corresponding to the ASL values are
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displayed one the left side of Figure 6, demonstrating the transition of the fluid wettability in the

slit pore from wetting to non-wetting. Note that in the latter case, the fluid had shifted slightly

away from its initial location due to the coupled effect of non-smooth wall surface and strong non-

wettability of the fluid. To validate the consistency of USER MESO 2.5 against its CPU counterpart,

we plotted the profiles of the time-averaged fluid particle numbers versus the normalized pore

width, and presented the GPU and CPU results on the right side of Figure 6. Eight bins were

specified along the y direction, resulting in the eight data points in each profile. The GPU profiles

agrees with their CPU references, indicating the numerical consistency. Furthermore, by dismissing

the two near-wall points in those profiles, the curvatures for the profiles can be calculated and used

to quantify the contact angles. For each profile, we have computed its curvature as an average of

four curvatures approximated with the four series of three consecutive points, e.g. from the second

to the fourth point, and from the third to the fifth point. For example, a higher ASL such as −35 led

to a partially wetting fluid with a contact angle smaller than 90◦, whereas a lower ASL such as −20

led in a partially non-wetting fluid with a contact angle larger than 90◦. In the case of ASL = −30,

the profile is almost a straight line, depicting the critical state of contact angle around 90◦. It

is worth noting that a different choice in other parameters can result in a different dependency

pattern of contact angle on ASL; for example, see a similar simulation in Pan [24].

5. Benchmark tests

In order to present a comprehensive performance benchmark, we tested USER MESO 2.5 with

simulations of fluid flows in both simple homogeneous and complex heterogeneous pore networks.

HPC resources at Oak Ridge National Laboratory (ORNL), IBM and Idaho National Laboratory

(INL) were used to perform the tests. We used the NVIDIA NVCC compiler with -O3 optimization

to compile the code. The CPU counterpart, which has also been implemented based on the standard

LAMMPS in this work, is compiled with the GCC compiler with -O3 optimization as well. We first

benchmarked our package on a manufactured, homogeneous pore network, which serves to verify

the code integrity and identify any intrinsic bottlenecks. We then quantified the performance of

the code with a miniature version of a realistic pore-network. For both cases, the walltimes are
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compared with their respective CPU counterparts.

5.1. Fluid flow in homogeneous nanoporous media

5.1.1. Problem description

To showcase the scaling performance of USER MESO 2.5 , body-force driven fluid flow was sim-

ulated in manufactured, homogeneous porous domains. Displayed in Figure 7, fluid flow in such

a kind of domain is essentially two-dimensional, as the size of the domain in the y direction (Ly)

is sufficiently small in comparison with the other two (Lx and Lz). This domain is created based

on a cell with Lx = Lz = 16 and Ly = 2, as shown on the right side of Figure 7. We followed the

procedure described in Liu et al. [13] to create such a cell, in which a ring-shape surface wall is

constructed by 666 equilibrated solid particles (red) with an outer radius of 7 (≈ 6.0 nm) and an

inner radius of 6 (≈ 5.1 nm). Outside the ring, the space is filled with 1, 296 equilibrated fluid par-

ticles (blue). The cell is duplicated in the x and z directions (e.g. 232, 332 ... 652 cells) to assemble

a series of quasi-2D square domains, in which the even-numbered rows of cells are translated over

a horizontal distance of Lx/2 to finally form the domain for the flow simulations. For example, a

domain consisting of 92 cells is shown on the left side of Figure 7. These domains have a porosity of

0.4, with the narrowest pore width to be 2 (≈ 1.7 nm). The uniform pore distribution in this test

minimizes load imbalance across the compute nodes. We thus consider it an appropriate problem

to investigate the scalability of our code.

Figure 7: Simulations of fluid flow in manufactured, homogeneous nanoporous media: example of a porous domain
consisting of 92 square cells.

The mDPD force interaction parameters used in our previous work [29] is adopted in this study.

The attractive interaction parameters are listed in Table 2, while the rest of the parameters used are

Brep = 25, and rd = 0.75rc for all the particle-particle interactions. The particle number densities
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are 8 and 6.2 for the solid and fluid particles, respectively, ensuring that the pores are saturated

at an adequate fluid pressure. An acceleration of gz = 0.02 along the z direction is applied on

the fluid particles to drive the flow. A periodic boundary condition is prescribed at all the three

directions. A non-penetration boundary condition is prescribed at the solid particle wall surfaces.

A timestep size of dt = 0.01 is used. In each timing test, 10, 000 timesteps are run first to allow

the domain to reach equilibrium under the influence of the fluid body force. The walltime is then

measured for every 500 timesteps, until four walltimes are obtained to calculate an average value.

Table 2: Simulations of fluid flow in manufactured, homogeneous nanoporous media: specification of the mDPD
particle-particle attractive interaction parameters, Aatt.

Aatt Solid Fluid

Solid — -40
Fluid -40 -40

5.1.2. Benchmark results

The scalability of our code is characterized with the strong- and weak-scaling performed on

Titan at ORNL, Each Titan node is equipped with an AMD Opteron 6274 CPU, and a NVIDIA

Tesla K20X GPU (Kepler architecture) with 2688 CUDA cores and 6 GB memory.

For the strong-scaling, the test was carried out in a simulation system consisting of 332 cells

and a total of about 2.1 million particles (1.4 million fluid particles and 0.7 million solid particles).

The system size was chosen to allow the memory of a single K20X GPU to accommodate the

simulation. For the weak-scaling, the simulation system size was fixed at approximately 1 million

particles per node. The walltimes were obtained on systems consisting of 232, 332, 452, 652, 912,

1292, 1832, 2592, 3672 and 5192 cells, respectively. To allow comparison across multiple platforms,

the performance of our code was quantified with the metric “million-particle-steps per second”,

or MPS/second for short [47]. As shown in Figure 8, our flow simulator scored a nearly perfect

weak-scaling. On the other hand, the strong-scaling plot levelled off around 512 nodes, when each

node was loaded with approximately 4100 particles.

Besides the Tesla K20X, we benchmarked our code on a few more modern GPUs with advanced

high-speed Host-to-Device interconnects to characterize the performance improvement brought by

the latest hardware architectures. For clarity, the machines that have been tested are labelled and
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Figure 8: Simulations of fluid flow in manufactured, homogeneous nanoporous media: the strong- and weak-scaling
test results on the Titan supercomputer at Oak Ridge National Laboratory.

listed in Table 3 with the detailed hardware specifications. Of particular note is the IBM AC922

node that is equipped with 42 IBM Power9 cores and 6 NVIDIA V100 GPUs with the NVLink2

interconnect: the same architecture configuration as ORNL’s Summit supercomputer. To factor

out Host-to-Host and/or node-to-node communication quality on different machines, we limited

the comparative benchmark simulation running on one CPU core and one GPU on each machine.

The walltime obtained on the Tesla K20X was used to serve as the baseline, while the performance

of other machines was measured in terms of the relative speedup, as shown in Figure 9.

Table 3: List of the hardware specifications for the labelled machines used in the benchmark test.

Label (machine) CPU NVIDIA GPU Host-to-Device interconnect

Tesla K20X (ORNL Titan node) AMD Opteron 6274 Tesla K20X PCIe
TITAN Xp (desktop workstation) Intel i7-8700K TTIAN Xp PCIe
V100 (NVIDIA DGX-1 at INL) Intel Xeon E5-2698 v4 Tesla V100 PCIe
P100 + NVLink1 (ORNL SummitDev node) IBM Power8 Tesla P100 NVLink1
V100 + NVLink2 (IBM AC922 node) IBM Power9 Tesla V100 NVLink2
2 × Intel Xeon E5-2695 (INL HPC node) Intel Xeon E5-2695 N/A N/A

For the first, our test result has shown that the TITAN Xp (Pascal architecture, 3, 840 CUDA

cores, 12 GB memory), a top-tier consumer’s model, produced nearly twice the performance of

the Tesla K20X. Furthermore, our test result has shown that the Tesla V100 (Volta architecture,

5, 120 CUDA cores, 32 GB memory) on DGX-1 can output 2.5× the computing power of the Tesla

K20X. On the other hand, despite the availability of software features that unify the appearance of

the host and device memory from a programmability perspective, our code explicitly manages the
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Figure 9: Simulations of fluid flow in manufactured, homogeneous nanoporous media: comparison of single-GPU
performance on a number of latest GPUs.

allocation of host and device memory, as well as the transfer of data in between, as an attempt to

optimally choreograph computation and data movement. Thus, the overall performance depends

heavily on the data transfer speed between the hosts and devices. In this regard, a remarkable

finding is that the high-speed interconnects such as NVLink can dramatically shorten the walltime

in our simulations. Together with the NVLink2 (the second-generation NVLink) on an IBM AC922

node, the V100 delivered an astonishing 5.1× speedup over an ORNL Titan node. In other words,

the NVLink2 is able to help double the performance of the V100 in our benchmark simulations.

Lastly, to compare with the performance of a CPU-only implementation of our simulator, we

benchmarked the CPU counterpart on an INL HPC node fully utilizing its 36 cores (2 Intel Xeon

E5-2695 v4 CPUs, 18 cores per CPU), and have found that it is equivalent to the TITAN Xp GPU

in performance.
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Figure 10: Simulations of fluid flow in manufactured, homogeneous nanoporous media: breakdown of walltime of a
single-GPU simulation on GPU related tasks.
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With an interest to elaborate on the ramifications of the NVLink interconnect, we present a

breakdown of the walltime on the GPU-related tasks in Figure 10, e.g., Host-to-Device transfer,

Device-to-Host transfer and kernel computation. For the Telsa V100 with the PCIe interconnect

(DGX-1 node), the transfers together took up 53% of the GPU related tasks (i.e., 30% by Host-

to-Device data transfer and 23% by Device-to-Host data transfer). In comparison, when NVLink2

interconnected the host and the device, the transfers took up only 21% while the walltime of kernel

computations remains almost the same. In other words, NVLink2 has helped reduce the walltime of

the GPU related tasks by about 40% for our benchmark simulation. The same test was performed

on SummitDev at ORNL (a tester cluster mimicking Summit), which has the Tesla P100 (Pascal

architecture, 3, 584 CUDA cores, 16 GB memory) with NVLink1 (the first-generation NVLink).

Our result indicates that NVLink independently reduces considerable walltime that is sufficient to

compensate for P100 when compared with its successor V100 without NVLink.

Above all, this benchmark problem has successfully demonstrated the excellent scalability of

our code. Furthermore, the use of NVLink can drastically improve the efficiency of our code and

provides performance boost to data-transfer intensive applications like our particle simulator.

5.2. Fluid flow in heterogeneous nanoporous media

The objective of this problem is to assess and demonstrate the scaling performance of USER MESO

2.5 for simulations of fluid flow in realistic heterogeneous nanopores, i.e., the shale kerogen-hosted

pores. In this study, the construction of kerogen-hosted pores for pore-flow simulations was based

on the nano-resolution stack images of a Vaca Muerta shale micro core sample, which refers to the

geologic formation located at Neuquén Basin in Argentina [57]. The procedures for digital imaging

of shale core samples and image post-processing for our pore-flow simulations are briefly described

in Appendix A for interested readers. Most hydrocarbons in shale are believed to be in kerogen-

hosted pores before geotechnically processed. Massive hydrocarbon flow will not occur in kerogen

with their natural low permeability [58]. Permeability enhancement like hydraulic fracturing creates

micro-cracks in shale and create linked paths for flow through connected pores spanning multiple

scales (e.g. from nano- to micro-scale). Such structural evolution of organic-matter-hosted pores as

well as the flow within is challenging to reproduce and measure in laboratory because of the required
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physical conditions [59]. Our benchmark test is thus focused on flow simulations in kerogen-hosted

pores, in order to present an efficient pore-network flow simulation package for relevant research.

5.2.1. Problem description

For our benchmarking purpose, pore flow simulations in the entire core sample is not necessary.

Instead, we focus on a large pore (labeled #1) in Figure A.18 and introduce an example of how to

set up a simulation domain for pore flow driven by bulk pressure gradient, as shown in Figure 11.

In the first step, the #1 pore is cropped to create a cubic block (957.5× 952.5× 945.0 nm3), with

two slabs perpendicular to a specified direction (e.g. x) added to the two ends of the block to allow

fluid particles to move only inside the pore, as shown in Figure 11 (middle). For flow simulation in

this block, it is estimated to require over 200 million particles and 400 million timesteps. To allow

the required memory to fit in a single V100 GPU for strong-scaling test, we cropped the block to

a miniature version (367.5× 382.5× 355.0 nm3), as shown in Figure 11 (right).

Figure 11: Schematic for creation of block domains for flow simulations in organic-rich regions in a shale core sample.

The setup for our miniature version test is illustrated in Figure 12, which is general enough for

applying to a system of any size. The simulation box extents from -30 to 140 in x, 0 to 91 in y,

and 0 to 88 in z, respectively. A reflection wall condition is prescribed at all the box boundaries to

prevent fluid particles from accidentally fleeing, which though did not occur in our simulations. The

simulation depicts a pressure gradient driven flooding through a porous block located at x ∈ [0, 89].

Five material types numbered from 1 to 5 are labeled for the particles. A total of 3,325,409 particles

are created in the box, including 1,859,025 particles as type-1 fluid (source), 1,641,640 particles as
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type-2 fluid (working), 568,488 particles as type-3 solid (pore surface wall), and 128,128 particles

for type-4 solid (front-pushing slab) and type-5 solid (back-pressure slab), respectively. Type-1

and 2 particles are assigned with the same mDPD model parameters as we consider single-phase

flow in this study. Likewise, type-3, 4 and 5 particles represent solids of the same kind. The use of

unique material types allows flexible change of model parameters.

Figure 12: Schematic for simulations of pressure gradient driven flooding in a block porous domain.

5.2.2. Benchmark results

The initial condition for the flooding simulation takes a few separate simulations to prepare.

For the first, type-1 fluid particles are created to saturate the porous block (type-3). Extra type-1

fluid particles outside the block are pushed against the block by a slab (type-5) in order to sustain

the hydraulic pressure in the pore. This setup mimicks hydrocarbons trapped in organic-matter-

hosted pores. For the second, type-2 fluid particles are pushed against the block on the other side

by a slab (type-4) with a higher external pressure. A virtual wall is placed at the boundary of the

block (x = 89) to prevent type-2 fluid particles from entering the pore. At the beginning of the

flooding simulation, the virtual wall is removed, and due to the bulk pressure difference between

the two ends of the block, the type-2 fluid particles will be pushed into the pore gradually, while the

type-1 fluid particles in the pore will be extracted. The mDPD model parameters and timestep size

used in subsection 5.1 are adopted here. A series of snapshots for the simulated flooding process

are shown in Figure 13, depicting the forced ejection of source fluid out of the pore.

To investigate the scalability of USER MESO 2.5 on the flooding simulations in the realistic shale
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(a) (b) (c)

Figure 13: Miniature flooding test: a series of instantaneous snapshots for single-phase flooding in an organic-matter-
hosted pore. The pore surface wall particles are not displayed, to allow fluid particles in the pore to be seen.

pore geometries, we carried out a set of strong-scaling tests using the Power9/V100 nodes on the

IBM AC922 cluster. We chose the first 10,000 timesteps of the simulation for timing, during

which the working fluid rushes into the pore. Shown in Figure 14, the benchmark results indicate

that the almost linear strong scaling obtained in subsection 5.1 is no longer held true with the

realistic nanopore geometries. This is because the fluid and solid particles are unevenly distributed

in the simulation domain, unlike the uniform pore network described in subsection 5.1. When

a simulation box is decomposed evenly based on the spatial dimensions, each subdomain has a

distinctive particle composition tabulated in Table 4. As a result of the non-uniform particle

distributions, the conventional spatial decomposition scheme does not offer a good strong scaling.

Implementing a load balancing scheme such as the recursive coordinate bi-sectioning (RCB), the

performance of the CPU code improved considerably, especially when fewer cores were used. For

example, in our CPU timing with 168 cores, the RCB cut the walltime almost in half. However,

as more cores were engaged, the benefits of RCB subsided rapidly. This was observed in the

CPU timing with 840 cores, where the RCB failed to help reduce the walltime by a definitive

amount. As for USER MESO 2.5 , the conventional spatial decomposition is enforced in the current

implementation. Furthermore, as a GPU can hold a much larger subdomain than a CPU core, the

effect of load imbalance is much less pronounced. Hence despite the lack of load balancing schemes,

USER MESO 2.5 with 4 V100 GPUs performed just as well as 840 Power9 cores as seen in Figure 14,

well demonstrating the superiority of GPU implementation for realistic complex geometries.

To further illuminate the scalability challenge for the particle flow simulations in heterogeneous

nanoporous geometries, we present a breakdown of the GPU workloads with four V100 GPUs and
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Table 4: Initial particle composition of each of the four subdomains. One subdomain is run on one GPU. The GPU
with the heaviest workload is responsible for 38.7% more particles than the one with the lightest workload.

Subdomain Fluids Wall Slabs Total

0 675,028 164,223 64,068 903,319
1 830,701 182,201 64,060 1,076,962
2 930,803 97,688 64,064 1,092,555
3 1,064,133 124,376 64,064 1,252,573

168 336 504 672 840 168 336 504 672 840 1 2 4
         CPU cores                    CPU cores                  GPUs     
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Figure 14: A comparison of the walltime measured between USER MESO 2.5 and its CPU counterpart for the miniature
flooding simulations on the IBM AC922 cluster featuring Power9 CPUs and V100 GPUs with NVLink2.

track the number of particles in each subdomain over the timesteps, as shown in Figure 15. Recall

that the simulation box is evenly divided into four subdomains with one per GPU. We also plotted

the load imbalance factor, which is defined as the ratio of the largest GPU workload to the smallest

among the subdomains. The workload imbalance is the largest at the beginning of the simulatiton,

when subdomain 3 contained approximately 25% more particles than subdomain 0, corresponding

to a load imbalance factor of 1.4. As the working fluid rushed into the pore, the workloads became

more even over time, and the factor descended to 1.28 at most. Further investigation on the load

balancing is not in the scope of this study. We intend to propose a general solution to control load

imbalance on GPUs in a follow-up work.

6. Capability demonstration

Though it’s a common understanding that the Darcy’s law is no longer suitable for describing

the flow and transport phenomena in nanoporous source shale rocks, so far no mature analytic

formulation has been deduced experimentally to elaborate the source recovery processes in shale.

26



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time-step 1e5

0.9

1.0

1.1

1.2

1.3

N
u
m
b
e
r
o
f
p
a
rt
ic
le
s

1e6

Subdomain 0

Subdomain 1

Subdomain 2

Subdomain 3

Load imbalance factor

Benchmark window

1.0

1.1

1.2

1.3

1.4

1.5

L
o
a
d
im

b
a
la
n
c
e
fa
c
to
r

Figure 15: Breakdown of the GPU workloads over the timesteps. Note that in the benchmark test between GPUs and
CPUs, the walltimes were measured when the workload imbalance is the largest, indicated by the pink background.

Certain properties such as the permeability-fluid dependence (i.e. the correlation between the mass

flow rate and bulk pressure gradient) are difficult to measure experimentally in the micro core sam-

ples. The USER MESO 2.5 package presented in this work provides an alternative to characterize the

fluid-permeability dependency with mesoscopic flow simulations in digitized nanometer-resolution

realistic shale pore geometries. To demonstrate the versatility of our package, the micro block

(957.5× 952.5× 945.0 nm3) shown in the middle of Figure 11 was used in the flooding simulations,

with a brief depiction of the problem setup and a snapshot of the moving fluid particles on the left

side of Figure 16. Again, for simplicity, we assumed single-phase flow by specifying the same model

parameters for the working fluid (blue) and source fluid (red). The simulation box contained about

240 million particles. Four simulations corresponding to four successively increased bulk pressure

gradients were performed. In each simulation, 3000 DPD time units were run to allow the mass flow

rate to reach a stable status. A total of 2048 nodes on Titan at Oak Ridge National Laboratory

were deployed for each simulation. The same simulation would take at least 15 times as long on

the CPUs, deduced from our benchmark results.

Shown on the right side of Figure 16, the dependency of the flow rate on the bulk pressure

gradient deviated from the Darcy’s law, indicating a non-constant permeability in shale, in part

because of their heterogeneous porosity distributions and the sub-continuum solid-fluid interactions

in the nanopores. The simulation results coincide with the general observation from shale reservoir

operations that the increased injection rate does not necessarily help increase the source recovery
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rate. However, as a case of capability demonstration, such limited simulations cannot provide all

but a rough depiction of the complicated source recovery processes. An inclusive understanding

can only be established with flow simulations based on a sufficiently large ensemble of shale core

samples and a careful calibration of model parameters for specific types of fluids and solids.

Block size: 957.5 × 952.5 × 945.0 nm3 Snapshot of flooding in nanopores
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Figure 16: Example of flooding simulations (about 240 million DPD particles) and permeability-fluid dependence
characterization in a micro shale domain with realistic nanometer-resolution pore geometries.

7. Summary

This work has presented a GPU-accelerated mesoscopic pore flow simulation package based on

a many-body dissipative particle dynamics (mDPD) model to address the computational challenges

in the numerical investigation of hydrocarbon flow in source shales. Leveraging mDPD’s ability to

model the sub-continuum and continuum flow phenomena, the complex flow dynamics and fluid-

solid interactions in multiscale pore networks with pore sizes ranging from a few nanometers to a
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few micrometers can be resolved simultaneously. The effective use of GPUs enhances simulation

performance significantly: almost linear scaling on up to 512 nodes is achieved in both our strong

and weak scaling benchmarks, while further speedup is possible even beyond 1024 nodes. Besides,

the use of the advanced device-to-host interconnects such as NVLink2 brings remarkable additional

speedup over PCIe. Additional advances including the implementation of solid wall boundary

conditions for mDPD flow in complex pore geometries and solid wall particle packing for huge

systems have facilitated flow simulations in realistic shale nano pore networks that are constructed

from 3D nanometer-resolution stack images. Furthermore, we have calculated the speedup over

CPU counterpart through a realistic shale pore flow test: it requires 840 Power9 CPU cores to match

the performance of 4 V100 GPUs on the Summit architecture. In summary, this package enables

quick-turnaround and high-throughput mesoscopic numerical simulations for investigating complex

flow phenomena in nano- to micro porous rocks with realistic pore geometries. We made our

software freely available on GitHub, following the link https://github.com/AnselGitAccount/

USERMESO-2.0-mdpd.
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Appendix A. Digital imaging and image post-processing for shale core samples

The Vaca Muerta shale micro core sample referred to in this work underwent a FIB-SEM

process, which resulted in a stack of raw images with 2.5× 2.5 nm2 pixel resolution in each image

and 5 nm interval in scanning direction. Figure A.17 displays one of such raw images to illustrate the

complex constituents in the sample. In a simplistic manner, we categorized the shale constituents

in four phases: 1) inorganic matters, 2) inorganic-matter-hosted pores, 3) organic matters, and 4)

organic-matter-hosted pores (i.e. kerogen-hosted pores). The raw images were not readily usable

to pore-flow simulations because they could contain digital noises that should be filtered out first.
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Figure A.17: A glance at the Vaca Muerta shale constituents in a raw digital image obtained by a FIB-SEM process.
The resolution of this image is 2.5 × 2.5 nm2 per pixel.

The raw images were post-processed with the Dragonfly image processing toolkit. The processed

images were then used for the preparation of DPD-based pore flow simulations. A block region of

interest that contains an abundance of kerogen-hosted pores was found in our micro core sample

and selected for preparation of the pore-flow simulations reported in this work. This block region

has a size of width = 5,232.50 nm in width, height = 4,400 nm, and depth = 3,030 nm, and is

visualized in Figure A.18, where the pore networks are represented with pore surface wall particles

generated with the image-to-particle workflow described in subsection 2.2. In this block region, the

ten largest pores that have no connectivity with others are each rendered with a unique color, and

the rest of smaller isolated pores are colored in light yellow. The distribution of kerogen-hosted

porosities in this block region is also reported in Figure A.18, demonstrating the low-porosity

feature of kerogen in shale as well as the discreteness of the pores.
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Figure A.18: Visualization of kerogen-hosted pores in a block region, with the ten largest pores rendered in unique
colors and the top four largest pores labeled with #1, #2, #3 and #4. Other smaller and isolated pores are colored
in light yellow. Bottom: distribution of the connected porosities (%).
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