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Abstract

Mesoscopic simulations of hydrocarbon flow in source shales are challenging, in part due to the
heterogeneous shale pores with sizes ranging from a few nanometers to a few micrometers. Ad-
ditionally, the sub-continuum fluid-fluid and fluid-solid interactions in nano- to micro-scale shale
pores, which are physically and chemically sophisticated, must be captured. To address those
challenges, we present a GPU-accelerated package for simulation of flow in nano- to micro-pore
networks with a many-body dissipative particle dynamics (mDPD) mesoscale model. Based on
a fully distributed parallel paradigm, the code offloads all intensive workloads on GPUs. Other
advancements, such as smart particle packing and no-slip boundary condition in complex pore ge-
ometries, are also implemented for the construction and the simulation of the realistic shale pores
from 3D nanometer-resolution stack images. Our code is validated for accuracy and compared
against the CPU counterpart for speedup. In our benchmark tests, the code delivers nearly perfect
strong scaling and weak scaling (with up to 512 million particles) on up to 512 K20X GPUs on Oak
Ridge National Laboratory’s (ORNL) Titan supercomputer. Moreover, a single-GPU benchmark
on ORNL’s SummitDev and IBM’s AC922 suggests that the host-to-device NVLink can boost
performance over PCle by a remarkable 40%. Lastly, we demonstrate, through a flow simulation

in realistic shale pores, that the CPU counterpart requires 840 Power9 cores to rival the perfor-

!These authors contributed equally to the work.



mance delivered by our package with four V100 GPUs on ORNL’s Summit architecture. This
simulation package enables quick-turnaround and high-throughput mesoscopic numerical simula-
tions for investigating complex flow phenomena in nano- to micro-porous rocks with realistic pore

geometries.
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Program summary

Program title: ysggMESO 2.5

Licensing provisions: GNU General Public License 3

Programming language: CUDA C/C++ with MPI and OpenMP

Nature of problem: Particle-based simulation of multiphase flow and fluid-solid interaction in nano-
to micro-scale pore networks of arbitrary pore geometries.

Solution method: Fluid particles and solid wall particles are modeled with a many-body dissipative
particle dynamics (mDPD) model — a mesoscopic model for coarse-grained fluid and solid molecules.
The pore surface wall boundary for arbitrary surface geometries is modeled with a no-slip boundary
condition for fluid particles that prevents fluid particles from indefinitely penetrating in the walls.
The time evolution of the system is integrated using the Velocity-Verlet algorithm.

Restrictions: The code is compatible with NVIDIA GPUs with compute capability 3.0 and above.

Unusual features: The code is implemented on GPGPUs with significantly improved speed.

1. Introduction

Approximately 75% of the sedimentary rocks on Earth are clastic nanoporous tight rocks, which
are often referred to as shale. Shale contains most of the world’s fossil energy sources (e.g. oil and
natural gas). However, only a small fraction of the sources in shale can be recovered so far, in

part due to the gaps of our knowledge in the relevant fundamental physics that ultimately control
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the dynamics of fluids in shale, which manifests extremely low permeability in the micro- to nano-
Darcy range with average pore sizes from a few nanometers (10_9 m) to a few micrometers (10_6
m). Filling these knowledge gaps may help the development of more effective shale source recovery
strategies. Most of the theories of fluid flow in geomaterials (and the predictive models built upon
such theories) have been based on the concepts of classical continuum fluid dynamics and a rigid
porous or fractured solid porous matrix, which assume ideal non-slip boundary conditions for fluid
flow and transport [1]. Those concepts and models have proven adequate for developing the theories
of single- and multi-phase flow in permeable porous media such as aquifers, soils, and conventional
oil and gas reservoirs. Many pore-scale fluid flow models have been developed in either Eulerian or
Lagrangian frame, based on the continuum computational fluid dynamics (CFD), e.g., the models
based on lattice Boltzmann method (LBM) [2, 3], smoothed particle hydrodynamics (SPH) [4, 5],
and volume-of-fluid finite volume method (VOF-FVM) [6, 7]. However, the behavior of fluids in
nanoporous tight shale is very different, as the discreteness of molecules may impact flow and
transport processes at higher scales, and the solid organic materials may play an important role as
mechanical components, sorbents and sources of fluids. Besides, the large specific surface areas can
make surface reactions and surface transport more profound. For example, in an ideal spherical
pore of 100 nm diameter, about 6% of the fluid is within a distance of 1 nm from the solid surface,
whereas in a pore of 10 nm diameter, over 49% of the fluid is within a distance of 1 nm, where the
physical and chemical properties of the fluid can be significantly different from those of bulk fluids.
A good understanding of large-scale flow and transport behaviors in shale requires robust and
accurate multiscale computational models that can bridge the scale gaps between fluid molecular
dynamics (MD) models and nanopore-scale fluid flow models.

Dissipative particle dynamics (DPD) constitutes a relatively new class of mesoscale models
that can be used to simulate single- and multi-phase fluid flow [8-13]. The DPD concept was
originally introduced for microscopic hydrodynamics [14] with its theoretical foundation based on
statistical mechanics [15, 16]. The various DPD models and their applications are summarized
by Moeendarbary et al. [17] and Liu et al. [18], respectively. In DPD, a system can be simulated

with a set of interacting particles, where each particle represents a small cluster of molecules



instead of a single one. The particle-particle interaction force in a DPD embodiment consists of a
“conservative” (non-dissipative) component, a dissipative component that represents the effect of
viscosity, and a thermal component that represents fluctuation. The distinction between DPD and
SPH is the thermally driven fluctuations that are only detectable on microscopic scales, e.g. pores
with sizes in the nanometer ranges. Conversely, DPD fluids can recover the continuum Navier-
Stokes equations on large scales (scales much greater than the particle size) with the effect of
thermal fluctuations to be negligible. Furthermore, DPD conserves mass and momentum, and also
the energy provided with special treatment [19-22]), and allows much larger time steps than MD
simulations. These features make DPD essentially a mesoscale method between the molecular and
continuum hydrodynamic scales, and facilitates simulations of complex fluid systems with possible
physical scales spanning a wide range. Recently, a so-called “many-body” DPD model [23], namely
mDPD, has been found particularly suitable for multi-phase fluid systems, and thus has been
applied for various multi-phase fluid simulation problems, including liquid-vapor interface, surface
tension, and multi-component fluid flows in micro-scale channels [24-28]. In particular, mDPD
manifests a unique multiscale modeling capability that can model fluid-fluid/solid interfaces in

pores at both continuum- and sub-continuum-scales, as demonstrated in Figure 1.

a) Fluid-fluid and fluid-solid interfaces in a 100-nm-  b) Thermodynamic fluctuation and diffusion in a 2-nm-wide
wide pore are stable. pore are profound.

Figure 1: Comparison of pore size effect on the continuum- and nano-scale fluid-fluid/solid interfaces in a slit-shape
pore, as simulated by the mDPD model.

Recently we developed an mDPD based nano to micro-scale pore flow model and applied it
for multiphase flow simulations in source shale [29]. In that model, realistic shale pore geometries
are constructed based on 3D voxel data of shale core samples, which are generated from a focused
ion beam scanning electron microscopy (FIB-SEM) digital rock imaging process [30] with voxel
resolution at tens of nanometers or even a few nanometers. Each voxel contains local composition

information that can be used to identify phase boundaries in shale, e.g. interfaces between inorganic



and organic solid matrices, between inorganic solid matrix and pores, and between organic solid
matrix and pores. The integration of FIB-SEM to nano-pore flow simulations is a big step forward
as compared with the earlier methods that used either manufactured or analytically described
pore geometries [13]. Furthermore, it is worth noting that though FIB-SEM has been adopted
for analyzing shale samples for a while [31-34], most of the early flow simulation methods applied
to shale were continuum CFD models (e.g. a finite element model by Dewers et al. [35]), whose
theoretical legitimacy yet remain to be fully verified for heterogeneous nanoporous media like
shale. In comparison, the mesoscopic nature of mDPD (as shown in Figure 1) makes the model a
competent candidate for the nano- to micro-pore flow simulations in shale.

In order to use mDPD for predicting the critical material properties of shale micro core sam-
ples such as permeability and relative permeability, pore flow simulations must be conducted at
meaningful space and time scales that may require simulations of a system with 103-10? particles
and 107-10% timesteps. These simulations are computationally demanding and require significant
computing resources. In early exercises we used the DPD package [36] in LAMMPS [37]. The
package takes advantage of the parallel computing readiness of LAMMPS and delivers satisfying
scalability for homogeneous porous systems. However, it is not the case for shale. Due to the highly
non-uniform pore distributions in shale, load imbalance emerges as a result of non-uniform particle
distributions and force calculations across the processing ranks and has been a serious bottleneck
for the package to achieve desired scalability even with adaptive load balancing. Indeed, compared
with the theoretical advances in multiphase DPD models, the development of efficient parallel
strategies for those models is left behind, especially for heterogeneous porous systems at the ap-
propriate physical scales. Efficient HPC strategies such as GPUs are highly encouraged. Because
of the particular suitability of the general-purpose GPUs (GPGPUs) for MD and coarse-grained
MD-like particle simulations, GPU computing has been widely adopted for mesoscale particle mod-
els such as SPH [38-40] and LBM [41-43]. Some basic DPD models have been implemented in
GPU accelerated packages such as HOOMD-blue [44], GROMACS [45] and LAMMPS-GPU [46].
The implementation of more sophisticated DPD models is recently described by Tang and Kar-

niadakis [47] and Blumers et al. [48]. Their GPU codes have demonstrated excellent strong- and



weak-scalability for DPD simulations.

a) A shale micro core sample b) DPD particle representation c) A region of interest selected d) Snapshot of nanopore-scale flow
with size 5 pm x 4 ym x 3 um of kerogen-hosted nanopores (ROI) for nanopore-flow study simulations with 108-10° particles
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Figure 2: Illustration of a production-level shale analysis workflow from nanometer-resolution digital rock imaging
to GPU accelerated mDPD simulations of fluid flow in realistic nanopores in shale.

In this work, a generalized GPU-accelerated implementation of the mDPD based multiphase
pore flow model with a solid wall boundary model for arbitrary pore geometries is developed to
simulate flow dynamics in realistic source shale pores. The software features a tight integration of
our earlier works including a mDPD pore flow model [29], an arbitrary-geometry wall boundary
model [49] and a GPU-accelerated DPD simulator [47, 48], and delivers an efficient rock analysis
throughput from digital rock imaging to pore flow simulations, as shown in Figure 2. With the
new ability to model multiphase flow in arbitrary-shaped, nano- to micro-scale channels, the code
package can be used to investigate the critical material properties of shale such as permeability
and relative permeability with unprecedented time and length scales. Because a GPU can fit a
workload comparable to many CPU codes, the use of GPUs can effectively reduce overhead in
cross-rank /node communication. Consequentially the reduced rank-level parallelism is especially
helpful for reducing load imbalance in mDPD flow simulations in non-uniform porous systems. For
example, investing the same computing capacity, it requires a much smaller number of GPU cards
than CPU cores, and hence much fewer ranks in GPU computing than CPU assuming one GPU
card and one CPU core per rank. As a result, the use of GPUs would greatly reduce the number
of domain decompositions in a non-uniform porous system, and thus is expected to improve load
balance by substantially reducing cross-rank communication and latency in rank synchronization.

The rest of the paper is structured as follows. In section 2, we briefly describe the mDPD

model, a solid wall boundary model and surface wall particle packing for arbitrary geometries. In
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section 3, we present the implementation and innovations of our program. In section 4, we validate
the code with the verification problems. In section 5, we demonstrate the efficiency of our code by
running benchmark cases for uniform and non-uniform nanoporous media. In section 6, we further
demonstrate the capability of the software with pore flow simulations in realistic shale nanopore

networks. Lastly, we conclude the paper in section 7.

2. Pore-scale fluid flow models

2.1. Many-body dissipative particle dynamics

In a generic formulation, DPD particles interact via pairwise central forces, i.e. F;; = Ff} +
Fg +F%, where F% represents a random force, F?j a dissipative force, and Fg a conservative force
between particle ¢ and j, respectively. If r; and v; are used to denote the position and velocity
of particle i, respectively, the random force F% and the dissipative force FB can be expressed as
F% = UwR(rij)fijf‘ij and F% = —'wa(rij)(f“ij - Vij)Tij, where ry; =1y — 1), 1y = |r45], T = 145/755
and v;; = v; — v;j. These forces constitute a thermostat if the amplitude o of the random variable

&i; and the viscous dissipation coefficient «y satisfy a fluctuation-dissipation theorem: 0% = 2vkgT

and wP(r) = (w?(ry;))?, where kgT denotes the desired temperature in the unit of Boltzmann’s

c

constant kp. In the original DPD model, the conservative force F; ;

is defined as Fg = al-jwc (rij)Tij,
where a;; denotes the magnitude of the force, and the weight function w®(r) vanishes when the
inter-particle distance r is larger than a cutoff range r.. The Fg is usually derived from a soft and
unspecific weight function wc(rij), thus allowing for a fairly large integration time step. Different
weight functions describe different material properties. A common choice for w®(r;;) is w®(r;) =
1 —rij/re and w® = wC. The standard velocity Verlet algorithm can be employed to integrate
the resulting equations of motion in time. A quadratic equation of state (EOS) is obtained with
respect to the average particle density p, as shown in Figure 3a. However, the original DPD model
is not sufficient to model multiphase fluid flow phenomena such as liquid-vapor interfaces, liquid-
liquid interfaces and free capillary surfaces. A more complex EOS needs to be represented with

the DPD model. To achieve this, a long-range attractive and short-range repulsive conservative

force FC is required. The multiphase fluid flow model employed in the present work is the so-called
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many-body DPD method [23], namely mDPD. In mDPD, the FS is augmented from the standard
DPD method by density-dependent contributions, and the resulting model includes the van der
Waals loop in the EOS, as shown in Figure 3b. In the mDPD model, the conservative force Fg is
expressed as

FS = Aijw(rij)bij + Bij(pi + pj)wa(rij)ti; (1)

which consists of a long-range attractive part that is density-independent, and a short-range repul-
sive part that depends on a weighted average of the local particle density. The attractive component
A;jwC(r;;)i; can be obtained by simply turning the sign of the original force parameter a;; (i.e.,
A;; < 0, with a cutoff range 7. = 1). The term B;;(p; + p;j)wda(ri;)Ti; is a many-body repulsive
component with B;; > 0, and shorter cutoff wq(r;;) =1 —1r/rq, where rq < ro. The averaged local
density, p; at the position of particle ¢ can be computed as p; = > ki w,(ri;), where the normalized
weight function w, needs to satisfy fooo 4mr?w,(r) dr = 1. For a three-dimensional computational

domain, the w, is defined as wqy(r) = %(1 —7r/rg)%.
d
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Figure 3: Validation of the EOS: (a) p = pkpT + 0.1a;;r&p? for the original DPD model with kgT = 1, v = 4.5,
re =1, and a;; = 25; (b) p = pkpT + adi;p® + 2pBir5(p® — cp® +d) for the mDPD model with kgT = 1, v = 4.5,
rc =1, rq = 0.75, A;; = —40, B;; = 25, a = 0.101, ¢ = 4.16, and d = 18. Pressure for each particle’s number
density p is obtained by averaging over 1000 time steps after equilibrium, in a 10 x 10 x 10 periodic box.

(p-pkgT)/a

2.2. Solid wall conditions for arbitrary pore geometries
Because of the soft particle-to-particle interaction in DPD models, fluid particles may penetrate
through solid matrix given a fluid-solid interface. Such penetration is not physically possible and

must be avoided. Early development of solid wall boundary models were focused on imposing
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rigorous macroscopic boundary conditions, e.g., a non-slip boundary condition at sharply defined
impenetrable solid surfaces. The idea was from a strict mesoscopic interpretation of DPD models,
where a single DPD fluid particle represents a cluster of fluid molecules on scales well above the
atomistic levels [50]. To model a non-slip boundary, additional forces must be exerted on fluid
particles at the vicinity of solid-fluid interfaces with model parameters carefully calibrated to avoid
spurious behaviors such as artificial slip [51], temperature oscillation [52] and particle layering [53].
To relax the strict non-slip requirement, Henrich et al. [54] proposed a boundary model, which
imposes a weak external repelling force on fluid particles whenever they penetrate in solid matrix
over a thin layer. However, most earlier boundary models are only suitable for solid surfaces that
are either mostly flat, spherically curved, or at best analytically describable. A boundary model
that can treat arbitrary pore geometries is required.

In this work, we adopt a new boundary model recently developed for DPD simulations involving
arbitrarily complex geometries [49]. For simulating pore flow in source rocks, this model enables
construction of DPD systems of realistic nano- to micro-pore channels directly from loading the
3D stack images, so that the many intermediate steps from scanning electron microscopy (SEM)
or transmission electron microscopy (TEM) images to the corresponding numerical models, i.e.,
surface mesh reconstruction, mesh smoothing and remeshing can be avoided. Instead of pre-defin-
ing the position of the wall boundary, the fluid particles can detect the wall surface and compute
wall penetration on-the-fly. This is realized by gathering information on fluid particles’ neighbors.
The geometry of solid boundary can then be computed on-the-fly using local particle configura-
tions. By removing the necessity to pre-define the boundary geometry, arbitrary-shape domains can
be constructed directly from experimental images. In particular, this boundary model computes a
boundary volume fraction of fluid particles and allows the fluid particles to detect solid boundaries
on-the-fly based on local particle configurations. As a result, with a negligible extra computational
cost, the moving fluid particles become autonomous to find the pore surfaces and infer the wall
penetration. A predictor-corrector algorithm is then applied to perfectly prevent the fluid particles
from penetrating the pore surfaces. In addition, it is important to point out that by calculating

and controlling the effective dissipative interactions between fluid and solid particles, the no-slip



or partially-slip boundary condition are imposed on rough/curved pore surfaces with negligible
density and temperature fluctuations in the vicinity of the solid boundary. For more details, we

refer the interested readers to [49].

2.3. Particle packing for pore surface geometries

To construct bounding walls in DPD based fluid flow simulations, most researchers (e.g. Chen
et al. [25], Li et al. [49], Meakin et al. [55]) have followed a particle packing approach proposed in
Liu et al. [13]. Using this packing approach, the whole simulation system will be first filled with
DPD particles at a particle number density (e.g. pny = 8) for solid matrix and then equilibrated.
Next, particles located in defined flow regions will be deleted. To reduce cost, particles located in
solid matrix but away from fluid-solid interfaces by over a specified distance will also be deleted, as
those particles will have no interaction with fluid particles. The remaining particles are the so-called
surface wall particles, whose coordinates will be saved and used as input data in wall-bounded flow
simulations. This approach, though easy to use for relatively small systems, is however challenging
for production-scale systems because of a temporary spike of computational and memory cost in
the step of initial whole-system packing. The highest memory temporarily needed could be over
100 times higher than it may be eventually required, making it hardly affordable for most end
users. For example, a shale micro core sample with a meaningful domain size might need billions
of or even over a trillion particles to fill the system temporarily, but at last require no more than
1% of them as surface wall particles because of the sample’s low porosity.

For huge porous systems, to avoid the temporary but prohibitive computing and memory cost
incurred during the solid particle packing process, we introduce a new approach as an improved
version of our early approach [29]. Following our early version, a simulation system is determined
based on voxel data of a shale micro core sample, in which each voxel records a numeric value for
its local composition (e.g. pore, organic matter, or inorganic matter). An algorithm was developed
to sweep through all the voxels to identify the so-called surface wall voxels, with the surface wall
thickness equal to at least r.. In a second sweep, solid particles with a specified number density are
created with a lattice-like distribution at locations corresponding to the surface wall voxels, and

saved to data files for further use. Notice that the lattice-like packing of surface wall particles might
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cause undesired oscillations in fluid temperature in the vicinity of solid-fluid interfaces. Despite
the known artifact, this approach had been probably the only affordable way for huge porous
systems with arbitrary geometric complexity. To partially remedy the artifact, the present work
proposes an improved particle insertion method. For each surface wall voxel, instead of employing
the lattice-like packing, we use a locally equilibrated particle distribution that is randomly chosen
from a database. The database is prepared in advance and is large enough for assembled pores
to resemble sufficient randomness in pore surface roughness. Figure 4 is shown to illustrate this
new packing method. Also notice that the idea of local equilibrium of the particles in each surface
wall voxel makes the quality of packing closer to the one by Liu et al. [13], but meantime would
potentially give rise to non-equilibrium in particles across two neighbor surface wall voxels. Further
improvement of affordable particle packing for pore surface walls in huge porous systems is an open

area in DPD research.

a) Original voxel data: grey — solid b) Identify surface wall voxels ¢) Solid particles to be filled in Before: lattice-like packing for all voxels
matrix; white — pore. (highlighted in red). surface wall voxels and save to file.

Now: locally-equilibrated packing in each voxel
o0
oo
@
[ . %9 -
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Figure 4: Illustrations of a new additive particle packing process for constructing pore surface walls of porous systems
based on 3D voxel data. To make it easy to understand, we use 2D pixels instead of 3D voxels in the display.

3. GPU implementation

The present yszrMESO 2.5 package builds on ysgrMESO 2.0 [48], which is a successor to the
original fully GPU-accelerated ysgr MESO package for DPD. ysgr MESO 2.0 expanded the capabilities
of the package to simulate different flavors of DPD, as well as cellular dynamics. Although the new
capabilities added in ysgrMESO 2.5 only require the original ysgzMESO [47] as base, we feel it more

natural to name our software package ysggMESO 2.5 as a progression from ysggMESO 2.0 .
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3.1. Core features

The original ysgrMESO [47] is a GPU-accelerated extension package to LAMMPS for DPD simu-
lations. In the ysgrMESO framework, all computations and host-device communications are handled
by the extension package while I/O related tasks such as inter-rank communications are attended
by LAMMPS. By offloading computations to GPUs, ysgzMESO is able to achieves more than 20
times speedup for simple particle simulations [47]. The speedup over the CPU counterpart is
made possible by technical innovations on, but not limited to, neighbor list constructions and
particle reordering, which are intended to boost data locality and increases the chance of cache
hit. Furthermore, data-layout is optimized for coalesced memory access. In LAMMPS, data are
stored in an array-of-structure layout on host memory. To avoid strided access on device memory,
data are stored in a structure-of-array layout. The conversion between the array-of-structure and
structure-of-array layouts is carried out whenever data are transferred.

The notable innovative features of the original ysgr MESO from which ysgr MESO 2.5 has inherited
include: 1) an atomics-free warp-synchronous neighbor list construction algorithm, 2) a two-level
particle reordering scheme, which aligns with the cell list lattice boundaries for generating strictly
monotonic neighbor list, 3) customized non-branching transcendental functions (sin, cos, pow,
log, exp, etc.), 4) overlapping calculation (e.g. force evaluation) with communication (e.g. particle

exchange) to reduce latency, and 5) radix sort with GPU stream support.

3.2. New capabilities

To simulate complex single- and multi-phase fluid flow phenomena in realistic nano- to micro-
porous geometries, a number of new features have been implemented in yggzrMESO 2.5 . For clarity,
an outline that depicts the calculation of the key physical variables has been presented in Algorithm
1 in reference to the Velocity-Verlet algorithm.

First, an important feature that has been implemented in yggzrMESO 2.5 is the impenetrable
wall boundary described in subsection 2.2 as a general solution to handle complex geometries in
DPD simulations to treat pore surface walls of arbitrary geometric configuration. Because this wall
boundary can be generally applied to any DPD method, we have implemented it as a standalone

procedure that is independent of the DPD method to be used. The main idea is to calculate the
12



Algorithm 1 An outline that depicts the calculation of many-body density p and wall-particles
density ¢ in reference to the Velocity-Verlet algorithm.

e Calculate z(t + dt).

Calculate ¢ for all fluid-particles.

e Inter-rank communication/particle migration.
Calculate p for all local particles.
Synchronize p for ghost particles.

e Compute pair forces f(t + dt).

e Calculate v(t + 6t).

density of solid wall particles, ¢, within a fluid-particle’s support, and then to add a correction force
to the fluid particles to counteract the artificial walls. Since ¢ is computed before the inter-rank
communication, no synchronization is necessary as shown in Algorithm 1.

The major contribution by ysgrMESO 2.5 is the capability to run many-body DPD simulations.
To recall the formulation in Equation 1, the many-body density p that appears in the conservative
force term is needed to calculate the repulsive part of the conservative force. On each rank, a loop
over the particles in the corresponding partition is conducted to calculate the p of each particle
prior to the loop over the particles that calculates the inter-particle force. Then an inter-rank com-
munication takes place to synchronize p for the partition-ghost particles, as depicted in Algorithm
1. This communication is necessary and cannot be avoided by enlarging the neighbor-search radius
of the particles. For example, a particle j in the neighborhood of particle ¢ may be a partition-ghost
particle; the calculation of p; depends on its neighbor particles within repulsive force cut-off range

rq of particle 7, which though in general can extend beyond the partition-ghost regions.

4. Code verification

In this section, we present two test problems to verify the implementation of the mDPD method
and solid wall boundary condition in ygggMESO 2.5 . The numerical results calculated by ysgr MESO
2.5 were verified with our CPU code, which is implemented based on the standard LAMMPS.
Each problem underwent a comparative verification on two platforms: a workstation that has an
Intel i7-8700K CPU and two NVIDIA TTIAN Xp GPUs, and a DGX-1 server that is equipped
with two Intel Xeon E5-2698 v4 CPUs and eight NVIDIA Tesla V100 GPUs.

13



4.1. Liquid-vacuum interface

In this problem, a simulation of water liquid-vacuum interface is presented with the objective
to assess whether ysgrMESO 2.5 accurately calculates properties of a specific type of fluid. The
water density and surface tension calculated by psggMESO 2.5 will be checked against its CPU
counterpart. We followed the problem setup similar to Ghoufi and Malfreyt [26], but used a large
cubic simulation domain bounded by [—50r,50r:] in each direction with a periodic boundary
condition. The simulation was initialized with a face-centered cubic (fcc) based particle allocation
in the region of x € [—10r¢, 10r.] and with a lattice spacing of 7. in each direction, which resulted
in a total of 820,000 particles in the system. The mDPD force interaction parameters A;; = —50,
B;j = 25, rq = 0.75r; and v = 12.4 were used in order to match the water properties reported in
Ghoufi et al. [56]. With those parameters, one DPD particle represents approximately a cluster
of three water molecules (i.e., N,;, = 3), and the size of one DPD particle corresponds to about
90 A3. Details of conversion from the reduced units to their corresponding physical values can be

found in Ghoufi and Malfreyt [26].
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Figure 5: A mDPD simulation of water liquid-vacuum interface: a snapshot of instantaneous particle distribution at
equilibrium (left), and time-averaged density profile along the x direction (right).

In the simulation, a total of 5,000 timesteps were first carried out to equilibrate the system.
An instantaneous snapshot of of the equilibrated system is displayed on the left side of Figure 5,
depicting a thin liquid slab formed by the particles. Another 5,000 timesteps were then run to
calculate the time-averaged properties. With a 1D bin size of 2r. along the x axis, a density profile
calculated by ysggMESO 2.5 is compared with the one obtained by our CPU code on the right side

of Figure 5. The density near x = 0 (center of the slab) is 6.88 for both ysgrMESO 2.5 and our CPU
14



code, matching the value reported in Ghoufi and Malfreyt [26]. Moreover, thanks to the simple
shape of the liquid slab, the interfacial tension ywyv between the water liquid and vacuum can be
calculated by subtracting the mean tangential stresses oy, and o.. from the normal stress o,:
YWv = Ly(0z0 — 1/2(0yy + 022)). The calculated ywv is 12.4 for both ysgrMESO 2.5 and its CPU
counterpart, again matching the value reported in Ghoufi and Malfreyt [26]. In addition, the values
for water density and water-vacuum interfacial tension can be converted into the physical units with
the equations: e = 13(p" N V)3 [A], p = p* (NeuM)/(Nar2) [kg - m~2], and 7 = 7 (kpT)/(r2)
[N - m~1], where the superscript * denote values in the reduced unit, V is the volume of one water
molecule (30 A), M is the molar weight of a water molecule (18 g - mol™!), N, is Avogadro’s
number, and kp is Boltzmann’s constant, and 7' is equal to 298 K. Expressed in the converted

3 and

physical units, the water density and liquid-vacuum interfacial tension are p = 994 kg - m™
7 =170.6x10"% N-m~1!, respectively, which agree well with the MD results [26]. Our result indicates
that the implementation of the mDPD method in ysgrMESO 2.5 achieves consistency with its CPU

counterpart, and delivers accurate predictions of thermodynamic properties for fluids of interest.

4.2. Static contact angle in a slit nano channel

The second test problem is the simulation of static contact angles formed between a single
fluid and its bounding solid walls in a slit nano channel, which demonstrates the flexibility of the
mDPD model to characterize the wetting properties of fluids in the nano-scale pores. In the mDPD
model, the particle interaction force between two types of materials such as solid and liquid can be
modified by adjusting the attractive force parameter Agr, the repulsive force parameter Bgr,, and
the repulsive force cutoff range 4 in Equation 1, where the subscript “S” and “L” denote solid and
liquid, respectively. In a controlled study of the dependence of liquid wetting behavior on certain
mDPD parameters such as Agy,, we selected three typical values for Agy, listed in Table 1, while
imposing constant values for the rest of the parameters, i.e. Bgy, = 25 and r. = 1 with a fixed
relation between rq and r. as rq = 0.75r¢ for all particle interactions.

The simulation domain in this problem is bounded by = € [=30r¢,30rc], y € [—5rc, brc] and
z € [-2.5r¢,2.5r]. A periodic boundary condition is prescribed in the x and z directions. The

simulation consists of two steps. First, 3,500 solid particles were initially placed in the two re-
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Table 1: Simulations of a single fluid in slid nano pore: specification of the attractive interaction parameters, Aats.

Aatt Solid Lquid
Solid -40 -40
Liquid -40 -35; -30; -20

gions bounded by y € [—5r¢, —4r¢| and [4r¢, 5r¢], respectively, with a random spatial distribution.
These two regions were treated as two subsystems to allow the solid particles to undergo sufficient
timesteps with the mDPD method to reach equilibrium. The locations of the solid particles were
then fixed to represent the bounding walls of the slit pore for the rest of the simulations. The
width of the slit pore (along the y direction) is 8r¢, corresponding to 8.616 nm in the physical unit.
Secondly, 4,000 liquid particles were placed randomly in a region bounded by z € [—13r¢, 13r]
and z € [—4rc, 4r;]. The whole system was run for 4,000 time steps to reach equilibrium using the
mDPD model along with the solid wall condition. Finally, 10,000 timesteps were run to obtain
the time-averaged properties of interest. This simulation was performed three times with the three

Agy, values, respectively.
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Figure 6: Instantaneous particle distribution of a single liquid bounded by solid matter in a nanometer-scale slit
pore, simulated by mDPD with different attractive force parameter Agr,

The instantaneous snapshots of the particle distributions corresponding to the Agp, values are
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displayed one the left side of Figure 6, demonstrating the transition of the fluid wettability in the
slit pore from wetting to non-wetting. Note that in the latter case, the fluid had shifted slightly
away from its initial location due to the coupled effect of non-smooth wall surface and strong non-
wettability of the fluid. To validate the consistency of ysggMESO 2.5 against its CPU counterpart,
we plotted the profiles of the time-averaged fluid particle numbers versus the normalized pore
width, and presented the GPU and CPU results on the right side of Figure 6. Eight bins were
specified along the y direction, resulting in the eight data points in each profile. The GPU profiles
agrees with their CPU references, indicating the numerical consistency. Furthermore, by dismissing
the two near-wall points in those profiles, the curvatures for the profiles can be calculated and used
to quantify the contact angles. For each profile, we have computed its curvature as an average of
four curvatures approximated with the four series of three consecutive points, e.g. from the second
to the fourth point, and from the third to the fifth point. For example, a higher Agr, such as —35 led
to a partially wetting fluid with a contact angle smaller than 90°, whereas a lower Agr, such as —20
led in a partially non-wetting fluid with a contact angle larger than 90°. In the case of Agr, = —30,
the profile is almost a straight line, depicting the critical state of contact angle around 90°. It
is worth noting that a different choice in other parameters can result in a different dependency

pattern of contact angle on Agr,; for example, see a similar simulation in Pan [24].

5. Benchmark tests

In order to present a comprehensive performance benchmark, we tested ysgrMESO 2.5 with
simulations of fluid flows in both simple homogeneous and complex heterogeneous pore networks.
HPC resources at Oak Ridge National Laboratory (ORNL), IBM and Idaho National Laboratory
(INL) were used to perform the tests. We used the NVIDIA NVCC compiler with -O3 optimization
to compile the code. The CPU counterpart, which has also been implemented based on the standard
LAMMPS in this work, is compiled with the GCC compiler with -O3 optimization as well. We first
benchmarked our package on a manufactured, homogeneous pore network, which serves to verify
the code integrity and identify any intrinsic bottlenecks. We then quantified the performance of

the code with a miniature version of a realistic pore-network. For both cases, the walltimes are
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compared with their respective CPU counterparts.

5.1. Fluid flow in homogeneous nanoporous media
5.1.1. Problem description

To showcase the scaling performance of ysgrMESO 2.5 , body-force driven fluid flow was sim-
ulated in manufactured, homogeneous porous domains. Displayed in Figure 7, fluid flow in such
a kind of domain is essentially two-dimensional, as the size of the domain in the y direction (L)
is sufficiently small in comparison with the other two (L, and L.). This domain is created based
on a cell with L, = L, = 16 and L, = 2, as shown on the right side of Figure 7. We followed the
procedure described in Liu et al. [13] to create such a cell, in which a ring-shape surface wall is
constructed by 666 equilibrated solid particles (red) with an outer radius of 7 (= 6.0 nm) and an
inner radius of 6 (= 5.1 nm). Outside the ring, the space is filled with 1,296 equilibrated fluid par-
ticles (blue). The cell is duplicated in the x and z directions (e.g. 232, 332 ... 652 cells) to assemble
a series of quasi-2D square domains, in which the even-numbered rows of cells are translated over
a horizontal distance of L, /2 to finally form the domain for the flow simulations. For example, a
domain consisting of 92 cells is shown on the left side of Figure 7. These domains have a porosity of
0.4, with the narrowest pore width to be 2 (=~ 1.7 nm). The uniform pore distribution in this test
minimizes load imbalance across the compute nodes. We thus consider it an appropriate problem

to investigate the scalability of our code.

Figure 7: Simulations of fluid flow in manufactured, homogeneous nanoporous media: example of a porous domain
consisting of 92 square cells.

The mDPD force interaction parameters used in our previous work [29] is adopted in this study.
The attractive interaction parameters are listed in Table 2, while the rest of the parameters used are

Biep = 25, and rq = 0.757, for all the particle-particle interactions. The particle number densities
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are 8 and 6.2 for the solid and fluid particles, respectively, ensuring that the pores are saturated
at an adequate fluid pressure. An acceleration of g, = 0.02 along the z direction is applied on
the fluid particles to drive the flow. A periodic boundary condition is prescribed at all the three
directions. A non-penetration boundary condition is prescribed at the solid particle wall surfaces.
A timestep size of dt = 0.01 is used. In each timing test, 10,000 timesteps are run first to allow
the domain to reach equilibrium under the influence of the fluid body force. The walltime is then

measured for every 500 timesteps, until four walltimes are obtained to calculate an average value.

Table 2: Simulations of fluid flow in manufactured, homogeneous nanoporous media: specification of the mDPD
particle-particle attractive interaction parameters, Aats.

Aatt Solid Fluid
Solid — -40
Fluid -40 -40

5.1.2. Benchmark results

The scalability of our code is characterized with the strong- and weak-scaling performed on
Titan at ORNL, Each Titan node is equipped with an AMD Opteron 6274 CPU, and a NVIDIA
Tesla K20X GPU (Kepler architecture) with 2688 CUDA cores and 6 GB memory.

For the strong-scaling, the test was carried out in a simulation system consisting of 332 cells
and a total of about 2.1 million particles (1.4 million fluid particles and 0.7 million solid particles).
The system size was chosen to allow the memory of a single K20X GPU to accommodate the
simulation. For the weak-scaling, the simulation system size was fixed at approximately 1 million
particles per node. The walltimes were obtained on systems consisting of 232, 332, 452, 652, 912,
1292, 1832, 2592, 3672 and 5192 cells, respectively. To allow comparison across multiple platforms,
the performance of our code was quantified with the metric “million-particle-steps per second”,
or MPS/second for short [47]. As shown in Figure 8, our flow simulator scored a nearly perfect
weak-scaling. On the other hand, the strong-scaling plot levelled off around 512 nodes, when each
node was loaded with approximately 4100 particles.

Besides the Tesla K20X, we benchmarked our code on a few more modern GPUs with advanced
high-speed Host-to-Device interconnects to characterize the performance improvement brought by

the latest hardware architectures. For clarity, the machines that have been tested are labelled and
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Figure 8: Simulations of fluid flow in manufactured, homogeneous nanoporous media: the strong- and weak-scaling
test results on the Titan supercomputer at Oak Ridge National Laboratory.

listed in Table 3 with the detailed hardware specifications. Of particular note is the IBM AC922
node that is equipped with 42 IBM Power9 cores and 6 NVIDIA V100 GPUs with the NVLink2
interconnect: the same architecture configuration as ORNL’s Summit supercomputer. To factor
out Host-to-Host and/or node-to-node communication quality on different machines, we limited
the comparative benchmark simulation running on one CPU core and one GPU on each machine.
The walltime obtained on the Tesla K20X was used to serve as the baseline, while the performance
of other machines was measured in terms of the relative speedup, as shown in Figure 9.

Table 3: List of the hardware specifications for the labelled machines used in the benchmark test.

Label (machine) CPU NVIDIA GPU  Host-to-Device interconnect
Tesla K20X (ORNL Titan node) AMD Opteron 6274 Tesla K20X PCle

TITAN Xp (desktop workstation) Intel 17-8700K TTIAN Xp PCle

V100 (NVIDIA DGX-1 at INL) Intel Xeon E5-2698 v4  Tesla V100 PCle

P100 + NVLinkl (ORNL SummitDev node) IBM Power8 Tesla P100 NVLink1

V100 + NVLink2 (IBM AC922 node) IBM Power9 Tesla V100 NVLink2

2 x Intel Xeon E5-2695 (INL HPC node) Intel Xeon E5-2695 N/A N/A

For the first, our test result has shown that the TITAN Xp (Pascal architecture, 3,840 CUDA
cores, 12 GB memory), a top-tier consumer’s model, produced nearly twice the performance of
the Tesla K20X. Furthermore, our test result has shown that the Tesla V100 (Volta architecture,
5,120 CUDA cores, 32 GB memory) on DGX-1 can output 2.5x the computing power of the Tesla
K20X. On the other hand, despite the availability of software features that unify the appearance of

the host and device memory from a programmability perspective, our code explicitly manages the
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Figure 9: Simulations of fluid flow in manufactured, homogeneous nanoporous media: comparison of single-GPU
performance on a number of latest GPUs.

allocation of host and device memory, as well as the transfer of data in between, as an attempt to
optimally choreograph computation and data movement. Thus, the overall performance depends
heavily on the data transfer speed between the hosts and devices. In this regard, a remarkable
finding is that the high-speed interconnects such as NVLink can dramatically shorten the walltime
in our simulations. Together with the NVLink2 (the second-generation NVLink) on an IBM AC922
node, the V100 delivered an astonishing 5.1x speedup over an ORNL Titan node. In other words,
the NVLink2 is able to help double the performance of the V100 in our benchmark simulations.
Lastly, to compare with the performance of a CPU-only implementation of our simulator, we
benchmarked the CPU counterpart on an INL HPC node fully utilizing its 36 cores (2 Intel Xeon
E5-2695 v4 CPUs, 18 cores per CPU), and have found that it is equivalent to the TITAN Xp GPU

in performance.

B Host-to-Device ~ W Device-to-Host W Compute

Walltime

V100 P100 + NVLinkl V100 + NVLink2

Figure 10: Simulations of fluid flow in manufactured, homogeneous nanoporous media: breakdown of walltime of a
single-GPU simulation on GPU related tasks.



With an interest to elaborate on the ramifications of the NVLink interconnect, we present a
breakdown of the walltime on the GPU-related tasks in Figure 10, e.g., Host-to-Device transfer,
Device-to-Host transfer and kernel computation. For the Telsa V100 with the PCle interconnect
(DGX-1 node), the transfers together took up 53% of the GPU related tasks (i.e., 30% by Host-
to-Device data transfer and 23% by Device-to-Host data transfer). In comparison, when NVLink2
interconnected the host and the device, the transfers took up only 21% while the walltime of kernel
computations remains almost the same. In other words, NVLink2 has helped reduce the walltime of
the GPU related tasks by about 40% for our benchmark simulation. The same test was performed
on SummitDev at ORNL (a tester cluster mimicking Summit), which has the Tesla P100 (Pascal
architecture, 3,584 CUDA cores, 16 GB memory) with NVLinkl (the first-generation NVLink).
Our result indicates that NVLink independently reduces considerable walltime that is sufficient to
compensate for P100 when compared with its successor V100 without NVLink.

Above all, this benchmark problem has successfully demonstrated the excellent scalability of
our code. Furthermore, the use of NVLink can drastically improve the efficiency of our code and

provides performance boost to data-transfer intensive applications like our particle simulator.

5.2. Fluid flow in heterogeneous nanoporous media

The objective of this problem is to assess and demonstrate the scaling performance of gz MESO
2.5 for simulations of fluid flow in realistic heterogeneous nanopores, i.e., the shale kerogen-hosted
pores. In this study, the construction of kerogen-hosted pores for pore-flow simulations was based
on the nano-resolution stack images of a Vaca Muerta shale micro core sample, which refers to the
geologic formation located at Neuquén Basin in Argentina [57]. The procedures for digital imaging
of shale core samples and image post-processing for our pore-flow simulations are briefly described
in Appendix A for interested readers. Most hydrocarbons in shale are believed to be in kerogen-
hosted pores before geotechnically processed. Massive hydrocarbon flow will not occur in kerogen
with their natural low permeability [58]. Permeability enhancement like hydraulic fracturing creates
micro-cracks in shale and create linked paths for flow through connected pores spanning multiple
scales (e.g. from nano- to micro-scale). Such structural evolution of organic-matter-hosted pores as

well as the flow within is challenging to reproduce and measure in laboratory because of the required
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physical conditions [59]. Our benchmark test is thus focused on flow simulations in kerogen-hosted

pores, in order to present an efficient pore-network flow simulation package for relevant research.

5.2.1. Problem description

For our benchmarking purpose, pore flow simulations in the entire core sample is not necessary.
Instead, we focus on a large pore (labeled #1) in Figure A.18 and introduce an example of how to
set up a simulation domain for pore flow driven by bulk pressure gradient, as shown in Figure 11.
In the first step, the #1 pore is cropped to create a cubic block (957.5 x 952.5 x 945.0 nm3), with
two slabs perpendicular to a specified direction (e.g. x) added to the two ends of the block to allow
fluid particles to move only inside the pore, as shown in Figure 11 (middle). For flow simulation in
this block, it is estimated to require over 200 million particles and 400 million timesteps. To allow
the required memory to fit in a single V100 GPU for strong-scaling test, we cropped the block to

a miniature version (367.5 x 382.5 x 355.0 nm?), as shown in Figure 11 (right).

© [ 367.5 x 382.5 x 355.0 nm?

L

T<.Zy [ 957.5 x 952.5 x 945.0 nm? |

Figure 11: Schematic for creation of block domains for flow simulations in organic-rich regions in a shale core sample.

The setup for our miniature version test is illustrated in Figure 12, which is general enough for
applying to a system of any size. The simulation box extents from -30 to 140 in x, 0 to 91 in vy,
and 0 to 88 in z, respectively. A reflection wall condition is prescribed at all the box boundaries to
prevent fluid particles from accidentally fleeing, which though did not occur in our simulations. The
simulation depicts a pressure gradient driven flooding through a porous block located at x € [0, 89].
Five material types numbered from 1 to 5 are labeled for the particles. A total of 3,325,409 particles

are created in the box, including 1,859,025 particles as type-1 fluid (source), 1,641,640 particles as
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type-2 fluid (working), 568,488 particles as type-3 solid (pore surface wall), and 128,128 particles
for type-4 solid (front-pushing slab) and type-5 solid (back-pressure slab), respectively. Type-1
and 2 particles are assigned with the same mDPD model parameters as we consider single-phase
flow in this study. Likewise, type-3, 4 and 5 particles represent solids of the same kind. The use of

unique material types allows flexible change of model parameters.

Tl.x type-5 type-1 type-1 type-3 type-2 type-4
]
B[ &
plow‘ ‘phigh

I T 6 [ [T 1
-30 -22 -20 89 130 132 140

type-1: fluid (source) type-2: fluid (working)

type-3: solid (pore surface wall) type-4: solid (front slab) type-5: solid (back slab)

Figure 12: Schematic for simulations of pressure gradient driven flooding in a block porous domain.

5.2.2. Benchmark results

The initial condition for the flooding simulation takes a few separate simulations to prepare.
For the first, type-1 fluid particles are created to saturate the porous block (type-3). Extra type-1
fluid particles outside the block are pushed against the block by a slab (type-5) in order to sustain
the hydraulic pressure in the pore. This setup mimicks hydrocarbons trapped in organic-matter-
hosted pores. For the second, type-2 fluid particles are pushed against the block on the other side
by a slab (type-4) with a higher external pressure. A virtual wall is placed at the boundary of the
block (z = 89) to prevent type-2 fluid particles from entering the pore. At the beginning of the
flooding simulation, the virtual wall is removed, and due to the bulk pressure difference between
the two ends of the block, the type-2 fluid particles will be pushed into the pore gradually, while the
type-1 fluid particles in the pore will be extracted. The mDPD model parameters and timestep size
used in subsection 5.1 are adopted here. A series of snapshots for the simulated flooding process
are shown in Figure 13, depicting the forced ejection of source fluid out of the pore.

To investigate the scalability of ysgeMESO 2.5 on the flooding simulations in the realistic shale
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Figure 13: Miniature flooding test: a series of instantaneous snapshots for single-phase flooding in an organic-matter-
hosted pore. The pore surface wall particles are not displayed, to allow fluid particles in the pore to be seen.
pore geometries, we carried out a set of strong-scaling tests using the Power9/V100 nodes on the
IBM AC922 cluster. We chose the first 10,000 timesteps of the simulation for timing, during
which the working fluid rushes into the pore. Shown in Figure 14, the benchmark results indicate
that the almost linear strong scaling obtained in subsection 5.1 is no longer held true with the
realistic nanopore geometries. This is because the fluid and solid particles are unevenly distributed
in the simulation domain, unlike the uniform pore network described in subsection 5.1. When
a simulation box is decomposed evenly based on the spatial dimensions, each subdomain has a
distinctive particle composition tabulated in Table 4. As a result of the non-uniform particle
distributions, the conventional spatial decomposition scheme does not offer a good strong scaling.
Implementing a load balancing scheme such as the recursive coordinate bi-sectioning (RCB), the
performance of the CPU code improved considerably, especially when fewer cores were used. For
example, in our CPU timing with 168 cores, the RCB cut the walltime almost in half. However,
as more cores were engaged, the benefits of RCB subsided rapidly. This was observed in the
CPU timing with 840 cores, where the RCB failed to help reduce the walltime by a definitive
amount. As for ysgrMESO 2.5 , the conventional spatial decomposition is enforced in the current
implementation. Furthermore, as a GPU can hold a much larger subdomain than a CPU core, the
effect of load imbalance is much less pronounced. Hence despite the lack of load balancing schemes,
userMESO 2.5 with 4 V100 GPUs performed just as well as 840 Power9 cores as seen in Figure 14,
well demonstrating the superiority of GPU implementation for realistic complex geometries.

To further illuminate the scalability challenge for the particle flow simulations in heterogeneous

nanoporous geometries, we present a breakdown of the GPU workloads with four V100 GPUs and
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Table 4: Initial particle composition of each of the four subdomains. One subdomain is run on one GPU. The GPU
with the heaviest workload is responsible for 38.7% more particles than the one with the lightest workload.

Subdomain Fluids ‘Wall Slabs Total

0 675,028 164,223 64,068 903,319

1 830,701 182,201 64,060 1,076,962

2 930,803 97,688 64,064 1,092,555

3 1,064,133 124,376 64,064 1,252,573
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Figure 14: A comparison of the walltime measured between yszMESO 2.5 and its CPU counterpart for the miniature
flooding simulations on the IBM AC922 cluster featuring Power9 CPUs and V100 GPUs with NVLink2.

track the number of particles in each subdomain over the timesteps, as shown in Figure 15. Recall
that the simulation box is evenly divided into four subdomains with one per GPU. We also plotted
the load imbalance factor, which is defined as the ratio of the largest GPU workload to the smallest
among the subdomains. The workload imbalance is the largest at the beginning of the simulatiton,
when subdomain 3 contained approximately 25% more particles than subdomain 0, corresponding
to a load imbalance factor of 1.4. As the working fluid rushed into the pore, the workloads became
more even over time, and the factor descended to 1.28 at most. Further investigation on the load
balancing is not in the scope of this study. We intend to propose a general solution to control load

imbalance on GPUs in a follow-up work.

6. Capability demonstration

Though it’s a common understanding that the Darcy’s law is no longer suitable for describing
the flow and transport phenomena in nanoporous source shale rocks, so far no mature analytic

formulation has been deduced experimentally to elaborate the source recovery processes in shale.
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Figure 15: Breakdown of the GPU workloads over the timesteps. Note that in the benchmark test between GPUs and
CPUs, the walltimes were measured when the workload imbalance is the largest, indicated by the pink background.
Certain properties such as the permeability-fluid dependence (i.e. the correlation between the mass
flow rate and bulk pressure gradient) are difficult to measure experimentally in the micro core sam-
ples. The ysgrMESO 2.5 package presented in this work provides an alternative to characterize the
fluid-permeability dependency with mesoscopic flow simulations in digitized nanometer-resolution
realistic shale pore geometries. To demonstrate the versatility of our package, the micro block
(957.5 x 952.5 x 945.0 nm?) shown in the middle of Figure 11 was used in the flooding simulations,
with a brief depiction of the problem setup and a snapshot of the moving fluid particles on the left
side of Figure 16. Again, for simplicity, we assumed single-phase flow by specifying the same model
parameters for the working fluid (blue) and source fluid (red). The simulation box contained about
240 million particles. Four simulations corresponding to four successively increased bulk pressure
gradients were performed. In each simulation, 3000 DPD time units were run to allow the mass flow
rate to reach a stable status. A total of 2048 nodes on Titan at Oak Ridge National Laboratory
were deployed for each simulation. The same simulation would take at least 15 times as long on
the CPUs, deduced from our benchmark results.

Shown on the right side of Figure 16, the dependency of the flow rate on the bulk pressure
gradient deviated from the Darcy’s law, indicating a non-constant permeability in shale, in part
because of their heterogeneous porosity distributions and the sub-continuum solid-fluid interactions
in the nanopores. The simulation results coincide with the general observation from shale reservoir

operations that the increased injection rate does not necessarily help increase the source recovery
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rate. However, as a case of capability demonstration, such limited simulations cannot provide all
but a rough depiction of the complicated source recovery processes. An inclusive understanding
can only be established with flow simulations based on a sufficiently large ensemble of shale core

samples and a careful calibration of model parameters for specific types of fluids and solids.
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Figure 16: Example of flooding simulations (about 240 million DPD particles) and permeability-fluid dependence
characterization in a micro shale domain with realistic nanometer-resolution pore geometries.

7. Summary

This work has presented a GPU-accelerated mesoscopic pore flow simulation package based on
a many-body dissipative particle dynamics (mDPD) model to address the computational challenges
in the numerical investigation of hydrocarbon flow in source shales. Leveraging mDPD’s ability to
model the sub-continuum and continuum flow phenomena, the complex flow dynamics and fluid-

solid interactions in multiscale pore networks with pore sizes ranging from a few nanometers to a
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few micrometers can be resolved simultaneously. The effective use of GPUs enhances simulation
performance significantly: almost linear scaling on up to 512 nodes is achieved in both our strong
and weak scaling benchmarks, while further speedup is possible even beyond 1024 nodes. Besides,
the use of the advanced device-to-host interconnects such as NVLink2 brings remarkable additional
speedup over PCle. Additional advances including the implementation of solid wall boundary
conditions for mDPD flow in complex pore geometries and solid wall particle packing for huge
systems have facilitated flow simulations in realistic shale nano pore networks that are constructed
from 3D nanometer-resolution stack images. Furthermore, we have calculated the speedup over
CPU counterpart through a realistic shale pore flow test: it requires 840 Power9 CPU cores to match
the performance of 4 V100 GPUs on the Summit architecture. In summary, this package enables
quick-turnaround and high-throughput mesoscopic numerical simulations for investigating complex
flow phenomena in nano- to micro porous rocks with realistic pore geometries. We made our
software freely available on GitHub, following the link https://github.com/AnselGitAccount/

USERMES0-2. 0-mdpd.

Acknowledgment

The software development, validation and benchmark testing in this work is supported through
the Idaho National Laboratory (INL) Laboratory Directed Research & Development (LDRD) Pro-
gram under the U.S. Department of Energy Idaho Operations Office Contract DE-ACO07-051D14517.

The weak- and strong-scaling benchmarks and simulations for capability demonstration were
primarily performed at Oak Ridge Leadership Computing Facility (OLCF) through the OLCF
Director’s Discretion Program under project GEO124, which is supported by the Office of Science
of the U.S. Department of Energy under Contract DE-AC05-000R22725.

The benchmark testing also used resources in the High Performance Computing Center at INL,
which is supported by the Office of Nuclear Energy of the U.S. Department of Energy and the
Nuclear Science User Facilities under Contract No. DE-AC07-051D14517.

The numerical investigation of permeability-fluid dependence in shale kerogen-hosted nanopores

was supported as part of the EFRC-MUSE, an Energy Frontier Research Center funded by the U.S.

29


https://github.com/AnselGitAccount/USERMESO-2.0-mdpd
https://github.com/AnselGitAccount/USERMESO-2.0-mdpd

Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0019285.

References

[1] J. Bear, Dynamics of Fluids in Porous Media, Dover, 1973.

[2] C. Pan, M. Hilpert, C. T. Miller, Pore-scale modeling of saturated permeabilities in random sphere packings,
Physical Review E 64 (2001) 066702.

[3] C. Pan, M. Hilpert, C. T. Miller, Lattice-Boltzmann simulation of two-phase flow in porous media, Water
Resources Research 40 (2004) W01501.

[4] A. M. Tartakovsky, P. Meakin, A smoothed particle hydrodynamics model for miscible flow in three-dimensional
fractures and the two-dimensional Rayleigh-Taylor instability, Journal of Computational Physics 207 (2005)
610-624.

[5] A. M. Tartakovsky, P. Meakin, Pore scale modeling of immiscible and miscible fluid flows using smoothed
particle hydrodynamics, Advances in Water Resources 29 (2006) 1464-1478.

[6] H. Huang, P. Meakin, M. Liu, Computer simulation of two-phase immiscible fluid motion in unsaturated
complex fractures using a volume of fluid method, Water Resources Research 41 (2005).

[7] H. Huang, P. Meakin, M. Liu, G. E. McCreery, Modeling of multiphase fluid motion in fracture intersections
and fracture networks, Geophysical Research Letters 32 (2005).

[8] A. Tiwari, J. Abraham, Dissipative-particle-dynamics model for two-phase flows, Physical Review E 74 (2006)
056701.

[9] R. Heldele, M. Schulz, D. Kauzlaric, J. G. Korvink, J. HauBelt, Micro powder injection molding: process
characterization and modeling, Microsystem Technologies 12 (2006) 941-946.

[10] D. C. Visser, H. C. J. Hoefsloot, P. D. Iedema, Modelling multi-viscosity systems with dissipative particle
dynamics, Journal of Computational Physics 214 (2006) 491-504.

[11] M. Liu, P. Meakin, H. Huang, Dissipative particle dynamics with attractive and repulsive particle-particle
interactions, Physics of Fluids 18 (2006) 017101.

[12] M. Liu, P. Meakin, H. Huang, Dissipative particle dynamics simulation of fluid motion through an unsaturated
fracture and fracture junction, Journal of Computational Physics 222 (2007) 110-130.

[13] M. Liu, P. Meakin, H. Huang, Dissipative particle dynamics simulation of pore-scale multiphase fluid flow,
Water Resources Research 43 (2007) W04411.

[14] P. J. Hoogerbrugge, J. M. V. A. Koelman, Simulating Microscopic Hydrodynamic Phenomena with Dissipative
Particle Dynamics, EPL (Europhysics Letters) 19 (1992) 155.

[15] P. Espanol, P. Warren, Statistical Mechanics of Dissipative Particle Dynamics, EPL (Europhysics Letters) 30
(1995) 191.

[16] C. Marsh, Theoretical Aspects of Dissipative Particle Dynamics, Ph.D. thesis, University of Oxford, 1998.

30



(17]

(18]

[19]

20]

(21]

22]

(23]

24]
25]

[26]

27]

(28]

29]

(30]

31]

32]

(33]

E. Moeendarbary, T. Y. Ng, M. Zangeneh, Dissipative particle dynamics: introduction, methodology and
complex fluid applications — a review, International Journal of Applied Mechanics 1 (2009) 737-763.

M. B. Liu, G. R. Liu, L. W. Zhou, J. Z. Chang, Dissipative particle dynamics (DPD): an overview and recent
developments, Archives of Computational Methods in Engineering 22 (2015) 529-556.

P. Espanol, Dissipative Particle Dynamics with Energy Conservation, EPL (Europhysics Letters) 40 (1997)
631.

M. Ripoll, P. Espanol, M. Ernst, Dissipative Particle Dynamics with Energy Conservation: Heat Conduction,
International Journal of Modern Physics C 9 (1998) 1329-1338.

J. Avalos, A. Mackie, Dynamic and transport properties of dissipative particle dynamics with energy conserva-
tion, The Journal of Chemical Physics 111 (1999) 5267-5276.

Z. Li, Y.-H. Tang, H. Lei, B. Caswell, G. Karniadakis, Energy-conserving dissipative particle dynamics with
temperature-dependent properties, Journal of Computational Physics 265 (2014) 113-127.

P. B. Warren, Vapor-liquid coexistence in many-body dissipative particle dynamics, Physical Review E 68
(2003) 066702.

W. Pan, Single Particle DPD: Algorithms and Applications, Ph.D. thesis, Brown University, 2010.

C. Chen, L. Zhuang, X. Li, J. Dong, J. Lu, A many-body dissipative particle dynamics study of forced water—oil
displacement in capillary, Langmuir 28 (2011) 1330-1336.

A. Ghoufi, P. Malfreyt, Mesoscale modeling of the water liquid-vapor interface: A surface tension calculation,
Physical Review E 83 (2011) 051601.

C. Chen, K. Lu, L. Zhuang, X. Li, J. Dong, J. Lu, Effective fluid front of the moving meniscus in capillary,
Langmuir 29 (2013) 3269-3273.

C. Chen, K. Lu, X. Li, J. Dong, J. Lu, L. Zhuang, A many-body dissipative particle dynamics study of fluid—fluid
spontaneous capillary displacement, RSC Advances 4 (2014) 6545-6555.

Y. Xia, J. Goral, H. Huang, I. Miskovic, P. Meakin, M. Deo, Many-body dissipative particle dynamics modeling
of fluid flow in fine-grained nanoporous shales, Physics of Fluids 29 (2017) 056601.

J. Goral, I. Miskovic, J. Gelb, J. Kasahara, et al., Pore Network Investigation in Marcellus Shale Rock Matrix,
in: SPE Asia Pacific Unconventional Resources Conference and Exhibition, Society of Petroleum Engineers, pp.
1-8.

M. Curtis, R. Ambrose, C. Sondergeld, et al., Structural Characterization of Gas Shales on the Micro- and Nano-
Scales, in: Canadian Unconventional Resources and International Petroleum Conference, Society of Petroleum
Engineers, pp. 1-15.

M. Curtis, R. Ambrose, C. Sondergeld, C. Rai, et al., Transmission and Scanning Electron Microscopy Investiga-
tion of Pore Connectivity of Gas Shales on the Nanoscale, in: North American Unconventional Gas Conference
and Exhibition, Society of Petroleum Engineers, pp. 1-10.

M. Curtis, B. Cardott, C. Sondergeld, C. Rai, Development of organic porosity in the Woodford Shale with

31



34]

[35]

(36]

37]

38

(39]

(40]

[41]

42]

(43]

(44]

[45]

[46]

(47]

(48]

[49]

increasing thermal maturity, International Journal of Coal Geology 103 (2012) 26-31.

M. Curtis, C. Sondergeld, R. Ambrose, C. Rai, Microstructural investigation of gas shales in two and three
dimensions using nanometer-scale resolution imaging, AAPG Bulletin 96 (2012) 665-677.

T. Dewers, J. Heath, R. Ewy, L. Duranti, Three-dimensional pore networks and transport properties of a shale
gas formation determined from focused ion beam serial imaging, International Journal of Oil, Gas and Coal
Technology 5 (2012) 229-248.

Z. Li, G.-H. Hu, Z.-L. Wang, Y.-B. Ma, Z.-W. Zhou, Three dimensional flow structures in a moving droplet on
substrate: A dissipative particle dynamics study, Physics of Fluids 25 (2013) 072103.

S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of Computational Physics
117 (1995) 1-19.

J. Dominguez, A. Crespo, D. Valdez-Balderas, B. Rogers, M. Gomez-Gesteira, New multi-GPU implementation
for smoothed particle hydrodynamics on heterogeneous clusters, Computer Physics Communications 184 (2013)
1848-1860.

J. Dominguez, A. Crespo, M. Gémez-Gesteira, Optimization strategies for CPU and GPU implementations of
a smoothed particle hydrodynamics method, Computer Physics Communications 184 (2013) 617-627.

Q. Xiong, B. Li, J. Xu, GPU-accelerated adaptive particle splitting and merging in SPH, Computer Physics
Communications 184 (2013) 1701-1707.

M. Januszewski, M. Kostur, Sailfish: A flexible multi-GPU implementation of the lattice Boltzmann method,
Computer Physics Communications 185 (2014) 2350-2368.

E. Calore, A. Gabbana, J. Kraus, E. Pellegrini, S. Schifano, R. Tripiccione, Massively parallel lattice—Boltzmann
codes on large GPU clusters, Parallel Computing 58 (2016) 1-24.

T. Tomczak, R. Szafran, A new GPU implementation for lattice-Boltzmann simulations on sparse geometries,
Computer Physics Communications 235 (2019) 258-278.

J. Glaser, T. Nguyen, J. Anderson, P. Lui, F. Spiga, J. Millan, D. Morse, S. Glotzer, Strong scaling of general-
purpose molecular dynamics simulations on GPUs, Computer Physics Communications 192 (2015) 97-107.

M. Abraham, T. Murtola, R. Schulz, S. P4ll, J. Smith, B. Hess, E. Lindahl, GROMACS: High performance
molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX 1 (2015)
19-25.

W. Brown, P. Wang, S. Plimpton, A. Tharrington, Implementing molecular dynamics on hybrid high perfor-
mance computers—short range forces, Computer Physics Communications 182 (2011) 898-911.

Y. Tang, G. Karniadakis, Accelerating dissipative particle dynamics simulations on GPUs: Algorithms, numerics
and applications, Computer Physics Communications 185 (2014) 2809-2822.

A. L. Blumers, Y.-H. Tang, Z. Li, X. Li, G. E. Karniadakis, GPU-accelerated red blood cells simulations with
transport dissipative particle dynamics, Computer Physics Communications 217 (2017) 171-179.

Z. Li, X. Bian, Y.-H. Tang, G. Karniadakis, A dissipative particle dynamics method for arbitrarily complex

32



[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

geometries, Journal of Computational Physics 355 (2018) 534-547.

R. Groot, P. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic
simulation, The Journal of Chemical Physics 107 (1997) 4423-4435.

I. Pivkin, G. Karniadakis, A new method to impose no-slip boundary conditions in dissipative particle dynamics,
Journal of Computational Physics 207 (2005) 114-128.

M. Revenga, 1. Zuniga, P. Espanol, Boundary conditions in dissipative particle dynamics, Computer Physics
Communications 121 (1999) 309-311.

I. Pivkin, G. Karniadakis, Controlling density fluctuations in wall-bounded dissipative particle dynamics sys-
tems, Physical Review Letters 96 (2006) 206001.

B. Henrich, C. Cupelli, M. Moseler, M. Santer, An adhesive DPD wall model for dynamic wetting, EPL
(Europhysics Letters) 80 (2007) 60004.

P. Meakin, A. Tartakovsky, T. Scheibe, D. Tartakovsky, G. Redden, P. Long, S. Brooks, Z. Xu, Particle methods
for simulation of subsurface multiphase fluid flow and biogeochemical processes, Journal of Physics: Conference
Series 78 (2007) 012047.

A. Ghoufi, D. Morineau, R. Lefort, P. Malfreyt, Toward a coarse graining/all atoms force field (CG/AA) from
a multiscale optimization method: an application to the MCM-41 mesoporous silicates, Journal of Chemical
Theory and Computation 6 (2010) 3212-3222.

M. F. Badessich, D. E. Hryb, M. Suarez, L. Mosse, N. Palermo, S. Pichon, L. Reynolds, Vaca Muerta Shale —
Taming a Giant, Oilfield Review 28 (2016) 26-39.

M. G. Teixeira, F. Donzé, F. Renard, H. Panahi, E. Papachristos, L. Scholtés, Microfracturing during primary
migration in shales, Tectonophysics 694 (2017) 268-279.

H. Panahi, M. Kobchenko, P. Meakin, D. K. Dysthe, F. Renard, Fluid expulsion and microfracturing during
the pyrolysis of an organic rich shale, Fuel 235 (2019) 1-16.

Appendix A. Digital imaging and image post-processing for shale core samples

The Vaca Muerta shale micro core sample referred to in this work underwent a FIB-SEM

process, which resulted in a stack of raw images with 2.5 x 2.5 nm? pixel resolution in each image

and 5 nm interval in scanning direction. Figure A.17 displays one of such raw images to illustrate the

complex constituents in the sample. In a simplistic manner, we categorized the shale constituents

in four phases: 1) inorganic matters, 2) inorganic-matter-hosted pores, 3) organic matters, and 4)

organic-matter-hosted pores (i.e. kerogen-hosted pores). The raw images were not readily usable

to pore-flow simulations because they could contain digital noises that should be filtered out first.
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Figure A.17: A glance at the Vaca Muerta shale constituents in a raw digital image obtained by a FIB-SEM process.
The resolution of this image is 2.5 x 2.5 nm? per pixel.

The raw images were post-processed with the Dragonfly image processing toolkit. The processed
images were then used for the preparation of DPD-based pore flow simulations. A block region of
interest that contains an abundance of kerogen-hosted pores was found in our micro core sample
and selected for preparation of the pore-flow simulations reported in this work. This block region
has a size of width = 5,232.50 nm in width, height = 4,400 nm, and depth = 3,030 nm, and is
visualized in Figure A.18, where the pore networks are represented with pore surface wall particles
generated with the image-to-particle workflow described in subsection 2.2. In this block region, the
ten largest pores that have no connectivity with others are each rendered with a unique color, and
the rest of smaller isolated pores are colored in light yellow. The distribution of kerogen-hosted
porosities in this block region is also reported in Figure A.18, demonstrating the low-porosity

feature of kerogen in shale as well as the discreteness of the pores.
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Block size: 5.2 x 4.4 x 3.0 um

2.15 Distribution of connected porosities (%)
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Figure A.18: Visualization of kerogen-hosted pores in a block region, with the ten largest pores rendered in unique
colors and the top four largest pores labeled with #1, #2, #3 and #4. Other smaller and isolated pores are colored

in light yellow. Bottom: distribution of the connected porosities (%).
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