Magnetoelectric control of topological phases in graphene

Hiroyuki Takenaka, Shane Sandhoefner, Alexey A. Kovalev, and Evgeny Y. Tsymbal*

Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience,
University of Nebraska, Lincoln, Nebraska 68588-0299, USA

Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which involves the topological
electronic states coupled to the AFM order parameter known as the Néel vector. The control of these states is envisioned
through manipulation of the Néel vector by spin-orbit torques driven by electric currents. Here we propose a different
approach favorable for low-power AFM spintronics, where the control of the topological states in a two-dimensional
material, such as graphene, is performed via the proximity effect by the voltage induced switching of the Néel vector in
an adjacent magnetoelectric AFM insulator, such as chromia. Mediated by the symmetry protected boundary
magnetization and the induced Rashba-type spin-orbit coupling at the interface between graphene and chromia, the
emergent topological phases in graphene can be controlled by the Néel vector. Using density functional theory and tight-
binding Hamiltonian approaches, we model a graphene/Cr203 (0001) interface and demonstrate non-trivial band gap
openings in the graphene Dirac bands asymmetric between the K and K’ valleys. This gives rise to an unconventional
quantum anomalous Hall effect (QAHE) with a quantized value of 2¢*h and an additional step-like feature at a value
close to e*/2h, and the emergence of the spin-polarized valley Hall effect (VHE). Furthermore, depending on the Néel
vector orientation, we predict the appearance and transformation of different topological phases in graphene across the
180° AFM domain wall, involving the QAHE, the valley-polarized QAHE and the quantum VHE (QVHE), and the
emergence of the chiral edge state along the domain wall. These topological properties are controlled by voltage through

magnetoelectric switching of the AFM insulator with no need for spin-orbit torques.

L. INTRODUCTION

In the past decades, spintronics has been considered as a
promising avenue to establish new frontiers in information
technology by exploiting the spin degree of freedom [1]. Driven
by this technological challenge, exploration of new spintronic
phenomena has become one of the most active research topics in
condensed matter physics. Recently, antiferromagnetic (AFM)
spintronics has emerged as a subfield of spintronics, where the
AFM order parameter known as the Néel vector was employed as
the non-volatile state variable [2-5]. Due to being robust against
magnetic perturbations and exhibiting ultrafast dynamics,
antiferromagnets can serve as promising functional materials for
spintronic applications.

In parallel with these developments, there has been increasing
interest in materials and structures where quantum effects are
responsible for novel physical properties, revealing the important
roles of symmetry, topology, and dimensionality [6]. Among such
quantum materials are graphene [7], topological insulators [8],
Dirac and Weyl semimetals [9], and beyond [10]. The unique
spin-dependent electronic properties of these materials are
envisioned to open new perspectives for spintronic applications
[11-13]. Among them, topological AFM spintronics is especially
interesting, involving the interplay between the topological
electronic states and antiferromagnetism [14-17].

The key ingredient of AFM spintronics, including its
topological variant, is a possibility to control the Néel vector by
external  stimulus.  Achieving  this  functionality in
antiferromagnets is not straightforward as in ferromagnets where

the control of the magnetic order parameter, i.e. magnetization,
can be realized by an applied magnetic field, spin transfer torque
or spin-orbit torque. Recently, it has been predicted that in
antiferromagnets with two spin sublattices forming inversion
partners, an electrical current can induce a non-equilibrium
magnetic field, which sign alternates between the spin sublattices
[18]. Such a staggered magnetic field generates an alternating sign
in spin-orbit torque, which can trigger Néel vector switching. This
prediction has been realized experimentally for CuMnAs [19] and
Mn2Au [20] antiferromagnets, thus demonstrating the viable
route for AFM spintronics.

While this progress is impressive, it is recognized that very
large electric currents are needed to generate the required spin-
orbit torques (>10° Acm?). Such currents would inevitably
produce significant energy dissipation unfavorable for the desired
low-power spintronics. From this perspective, it is beneficial to
have the ability of controlling the Néel vector purely by electric
fields through an applied voltage. Such a control has been
demonstrated using magnetoelectric antiferromagnet Cr,Os in the
corundum structure (chromia) [21]. Due to the magnetoelectric
nature of this material, by applying an electric field (in the
presence of a finite magnetic bias), one can switch the Néel vector
between two non-volatile states. Utilizing this functionality in
topological AFM spintronics would provide both ultra-low power
performance and ultrafast switching dynamics.

To this end, the voltage-switchable Néel vector in chromia
could be exploited to manipulate quantum and topological
properties of two-dimensional materials, such as graphene, via the
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Figure 1. Atomic and electronic structure of the graphene/Cr203 (0001) interface without SOC. a The optimized atomic structure: side view. Blue,
red, and gold balls indicate Cr, O, and C atoms, respectively. Color arrows denote up (green) and down (purple) spins in AFM chromia. b Top view
of the atomic structure (a) showing graphene and surface Cr and subsurface O monolayers. ¢, d Electronic band structures projected to the top graphene
layer for spin-up (¢) and spin-down (d) electrons. The color contrast reflects the strength of the carbon p: orbital contribution weighted with the s: spin
contribution in arbitrary units. e-f The spin-resolved bands originating from the graphene Dirac bands zoomed in near X (e) and K’ (f) points. The same

color coding is used as in ¢ and d.

proximity effect. The exchange coupling between chromia and
graphene across the interface in a graphene/Cr,0O3 hybrid structure
would be mediated by the boundary magnetization, which is the
intrinsic property of all magnetoelectric antiferromagnets [22-24].
The boundary magnetization is firmly coupled to the bulk AFM
order so that switching of the Néel vector leads to its reversal. Due
to being insensitive to the interface roughness, the boundary
magnetization can serve as a robust voltage-controlled parameter
to operate topological properties of graphene. Experimental
efforts along these lines have indicated the potential of the
graphene/Cr,O3 hybrid structure for realizing a magnetoelectric
transistor [25].

The appearance of topological effects in graphene, such as
the quantum anomalous Hall (QAHE) [26] and the quantum spin
Hall effect (QSHE) [27] requires spin-orbit coupling (SOC). It is
known, however, that the intrinsic SOC in pristine graphene is
extremely weak [28,29]. Yet, a sizable SOC in graphene can be
induced by the proximity effect at the interface between graphene
and other materials such as transition metal dichalcogenides
[30,31]. In addition to SOC, the proximity effect can also induce
a sizable spin-polarization in graphene when it is deposited on the
surface of a magnetic insulator [32, 33], which can lead to the
QAHE [34].

All these observations indicate that the proximity effect at
the Cr,Os/graphene interface could produce SOC necessary for

graphene to exhibit topological properties, which could be
controlled by voltage though the boundary magnetization of
chromia. Motivated by this idea, we use density functional theory
(DFT) and model tight-binding approaches to explore spin- and
orbital-dependent electronic and transport properties of the
graphene/Cr,03 (0001) interface. We show that the presence of a
sizable SOC and exchange splitting in graphene induced by the
proximity of chromia leads to the QAHE which changes sign with
reversal of the Cr,O3; Néel vector. The broken symmetry between
the A and B sublattices in graphene at the Cr,Os/graphene
interface produces asymmetry between the K and K' valleys,
resulting an unconventional QAHE and the emergence of the
spin-polarized valley Hall effect. We predict the appearance and
change of different topological phases in graphene across the 180°
AFM domain wall and the emergence of the chiral edge state
along the domain wall.

II. RESULTS
A. DFT calculations

We perform DFT calculations of the graphene/Cr,O3 (0001)
interface, as described in Methods. A 2x2 unit cell of graphene
excellently matches to the 1x1 unit cell of the Cr,O; (0001)
surface with a lattice mismatch of just 0.83% (see in Appendix A
for computational details). By performing structural optimization
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Figure 2. The DFT-calculated band structures of the graphene/Cr20;
(0001) interface in the presence of SOC. a,b The band structures around
the K (a) and K’ (b) points. ¢,d Same as a and b, respectively, but for the
reversed Néel vector in chromia. Color contrast reflects the s: spin
contribution in the same way as in Figure 1. The insets in b and ¢ are the
zoomed bands to reveal small band openings of 0.7 meV.

(Supplementary Material [35]), we find the most energetically
favorable atomic structure, which is shown in Figures 1 a,b. In
this interface structure, one C atom lies atop the surface Cr atom,
the distance between the two being 2.63 A. Such a large distance
indicates the weak bonding between graphene and the substrate
consistent with the previous DFT calculations [32,34].

The magnetic structure of bulk Cr,Os represents a collinear
antiferromagnetic configuration with Cr magnetic moments
pointing along the (0001) direction (Figure 1a). The top surface
Cr monolayer has parallel-aligned magnetic moments of mc, =
2.8us, representing the boundary (surface) magnetization [23].
Reversal of the Néel vector in bulk chromia (which can be
achieved by voltage) leads to the reversal of this surface
magnetization.

We find that there is a sizable exchange splitting of the spin
bands in graphene induced by the proximity of the surface
magnetization of chromia. Figures 1 c,d show the band structure
of the graphene/Cr,03 (0001) interface calculated without SOC in
vicinity of the Dirac point of pristine graphene. Here the bands are
projected to the p. orbitals of the top graphene layer and their up-

(Figure 1c) and down- (Figure 1d) spin weights are shown in color.

It is seen that the spin bands are split by the induced exchange
interaction. It is also seen that there is a splitting between bands
of the same spin which is due to a staggered sublattice potential
discussed below. Figures 2e and 2f zoom in on the spin-split bands
originating from the graphene Dirac bands near the K and K’

points, respectively. These figures reveal that the exchange
splitting of the spin bands is about 60 meV, the band structures at
the K and K’ points are identical, and there are no gap openings at
the band crossing points in the absence of SOC.

The broken inversion symmetry at the graphene/Cr,O;
interface gives rise to the Rashba-like SOC. The SOC mixes the
up- and down-spin states and opens the gaps at the crossing points,
as is evident from Figures 2a and 2b. We find that the band
opening is about 3 meV near the K valley (Fig. 2a) and is about
0.7 meV near the K'valley (Fig. 2b). From comparison of Figures
2a and 2b, it is also notable that SOC reduces the effective spin
splitting at the K’ valley. This difference in the band structure at
the K and K’ points is due to the variable bond length between Cr
surface atoms and C atoms in the graphene 4 and B sublattices
(Fig. 1b), resulting in the staggered potential, the staggered
exchange interaction and the staggered SOC, as described by our
tight-binding model below.

Switching the Néel vector in chromia is equivalent to the time
reversal symmetry transformation. It is therefore expected that
reversal of all the Cr magnetic moments in Cr,O3 would lead to
swapping the bands structures between the K and K' points with
simultaneous reversal of the spin character of the bands. This is
exactly what we find by performing self-consistent DFT
calculations in the presence of SOC for the graphene/Cr,Os
interface. From comparison of Figures 2 c,d and Figures 2a,b, we
see that switching the Néel vector in chromia transforms the band
structures between the K and K' points and at the same time
reverses the spin character.

B. Tight-Binding Model

To provide more insight into the proximity effect on the electronic
band structure of graphene and to analyze its quantum transport
behavior, we build a model tight-binding Hamiltonian as follows
[31,36-39]

H= —tYija Chi Coja + itso D(ipap 2 (6 % d if) CjiaCBjﬁ -
At 2ijyap (- el cpjp t UXpu=ap My Lia C,La Cpia T
Yu=ap Asou Xijna VijC;iao-zCuja —Ja Dia(@ &) CligCaia +
Jp Zial )chiq Cpia + X Ty=ap Tia Cpie Cuic (1)

where c:{ia and cy;, are the creation and annihilation operators for
site i on sublattice 4 with spin a. The first term is the conventional
tight-binding Hamiltonian for pristine graphene with hopping
parameter ¢. The second term is the Rashba SOC, which includes
parameter t,,, Pauli matrix vector g = (ox, Oy, O'Z), and the unit
vector d ; ;j from site j to i. The third term represents the non-local
exchange interaction involving the spin-dependent hopping with
m = (sin @ sin@,sin 6 cos ¢, cos 0) being the unit vector of
the surface magnetization. This term affects the slope of band
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Figure 3. Color contour plots of the Berry curvature projected on the kx-k; plane. a-d The Berry curvature for the four bands shown in Supplementary
Figure S3a around the K point. e-h The Berry curvature for the four bands shown in Supplementary Figure S3b around the K’ point. The bands are
ordered from low to high energy. The origin of x- and y-axis is at the K point in a-d and at the K’ point in e-h. Color bars quantify the Berry curvature.

curvatures by strength A,,;. For simplicity, we assume ¢ = 0 , but
note that varying ¢ only causes small changes in the band
structure and does not affect our main results. The remaining
terms describe the site-dependent interactions. The fourth term
describes the staggered sublattice potential (n, = 1 and ng = —1)
of strength U. The staggered potential opens the band gaps and
rounds the bands near the Dirac points, but does not introduce
differences in the band structure near the K and K’ valleys. The
fifth term describes the staggered SOC of amplitude Ag,, which
involves the second-nearest neighbor hopping and has v;; =
1 (—1) for clockwise (counterclockwise) hopping from cite j to i.
The band openings in question are strongly influenced by the
staggered SOC. The next two terms correspond to the exchange
interactions of strengths J, and Jz, which are assumed to be
different on the A and B sublattices. The last term describes an
overall energy shift. The summation over {ij) and ({ij}) in Eq. (1)
runs over all the nearest (next-nearest) neighbor sites, respectively.
We note that although the model Hamiltonian contains many
terms, all the terms appear to be necessary to quantitatively
reproduce the DFT calculated band structures (Supplementary
Figure S3). Details of the fitting procedure and the resulting fitting
parameters are given in the Supplementary Material [35].

C. Berry curvature

Next, using Hamiltonian (1) with the fitted parameters, we
analyze the QAHE, which is determined by the Berry curvature [9]
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Here 7 is band index, v, ,, = 0H/dk,, is the velocity operator,
and €, and ¥, are eigenvalues and eigenfunctions of the
Hamiltonian at a given k-point within the Brillouin zone. For
simplicity, we omit x and y indices in the notation for Q”(E) as
well as for the anomalous Hall conductance (AHC), o, below. In
Figure 3, we show the calculated Berry curvature around the K
(Figs. 3 a-d) and K’ (Figs. 3 e-h) valleys for each of the four bands
displayed in Supplementary Figures 3a and 3b, respectively. It is
seen that the Berry curvature becomes very large on the circles
around the K and K" points. The radii of these circles match the &
values, at which the band openings appear due to SOC (Figs. 2
a,b). The enhancement of Q" (l?) at the K and K’ points, especially
pronounced for the lowest (Figs. 3 a,e) and highest (Figs. 3 d,h)
energy bands, reflects their extrema at these points
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Figure 4. The calculated anomalous Hall conductance (AHC) in graphene as a function of the Fermi energy & for the Néel vector in chromia pointing

up (a) and down (b). o is the total AHC, and ¢X and ¥ "are the partial contributions arising from the K and K’ valleys, respectively. ¢ Valley Hall

conductance (VHC), o, = ok — gk’

(Supplementary Figs. S3a and S3b [35]) resulting from the band
opening produced by the staggered sublattice potential U.

D. Anomalous and valley Hall conductance

The AHC is determined by the Berry curvature, as follows’:

2 -
0 ===V [ 5, " (K)d?k, (3)
where e is elementary charge, / is Planck’s constant, and f,, is the
Fermi-Dirac distribution function. Figure 4a (black line) shows
the calculated AHC, o, as a function of the Fermi energy, &¢. As
expected, the AHC acquires the value of ¢ = 2e?/h when & lies
within the energy region where there is a global energy gap in the
system (i.e., where the band openings at the K and K' points

overlap). When & lies far from this gap, the AHC tends to zero

due the cancellation of the contributions from the K and K’ valleys.

It is notable that in the vicinity of &, = 2 meV and & = 5 meV,
i.e. above or below the smaller bandgap, the AHC exhibits an
unconventional two-step-like feature associated with quantized
conductance at e?/h for one valley but not for the other. This
feature in the AHC appears due to different band gaps at the K and
K’ valleys. This is evident from Figure 4a, where we plot partial
contributions to ¢ arising from the K and K’ valleys, % and o% '
(red and green lines in Fig. 4a), by integrating the Berry curvature
over the respective k-space regions. Each o% and o% " has an exact
quantized value of e?/h, when & falls into the associated band
gap. However, when & lies within the wider band of the K valley,
but above or below the band gap of the K’ valley, the contribution
from the latter is 0% = e2/h , while the contribution from the
former, o ', drops down to about —e?/2h so that within this
energy widow o appears to be close to a value of e2/2h. The g% '
value of —e?/2h results from the integration of the Berry
curvature of the lowest energy band around the K’ valley (Fig. 3e).

, as a function of &;. The results are obtained using Hamiltonian (1) with the parameters fitted to the DFT bands.

Thus, the AHC exhibits the unconventional two-step-like
behavior due to the different band openings at the K and K’ valleys.

Switching the Néel vector in chromia is equivalent to the time
reversal symmetry operation. Since Q" (l—c)) is odd with respect to
time reversal symmetry, i.e. Q”(—E, —§) = —Q"(E, §), where §
is the spin, it is expected that with reversal of the Néel vector Lo
will change sign and the partial contributions will transform as
o¥(~L) = —o%'(L) and o' (~L) = —o¥(L). This is exactly
what we find from the calculation shown on Figure 4b, where
reversal of the Néel vector in the Hamiltonian (1) was modelled
by changing the angle of the surface magnetization from 8 = 0 to
6 = 180°. Since the Néel vector and the surface magnetization in
chromia can be electrically switched, this result indicates the
possibility of the voltage controlled QAHE at low temperature.
We note that a reversible AHE has been realized experimentally
at room temperature, although using Pt rather than graphene, as
an overlayer on chromia [40].

The asymmetry between the K and K' valleys at the
graphene/Cr,Oj; interface gives rise to the valley polarization [41].
The valley polarization appears due to different populations of the
two valleys. It can be detected by measuring the longitudinal
transport in graphene perpendicular to the AFM domain wall in
chromia between two regions with opposite orientation of the
Néel vector. Creation and annihilation of the AFM domain wall
performs as a valley valve, filtering the valley polarized carriers
in graphene. If the chemical potential is engineered to be located
within the wider band of the K valley, but below or above the band
gap of the K’ valley, a perfect valley filtering is expected in the
ballistic transport regime. In this case the longitudinal
conductance is zero in the presence of the domain wall but non-
zero in its absence.

The valley polarization gives rise to the valley Hall effect
(VHE) [42]. The VHE can be quantified using a valley Hall
conductance (VHC), which is defined as the difference in the
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Figure 5. Schematic set up for the detection of the valley Hall effect.
Shaded regions represent two antiparallel aligned domains of the surface
magnetization in chromia. A charge current is generated along the left
vertical graphene bar by a current source. It produces an anomalous Hall
current, Jang, which flows in the opposite directions above the two AFM
domains of Cr203. The AHC has opposite sign in the two domains and
thus canceled. On the contrary, a valley Hall current, Jvhg, is not
cancelled and flows in graphene along the domain wall. Such a pure
valley current induces a voltage drop between top and bottom terminals
of the right vertical graphene bar due to the inverse VHE.

AHC between the K and K valleys, i.e. 0, = 6% — o¥'. Figure 4¢
demonstrates that o, is largest, when the Fermi energy & lies
within only one of the band gaps at either K or K’ valley
(depending on magnetization orientation). g, is zero if & lies
within both gaps and is close to a quantized value of e?/h away
from the gaps. The latter originates from the integration of the
Berry curvature over the lowest energy band (Figs. 3 a.e),
contributing to the VHC e?/2h from the K valley and —e?/2h
from the K’ valley. The VHC of g, ~ e?/h represents a spin
polarized version of the VHE [42], where the bands contributing
to the transport are nearly fully spin-polarized.

Contrary to o, the sign of g, does not depend on the Néel
vector orientation (up or down). Due to this invariance, a pure
valley current can be induced in graphene along the domain wall
in Cr,0s. This effect can be realized and measured using a device
structure in Figure 5. Here a charge current is generated along the
left vertical graphene bar by a current source and produces an
anomalous Hall current, Jaue, which flows in the opposite
directions in the graphene layer regions above the two AFM
domains of Cr,0s. If the domain wall is placed symmetrically (as
in Fig. 5), the net anomalous Hall current is cancelled. On the
contrary, a valley Hall current, Jyyg, is not cancelled and flows in
graphene along the domain wall. Such a pure valley current
induces a voltage drop between top and bottom terminals of the
right vertical graphene bar in Figure 5 due to the inverse VHE.
This voltage drop can be detected using the non-local
measurements, as was reported recently [43-45].

We note that the above scheme assumes that the Fermi level
is located in the range of energies where both the AHC and VHC
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Figure 6. Topological phase transformation as a function of
magnetization angle 8. Three topological phases are distinguished by
the Chern numbers: QAHE (C = +2,C,, = 0, indicated by green color);
valley-polarized QAHE (VP-QAHE) (C = +1,C, =1, indicated by
yellow color); and QVHE (C = 0, C,, = 2, indicated by orange color).

are non-zero. If the Fermi level is engineered to lie above or below
the energy gaps, i.e. in the energy region where the AHC vanishes
but the VHC does not, the VHC can also be measured using the
proposed device scheme without the presence of the domain wall.
In this regime, the VHC is expected to be close to e%/A. In fact,
these measurements require less stringent conditions compared to
those considered above, due to a wider energy range where the
VHC is non-zero (as determined by the band splitting at the K and
K' points, resulting from the staggered sublattice potential) and
the non-local voltage output being independent of the domain
structure of Cr,0s.

E. Topological phases across a domain wall

The formation of the 180° AFM domain wall also leads to a
topological phase transition in graphene, resulting from continues
rotation of the surface magnetization. This transition manifests
itself in the changing topological invariants across the domain
wall. For the surface magnetization pointing normal to the
interface, the QAHE is characterized by the Chern number C =

%T Yo f gz " (E)dzk (where the summation is performed over all

occupied bands) being +2 or -2 for 6 =0 and 6 = 180°,
respectively. The Chern number is a topological invariant and thus
must discontinuously change across the domain wall. At each
discontinuity point, the transition must be accompanied by band
gap closure.

To observe this transformation, we use Hamiltonian (1) to
calculate the evolution of the band structure as a function of
magnetization angle 6 , assuming for simplicity that the



magnetization is uniform. The band structures for different angles
6 are depicted in Supplementary Figures S4 and S4 [35] around
the K" and K points, respectively. We find that near the K’ point
the band gap closes at 8 =~ 36° (Fig. S4b), then it reopens (see
Fig. S5c for 8 = 49°), closes again at 8 = 60° (Fig. S4d), and
remains open at larger 8 (Figs. S4e-S4i). The band structure
around the K point mirrors that near the K' point when the
magnetization is flipped from 6 to 180° — 6. In this case, the
band gap is opened at smaller angles (Figs. S5a-S5e), but it closes
at 8 =~ 120° (Fig. S5f), then it reopens (see Fig. S6g for 6 =
131°) and closes again at 8 ~ 144° (Fig. S5h). Between 36° <
6 < 60°and 120° < 6 < 144°, the maximum band opening is
about 0.1 meV at 6 = 49° (the K' point) and 6 = 131° (the K
point). These results indicate that new topological phases emerge
in the range of angles 36° < 6 < 144°.

To reveal the nature of these topological phases we calculate
the valley dependent Chern numbers, Cyx and Cy, by integrating
the Berry curvature around the K and K’ points, respectively. In
the calculation, we chose & to lie within the band gap for 8 = 0°,
6 =49°,60 =90° 6 =131° and 6 = 180°. We find that the
valley dependent Chern numbers are equal for the surface
magnetization normal to the interface, i.e. Cy = Cx = 1 for 8 =
0 and Cy = Cx = —1 for 8 = 180°. These conditions produce a
QAHE phase with the total Chern numbers C = Cx + C = £2
and the valley Chern number C, = Cx — C,» = 0. However, for
the other angles, we obtain that Cx and Cy are different, namely,
Ck=1and Cp =0 at 8 =49°, Cy, =1 and Cp =—1at 6 =
90°, and Cx = 0 and Cy = —1 at 8 = 131°, signaling for the
emergence of new topological phases. The regions around 8 =
49° and 6 = 131° are characterized by C = +1, respectively,
and C, = 1. This regions exhibit the valley-polarized QAHE
phase (VP-QAHE) [46], where the QAHE and the VHE coexist.
For magnetization lying in the plane, i.e. 8 = 90°, the resulting
phase has zero total Chern number, C = 0, but a non-zero valley
Chern number, €, = 2, indicating the emergence of the quantum
valley Hall effect (QVHE) [42]. The corresponding topological
phase diagram is depicted in Figure 6. We note that the overall
situation is somewhat reminiscent to that predicted for a Bi bilayer
where magnetization rotation induced by the spin-orbit torque
forces the topological phase transition [36].

IV. DISCUSSION

The emergence of different topological phases in graphene
across the AFM domain wall in chromia is expected to produce
chiral edge states (CES) similar to those predicted [8] and
observed [47-49] on domain walls of a magnetically doped
topological insulator. Two CES are expected to appear along the
lines parallel to the domain wall where the topological phase
changes. The appearance of the two CES, as well as the QVHE
phase, requires a sufficiently wide domain wall with the width

larger than the characteristic decay length of the CES into the
gapped region, which we estimate to be about 12 nm
(Supplementary Information). If the domain wall is not wide
enough, the two CES collapse into a single CES and the QVHE
phase disappears.

Observation of the predicted phenomena relies on
magnetoelectricity of chromia. The latter allows a 180° domain
wall of the surface magnetization to be formed by applying
voltages of different sign at two local regions to align the Néel
vector in opposite directions [50]. The domain wall width can be
engineered either by tuning anisotropy with strain or by the split-
gate scheme with multiple gates. Furthermore, the locally applied
voltages can dynamically control the location of the domain wall
[50]. The dynamics may be used to switch paths of injected spin-
polarized electrons, which can be detected for readout at specific
probes locally attached to graphene along the voltage-controlled
domain wall regions in chromia. A further advantage of the
proposed scheme is that the interface with the split gates needs
neither dopants, adatoms, or external Oersted fields. The
magnetoelectric switching is expected to improve the timing of
the writing process as to form the domains in memory devices,
since it is controlled by applied voltages, rather than by magnetic
probe scanning [49]. Specific transport measurements to observe
the predicted phenomena can be performed using a four-terminal
probe [51-54]. The required &; engineering can be achieved via
applied gate voltage [55] or uniaxial pressure [34].

V. CONCLUSIONS

Our work has outlined a new route for topological
antiferromagnetic spintronics. We have predicted the control and
manipulation of the topological states in a two-dimensional
material via proximity of a magnetoelectric antiferromagnet with
the Néel vector being the control parameter. Using the
graphene/Cr,03 (0001) interface as a model system, we showed
the emergence of the unconventional quantum anomalous Hall
effect and the spin-polarized valley Hall effect. We predicted the
appearance and transformation of the different topological phases
in graphene across the 180° AFM domain wall and the emergence
of the chiral edge state along the domain wall. These topological
properties can be controlled by voltage through magnetoelectric
switching of the AFM insulator with no need for spin-orbit
torques generated by large currents. Thus, our results provide a
viable approach for low-power voltage-controlled topological
antiferromagnetic spintronics.
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APPENDIX A: DFT COMUTATIONAL DETAILS

DFT calculations are performed using the Vienna A4b initio
Simulation Package (VASP). * We apply local density
approximation (LDA) + U>7 with U = 4.0 eV and J = 0.58 eV
using the projector augmented wave method.>® In the calculations,
we use a Cr,03 (0001) slab composed of 8 and 16 atomic layers
of O and Cr, respectively (Fig. 1a), assuming the energetically
most favorable surface structure terminated with a single Cr layer
top and bottom of the slab.>® A 2x2 graphene sheet, which lattice
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A. Optimization of the graphene/Cr,03 (0001) interface structure

The in-plane position of graphene on the Cr203 (0001) surface was optimized by considering three
different interface structures: (1) a graphene C atom is atop the Cr atom of the Cr20s surface
(Figures 1a,b in the main text), (2) a graphene C atom is atop the O atom in the first O monolayer
from the Cr20s3 surface (Figure S1a), and (3) the Cr surface atom is below the center of a hexagonal
ring of graphene (Figure S1b). Starting from these initial configurations, the atomic structure of
the whole supercell is relaxed. We find that the lowest total energy structure forms C located atop
Cr (Figures 1a,b in the main text). The structure with C atop O atom (Figure S1a) and the structure
with Cr under the graphene hollow site, respectively, have the total energy 36 meV and 55 meV
higher. In the main text, we focus on the most stable atomic structure to investigate the electric,
magnetic, and spin transport of the on the Cr203 (0001) interface.

Figure S1. Top view of the relaxed atomic structures of the graphene/Cr203 (0001) interface for
C atop O subsurface site (a) and for Cr under the C hollow site (b). Only graphene, Cr surface and
O subsurface monolayers are shown. The black solid lines indicate the interface unit cell. Blue,
red, and gold spheres indicate Cr, O, and C atoms, respectively.

B. Band structure of the free-standing graphene layer

Figure S2 shows the DFT-calculated band structure of the free standing graphene layer using the
atomic positions of the C atoms in the relaxed graphene/Cr203 (0001) interface structure (Figures
la,b in the main text). In is seen that the electronic structure projected onto the C p: orbitals
exhibits the Dirac-cone dispersions near the Fermi energy at the K and K’ points of the Brillouin
zone. For comparison the pristine graphene band structure is overlapped with that for the
graphene/Cr203 (0001) interface.
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Figure S2. The band structure of the free-standing graphene (black thick lines) calculated with
DFT using the graphene unit cell as in the graphene/Cr203 (0001) supercell (Figures 1a,b in the

main text). Gold thin lines represent the band structure of the interface, the same as in Figures 1¢
and 1d of the main text.

C. Fitting of the tight-binding parameters

To obtain the tight-binding parameters of the model Hamiltonian (1) in the main text, we expand
the Hamiltonian along the high symmetry k-point paths around the K and K’ points,

H= —vf(nkxajcso + kyayso) + Eso(0ysy — 0y5¢) — A (Mky0xs, + kyoys,) +
UO-ZSO + Aso,AnO-zSZ - /150,3770-052 _]O-OSZ + 6]0252 + XSOSO- (Sl)

Here o and s represent sublattice and spin matrices, respectively; n = 1 for the K point and n =
—1 for the K' point. Other parameters in Eq. (S1) are related to those in Eq. (1) of the main text as
follows: t = 2/3 vy, tso = 2/3 850, Aso = 1/3V3Aso, Ay =2/3Any, Ja =] — 8], Js = —( +
6/). Using this Hamiltonian, we fit the four bands around the Fermi energy which are obtained
from our DFT calculation for the graphene/Cr203 (0001) interface. Figure S3 shows the results of
the fitting. We note that in the fitting process we focus mostly on the two middle bands, which
predominantly contribute to QHC. Although the fitted top and bottom bands somewhat deviate
from the DFT results, their contribution to the Berry curvature is relatively small (see Figure S4
below). The model correctly reproduces the reversal of the Néel vector in chromia, which is
equivalent to the sign change of the exchange parameters J, 6/, and A,,; in Hamiltonian (S1). From
the fitting, we find the values vy = 7.2 eV, £5, = 1.2 meV, Ay =—1595¢eV, U = 40.4 meV,

Asou = =64 meV, Ay p = —1.1meV, | =—71.4meV, §/ =20 meV, and X = 5.6 meV. We
note that this low-energy continuum Hamiltonian fails to capture certain high energy effects.
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Figure S3. Fitting of the DFT band structure of the graphene/Cr203 (0001) interface using a model
Hamiltonian (S1). The blue lines are the DFT results, and the black lines are the band obtained
with the model Hamiltonian. a,b The band structures around the K (a) and K’ (b) points.



D. Band structures as a function of magnetization angle
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Figure S4. The band structures round the K’ point at 8 =~ 0°a,36°b,49°¢c,60°d,90° e,
120°f,131° g, 144° h, and 180° i.
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Figure S5. The band structures round the K point at 6 = 0°a,36°b,49°c,60°d,90°e,
120°f,131° g, 144° h, and 180°i.

E. CES Decay Length

To estimate the CES decay length (the length over which the probability density decreases to zero),
we use a strip geometry with a finite width of 160 sites in the y-direction. We apply magnetization
in the +z-direction and calculate the decay length to be ~12 nm.



