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>, | Nonlinear Modal Model Motivation

* If we have many joints, it becomes
cumbersome to identify the parameters of |
each joint separately!

* Often we treat a structures dynamic response as linear, which means
the response scales with forcing amplitude.

* Many industries rely on bolted joints to connect subcomponents. The
trictional interfaces at these joints cause an otherwise linear system to
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[1] D. J. Segalman, "An Initial Overview of Iwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New Mexico SAND2001-0811, 2001.
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pp. 245-264, 2013.



History of the Nonlinear Modal Modeling at Sandia National Labs

* Current Sandia research has been focused on nonlinear modal modeling

* This theory augments a traditional modal model with the addition of a
nonlinear forcing element to capture nonlinear response on a mode-by-mode

basis

* Previous works SNL using nonlinear modal modeling:
* Study use of modal Iwan models to represent nonlinear joint dynamics
(2001)
* HEstablishing nonlinear modal modeling technique using impact hammer
excitations (2015)
* Updating finite element models using nonlinear modal elements derived
with windowed sinusoidal excitations (2010)

* Nonlinear substructuring using elements derived from shaker
excitations (2017)




Motivation for Maximizing Modal Amplitude

-~ Restoring Force vs Modal Displacement
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* Nonlinear modal models are often characterized by the amplitude dependent natural frequency and damping
observed in the system

* These measurements are only accurate within the amplitude range tested

* Extrapolation with nonlinear models is inadvisable, so higher responses must be achieved in testing

In order to reach operational vibration levels the modal amplitude excited needs to be increased
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on the previously studied sine beat excitation technique

* Windowed sinusoids were adjusted by changing the center excitation frequency f, and frequency band

range Af,
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* The objective of this project is to maximize the modal response of a nonlinear structure using variations



Test Set-Up and Linear Modal Analysis Results
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Nonlinear Modal Model Identification Process
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SNL Modal Model Example - Forcing

* A high-level force is applied in the form of a windowed sinusoid (sine beat)...
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SNL Modal Model Example - Response

* A high-level force is applied in the form of a windowed sinusoid (sine beat)...
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SNL Modal Model Example — Model and Simulation

* Captured Response
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Modal Force
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Narrow Window Width — Test Cases
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Narrow Window Width - Takeaways
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* The linear natural frequency for this mode is at 130 Hz but the energy levels input to the system force the

frequency of the system much lower (122 Hz)

* Having too narrow of a window may cause the test to completely miss resonance once the system gets going!
g ¥ p y Y gELs going

* Shifting the center frequency may solve this issue....
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Adjusting Center Frequency — Test Cases
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* Case E uses window parameters from
previous studies

* Case F softens the center frequency f, to 119
Hz maintaining a wide 30 Hz window width
Af,. This generates an almost identical response
to Case E

 Case G softens the center frequency, f,, to
119 Hz and narrows the window width, Af,., to
5 Hz. This generates that reaches a modal
amplitude more than double that of Case E



Narrow Window Width - Takeaways
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* All three cases converge to the same response frequency late in time but beoin at different forcin
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frequencies

* The modal filtered response from Case G 1s much higher than that from Case E



Similar Modal Amplitudes

* A final case was tested with the shifted center frequency of 119 Hz and the narrow window width of 5 Hz
and the amplifier level was lowered until similar modal amplitudes were observed to that of the standard

window size
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* Case H provides forced response for much
of the time history but converges to the same
nonlinear response frequency

* In previous studies we have only fit models

with data that is primarily free response



Impacts on Nonlinear Modal Model Fits

* These high-level excitations are ultimately used to fit a nonlinear modal model, in this study a cubic and
quadradic polynomial form were implemented
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* To investigate these we will look at three cases: E 129 30 =0
* The baseline Case E , -
* The double modal amplitude ¢
pHtt H 19 | %5 43
* The matched modal amplitude Case H
Test Case Case E Case G YdiffEG Case H YdiffEH
kq -7.50E+07 -5.63E+07 -25% -7.28E+07 -3%
k, 1.54E+10 4.73E+09 -69% 1.37E+10 -11%
Cq -1.489 -1.186 -20% -1.403 -6%
Cy -0.025 0.109 -536% -0.034 36%
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Modal Acceleration

Impacts on Nonlinear Modal Model Simulations | of lll

* Despite this difference the models obtained from baseline Case E and double modal amplitude Case &
predict similar response to Case E loadings
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* As expected extrapolating with Case E’s model and the Case G forcing leads to erroneous results

Impacts on Nonlinear Modal Model Simulations Il of Ill

* Case G’s model predicts more error than expected based on previous experience leaving this type of testing
ripe for future research
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Impacts on Nonlinear Modal Model Simulations | of Ill

* Plotting the effective stiffness and damping for these cases highlights the difference between the Case G
model and similarities of the Case H model to the baseline
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Remarks and Future Research

* You can effectively increase the capability of a amplifier-shaker configuration by adjusting the window and
frequency parameters of a windowed sinusoidal excitation

* Adjusting the window width alone can cause forced response at off resonance testin
J g p g

* Adjusting the center frequency puts the energy at the nonlinear shift of the mode allowing for a higher
modal response once the window is narrowed

* With very little optimization the modal amplitude was doubled, more optimization could lead to even
greater increases in achievable modal amplitude

* The models obtained at higher amplitude and within forced response could still simulate a baseline forcing
case

* More work should be done to determine suitable model forms that can match structural response in free
and forced response
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