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2 Nonlinear Modal Model Motivation

• Often we treat a structures dynamic response as linear, which means
the response scales with forcing amplitude.

• Many industries rely on bolted joints to connect subcomponents. The
frictional interfaces at these joints cause an otherwise linear system to
have a nonlinear response, observed as a change in damping and
stiffness with response amplitude
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• Many constitutive elements have been formed to characterize these
responses when the nonlinearity is caused by joints (Iwan[1], Palmov,
Smallwood, etc.)

• If we have many joints, it becomes
cumbersome to identify the parameters of
each joint separately!

• Experimental evidence has shown that many
jointed structures can be tested and represented
with uncoupled weakly nonlinear modes. [2]

• This comes with two main assumptions
• Energy transfer between modes

remains negligible
• The mode shapes of the nonlinear

system are preserved at all amplitudes

[1] D. J. Segalman, "An lnitial Overview of lwan Modeling for Mechanical Joints," Sandia National Laboratories, Albuquerque, New Mexico SAND2001-0811, 2001.
[2] M. Eriten, et al., "Nonlinear system identification of frictional effects in a beam with a bolted joint connection," Mechanical Systems and Signal Processing, vol. 392
pp. 245-264, 2013.



1 History of the Nonlinear Modal Modeling at Sandia National Labs

• Current Sandia research has been focused on nonlinear modal modeling

• This theory augments a traditional modal model with the addition of a
nonlinear forcing element to capture nonlinear response on a mode-by-mode
basis

• Previous works SNL using nonlinear modal modeling:

• Study use of modal Iwan models to represent nonlinear joint dynamics
(2001)

• Establishing nonlinear modal modeling technique using impact hammer
excitations (2015)

• Updating finite element models using nonlinear modal elements derived
with windowed sinusoidal excitations (2016)

• Nonlinear substructuring using elements derived from shaker
excitations (2017)
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Motivation for Maximizing Modal Amplitude
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• Nonlinear modal models are often characterized by the amplitude dependent natural frequency and damping
observed in the system

• These measurements are only accurate within the amplitude range tested

• Extrapolation with nonlinear models is inadvisable, so higher responses must be achieved in testing

In order to reach operational vibration levels the modal amplitude excited needs to be increased
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Windowed Sinusoid aka the Sine Beat
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• Windowed sinusoids were adjusted by changing the center
range Afr

excitation frequency fe and frequency band
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Test Set-Up and Linear Modal Analysis Results

Mode*
Frequency

Hz
Damping
%

130.0 0.397 %

8 172.6 0.322 %
9 385.8 0.069 %

10 391.9 0.083 %

11 551.6 0.278 %

12 945.4 0.413 %

13 948.3 0.513 %

14 1025.7 0.076 %
*Rigid body modes not listed

Description

1st bend of Beam in X-direction
1st bend of Beam in Z-direction

Ovaling of Cylinder
Ovaling of Cylinder

Axial mode
Ovaling of Cylinder
Ovaling of Cylinder

2nd bend of Beam in X-direction
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Nonlinear Modal Model Identification Process
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SNL Modal Model Example - Forcing

• A high-level force is applied in the form of a windowed sinusoid (sine beat)...
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SNL Modal Model Example - Response

• A high-level force is applied in the form of a windowed sinusoid (sine beat)...
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SNL Modal Model Example — Model and Simulation

Captured Response
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Case B
Case C
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Test

Case fe [Hz] Afr
[Hz]

Amplifier

Level

A 130 ±30 70

B 130 ±20 70

130 ±10 70

D 130 ±5 70

• Case A uses window parameters from previous
studies

• Cases B, and D decrease the window width Afr

• The modal amplitude achieved by narrowing the
window does not seem to increase from case to case
and significantly lowers for Case D!

• In Cases and D the system acts as a forced
response due to the narrow window
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Narrow Window Width - Takeaways
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r--4.L. 130 ±10 70

P 130 ±5 70

• The linear natural frequency for this mode is at 130 Hz but the energy levels input to the system force the
frequency of the system much lower (122 Hz)

• Having too narrow of a window may cause the test to completely miss resonance once the system gets going!

• Shifting the center frequency may solve this issue....
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Case fe [Hz] Afr
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Level

E 129 ±30 70

F 110 ±30 70

G 70

• Case E uses window parameters from
previous studies

• Case F softens the center frequency fe to 119
Hz maintaining a wide 30 Hz window width
Afr . This generates an almost identical response
to Case E

• Case G softens the center frequency, fe, to
119 Hz and narrows the window width, Afr, to
5 Hz. This generates that reaches a modal
amplitude more than double that of Case E



Narrow Window Width - Takeaways
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• All three cases converge to the same response frequency late in time but begin at different forcing
frequencies

• The modal filtered response from Case C is much higher than that from Case E

14



Similar Modal Amplitudes

• A final case was tested with the shifted center frequency of 119 Hz and the narrow window width of 5 Hz
and the amplifier level was lowered until similar modal amplitudes were observed to that of the standard
window size
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• Case H provides forced response for much
of the time history but converges to the same
nonlinear response frequency

• In previous studies we have only fit models
with data that is primarily free response
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Impacts on Nonlinear Modal Model Fits

• These high-level excitations are ultimately used to fit a nonlinear modal model, in this study a cubic and
quadradic polynomial form were implemented

4 + co q + /co q + c14 lq I + c.2 4 3 + k1 alal + k2 a 3

• To investigate these we will look at three cases:

• The baseline Case E

• The double modal amplitude Case G

• The matched modal amplitude Case H

= 0 TFT
Test

Case fe [Hz] 6,fr
[Hz]

Amplifier

Level

E 129 ±30 70

119 ±5

H 119 ±5 43

Test Case Case E Case G %dif f,EG Case H %dif f,EH

k1 -7.50E+07 -5.63E+07 -25% -7.28E+07 -3%

k2 1.54E+10 4.73E+09 -69% 1.37E+10 -11%

c1 -1.489 -1.186 -20% -1.403 -6%

c2 -0.025 0.109 -536% -0.034 36%
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Impacts on Nonlinear Modal Model Simulations I of 111

• Despite this difference the models obtained from baseline Case E and double modal amplitude Case G
predict similar response to Case E loadings
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I Impacts on Nonlinear Modal Model Simulations 11 of 111

As expected extrapolating with Case E's model and the Case ( forcing leads to erroneous results

• Case C's model predicts more error than expected based on previous experience leaving this type of testing
ripe for future research
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Impacts on Nonlinear Modal Model Simulations I of 111

• Plotting the effective stiffness and damping for these cases highlights the difference between the Case G
model and similarities of the Case H model to the baseline
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1 Remarks and Future Research

• You can effectively increase the capability of a amplifier-shaker configuration by adjusting the window and
frequency parameters of a windowed sinusoidal excitation

• Adjusting the window width alone can cause forced response at off resonance testing

• Adjusting the center frequency puts the energy at the nonlinear shift of the mode allowing for a higher
modal response once the window is narrowed

• With very little optimization the modal amplitude was doubled, more optimization could lead to even
greater increases in achievable modal amplitude

• The models obtained at higher amplitude and within forced response could still simulate a baseline forcing
case

• More work should be done to determine suitable model forms that can match structural response in free
and forced response

20


