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Linear vs. Nonlinear Systems

= Linear analysis assumes:
= Small deformations
= Response is amplitude independent
= Modal responses can be superimposed
" Gr +200rGr + WG = T Foyy

What happens if
there is coupling

between the
modes?

= Pseudo — Nonlinear analysis assumes:
= Shapes of the linear modes are preserved
= Linear modes can decouple nonlinear data

= Coupling between modes is negligible and no
energy is transferred between modes

" 4r +2¢Gwrqr + wrz%‘ + Fu(qr,qr) = cI)TFext
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Modal Coupling

= Excitation of one mode
causes a transfer of energy
that perturbs another mode

= Usually occurs due to
interactions at joints shared
by different mode shapes
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Project Objectives

= Excite combinations
of modes on a
nonlinear structure

= Experimentally
identify the presence
modal coupling

= Collect data for use in
validating computer
models of coupling
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Test Structure

Cylinder — Plate — Beam (CPB)
- Plate bolted to cylinder
- Beam bolted and glued to plate

18 triaxial + 8 uniaxial accelerometers
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Experimental Setup
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Experimental Process

Linear
Low Level . Linear Modal
Shaker Testing @ Curve Fit FRFs @ Parameters
Nonlinear
Shaker Testing Time Histories Modal Filter
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Modal Response
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Hilbert
Transform
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Dependent Natural
Freq and Damping
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Linear Experimental Data

= Employed low level burst random excitation from the shaker
= Curve fit linear FRFs for modeshapes to use as a modal filter
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Mode 1

Mode Experimental
Description w, (Hz)

1st Beam Bending X 120.8
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Mode 2

Mode Experimental
Description w, (Hz)

1st Beam Bending Y 155.3
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Mode 3

Mode Experimental
Description w, (Hz)

Plate Drum 548.43

14

Introduction Overview . Methodology Contact Nonlinear Conclusion




Modal Filtering

= Linear mode shapes allow for filtering of physical response

into modal coordinates
Physical Response Physical Response FFT
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Modal Filtering

= Linear mode shapes allow for filtering of physical response
into modal coordinates

Modal Response Modal Response FFT
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Nonlinear Data

= Shaker delivers definable force input — able to create a
voltage signal with specific frequency content
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Nonlinear Data

= Shaker delivers definable force input — able to create a
voltage signal with specific frequency content
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Nonlinear Data

= Use shaker to excite specific modes

CPB Physical Response
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Hilbert Analysis

= Requires that each response be uncoupled such that it
can be represented by a SDOF system

= Signal can be represented by a decaying harmonic

"= Re[eXP(llh(t) + iy, (t))]

= Compute Hilbert Transformation (H (t)) for an amplitude
dependent representation of damping and frequency

__dy,
" War = 4

s APy
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Hilbert Analysis
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%1073 Damping vs. Velocity Amplitude
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= When excited alone at various levels, frequency and
damping overlay with increasing amplitude
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x10°  Damping vs. Velocity Amplitude
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= Coupling visible as a frequency and damping shift when

mode 2 is excited to a higher level than mode 1
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x10®  Damping vs. Velocity Amplitude
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= Mode 1 appears to be completely unaffected by mode 3.
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x10°  Dampingvs. Vel Amp
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= As with Mode 1, when Mode 2 is excited alone, frequency
and damping overlay with increasing amplitude.
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%1073 Damping vs. Velocity Amplitude

® 45 ’
x i
g 4F
g I = Mode 2 & 1
® 35 [
(@ i — - O]
-3 -2 = =mN2-56

10 10 —M1,2-148&1.4
= _ _ M1,2-1.4835
T 156, NatFreavs. Velocity Amplitude |— w1z 14856
- : — — e — M1,2-35&1.4
g —— 3.5&35
O 56&14
S 154 »
O :
S RE
L L
T 152 N
= P L i P
©
Z 1073 1072 1071

Amplitude (kg"*mis)

= QObserve the same frequency and damping shift, but now to a
greater degree in all cases where mode 1 is also excited.
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%1073 Damping vs. Velocity Amplitude
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= Mode 2 also appears to be totally indifferent as to the
presence of mode 3.
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«10®__ Dampingvs.VelAmp
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= When excited individually, all modes exhibit consistent
frequency and damping shifts with increasing amplitude
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%1073 Damping vs. Velocity Amplitude
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= Mode 3 shows significant decreases in frequency and increases

in damping when mode 1 is also excited at any level.
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%1073 Damping vs. Velocity Amplitude
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= When mode 3 is excited with mode 2, similar drastic shift in
frequency and damping are observed.
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Closing Remarks

= When excited alone, all three modes have very
consistent frequency and damping responses.

= Mode 1 and 2 show signs of modal coupling
when simultaneously excited.

= Mode 2 appears to be more significantly effected.

= Neither mode 1 or 2 display any indication of
modal coupling with mode 3.

= However, mode 3 exhibits very strong coupling
with modes 1 and 2.
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