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Linear vs. Nonlinear Systems

• Linear analysis assumes:

• Small deformations

• Response is amplitude independent

• Modal responses can be superimposed

• ?T m aar wr2 qr (I)T Fext

• Pseudo — Nonlinear analysis assumes:

• Shapes of the linear modes are preserved

• Linear modes can decouple nonlinear data

• Coupling between modes is negligible and no
energy is transferred between modes

• ?T m aar wr2 qr Fnl(qr, 4r) — (I)T Fext

What happens if
— there is coupling
1 between th

modes?
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Modal Coupling

—/\/\/\/`
• Excitation of one mode

causes a transfer of energy
that perturbs another mode

• Usually occurs due to
interactions at joints shared
by different mode shapes
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Project Objectives

• Excite combinations
of modes on a
nonlinear structure

• Experimentally
identify the presence
modal coupling

• Collect data for use in
validating computer
models of coupling

7
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Test Structure

Cylinder — Plate — Beam (CPB)

- Plate bolted to cylinder

- Beam bolted and glued to plate

18 triaxial + 8 uniaxial accelerometers

8
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Experimental Setup

Introduction Overview Methodology Contact Nonlinear Conclusion



Experimental Process
Linear

Low Level
Shaker Testing

Curve Fit FRFs
Linear Modal
Parameters

Nonlinear

High Level
Shaker Testing

Modal Response

1=> Time Histories =>.
V

Modal Filter

Hilbert
Transform =>

 1

Amplitude
Dependent Natural
Freq and Damping
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Linear Experimental Data

• Employed low level burst random excitation from the shaker
• Curve fit linear FRFs for modeshapes to use as a modal filter
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Mode 1
Mode

Description
Experimental

con (Hz)

1st Beam Bending X 120.8
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Mode 2
Mode

Description
Experimental

con (Hz)

1st Beam Bending Y 155.3
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Mode 3
Mode

Description
Experimental

ton (Hz)

Plate Drum 548.43

,
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Modal Filtering

• Linear mode shapes allow for filtering of physical response
into modal coordinates
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Modal Filtering

• Linear mode shapes allow for filtering of physical response
into modal coordinates
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Nonlinear Data
• Shaker delivers definable force input — able to create a

voltage signal with specific frequency content
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Nonlinear Data
• Shaker delivers definable force input — able to create a

voltage signal with specific frequency content
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Nonlinear Data

• Use shaker to excite specific modes
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Nonlinear Data

• Use shaker to excite specific modes
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Hilbert Analysis

• Requires that each response be uncoupled such that it
can be represented by a SDOF system

• Signal can be represented by a decaying harmonic

• ij = Re[exp(01(t) + i 1P 2(0)1

• Compute Hilbert Transformation (RV)) for an amplitude
dependent representation of damping and frequency

• diP2,,,
w d'r = dt

M 
p CIO 1 

(
/

cor
— —

r — dt
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Hilbert Analysis
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• When excited alone at various levels, frequency and
damping overlay with increasing amplitude
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• Coupling visible as a frequency and damping shift when
mode 2 is excited to a higher level than mode 1
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• Mode 1 appears to be completely unaffected by mode 3.
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• As with Mode 1, when Mode 2 is excited alone, frequency
and damping overlay with increasing amplitude.
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• Observe the same frequency and damping shift, but now to a
greater degree in all cases where mode 1 is also excited.
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• Mode 2 also appears to be totally indifferent as to the
presence of mode 3.
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• When excited individually, all modes exhibit consistent
frequency and damping shifts with increasing amplitude
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• Mode 3 shows significant decreases in frequency and increases
in damping when mode 1 is also excited at any level.
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• When mode 3 is excited with mode 2, similar drastic shift in
frequency and damping are observed.
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Closing Remarks

■ When excited alone, all three modes have very
consistent frequency and damping responses.

■ Mode 1 and 2 show signs of modal coupling
when simultaneously excited.

■ Mode 2 appears to be more significantly effected.

■ Neither mode 1 or 2 display any indication of

modal coupling with mode 3.

■ However, mode 3 exhibits very strong coupling
with modes 1 and 2.

32

Introduction Overview Methodology Contact Nonlinear Conclusion



Acknowledgments

■ This research was conducted at the 2018 Nonlinear
Mechanics and Dynamics Research Institute hosted
by Sandia National Laboratories and the University
of New Mexico.

■ Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology and Engineering Solutions of Sandia,
LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of
Energy's National Nuclear Security Administration
under contract DE-NA-0003525.

33

Introduction Overview Methodology Contact Nonlinear Conclusion




