

## ABSTRACT

Due to tritium-to-helium decay, helium bubbles develop in palladium tritide. Understanding the helium bubble nucleation mechanisms is critical to predicting material properties with age. To enable molecular-dynamics simulations of helium bubble formation with quantified uncertainty, we have developed numerous versions of Pd-H-He embedded-atom-method potentials based on extensive density-functional-theory (DFT) calculations. Our potentials are accurate because they capture the DFT values of energy and lattice constant of the rock-salt PdHe phase, the bond length and interaction energy of two nearest helium interstitials in the lattice, the swelling volume and energy change when inserting a helium atom into the lattice, the swelling volume of two nearest helium interstitials, and the diffusion energy barrier of a single helium atom. Our molecular-dynamics models enable studies of helium bubble formation because we find that the nucleation of helium bubbles from helium interstitials occurs within time scale of < 5 ns..

### Embedded-Atom Method (EAM) Formalism

$$\phi_{PdHe}(r) = E_{0,PdHe} \exp\left(-\alpha_{PdHe} \frac{r-r_{0,PdHe}}{r_{0,PdHe}}\right) f_c(r, r_{s,PdHe}, r_{c,PdHe}),$$

$$f_c(r, r_s, r_c) = \begin{cases} \frac{1}{2} \operatorname{erfc} \left[ \frac{\mu(r-r_s)+\nu(r_c-r)}{r_c-r_s} \right], & r < r_c \\ 0, & r \geq r_c \end{cases}$$

$$\phi_{IJ}(r) = \frac{E_{0,IJ} f_c(r, r_{s,IJ}, r_{c,IJ})}{\beta_{IJ} - \alpha_{IJ}} \left\{ \beta_{IJ} \exp\left[-\alpha_{IJ} \frac{(r-r_{0,IJ})}{r_{0,IJ}}\right] - \alpha_{IJ} \exp\left[-\beta_{IJ} \frac{(r-r_{0,IJ})}{r_{0,IJ}}\right] \right\},$$

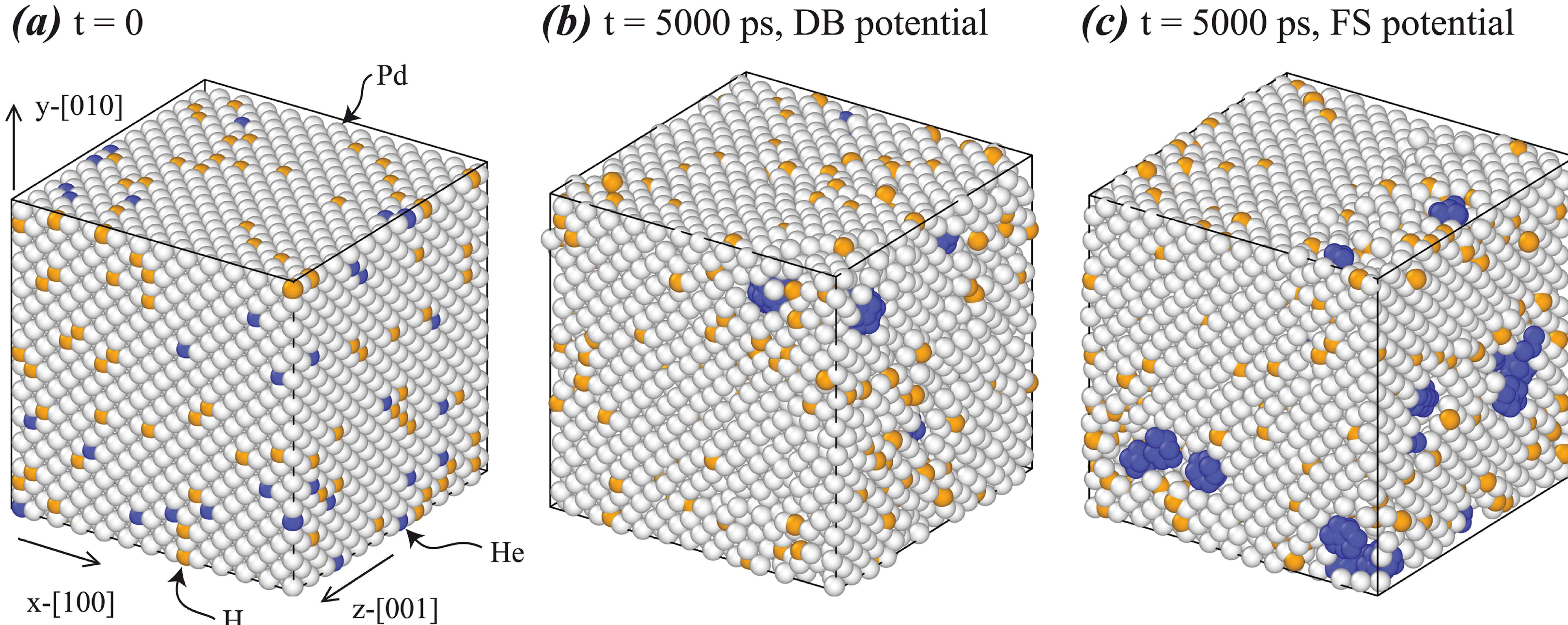
$$F_{He}(\rho) = \begin{cases} F_{0,He} \left\{ \frac{1}{2} + \frac{1}{2} \sin \left( -\frac{\pi}{2} + \pi \frac{\rho}{\rho_{0,He}} \right) \right\}, & \rho < \rho_{0,He} \\ F_{0,He}, & \rho_{0,He} \leq \rho \leq \rho_{1,He}, \\ F_{0,He} + F_{2,He} \frac{(\rho-\rho_{1,He})^2}{2} + F_{3,He} \frac{(\rho-\rho_{1,He})^3}{6}, & \rho_{1,He} < \rho \end{cases}$$

$$\rho_{He}^I(r) = f_{He}^I \exp(-\gamma_{He}^I r) f_c(r, r_{s,He}^I, r_{c,He}^I),$$

Here  $\mu$  and  $\nu$  are constants defined by  $\frac{1}{2} \operatorname{erfc}(\mu) = 10^{-5}$  and  $\frac{1}{2} \operatorname{erfc}(\nu) = 0.9$

- Add He to an existing Pd-H EAM (X. W. Zhou, J. A. Zimmerman, B. M. Wong, and J. J. Hoyt, *J. Mater. Res.* 23, 704, 2008)
- Fit both Daw-Baskes (DB) and Finnis-Sinclair (SF) models
- DB model is the same as SF model except that the parameters are constrained at  $f_{He}^{Pd} = f_{He}^H = f_{He}^{He}$ ,  $\gamma_{He}^{Pd} = \gamma_{He}^H = \gamma_{He}^{He}$ ,  $r_{s,He}^{Pd} = r_{s,He}^H = r_{s,He}^{He}$ ,  $r_{c,He}^{Pd} = r_{c,He}^H = r_{c,He}^{He}$ .

### Parameters of Potentials

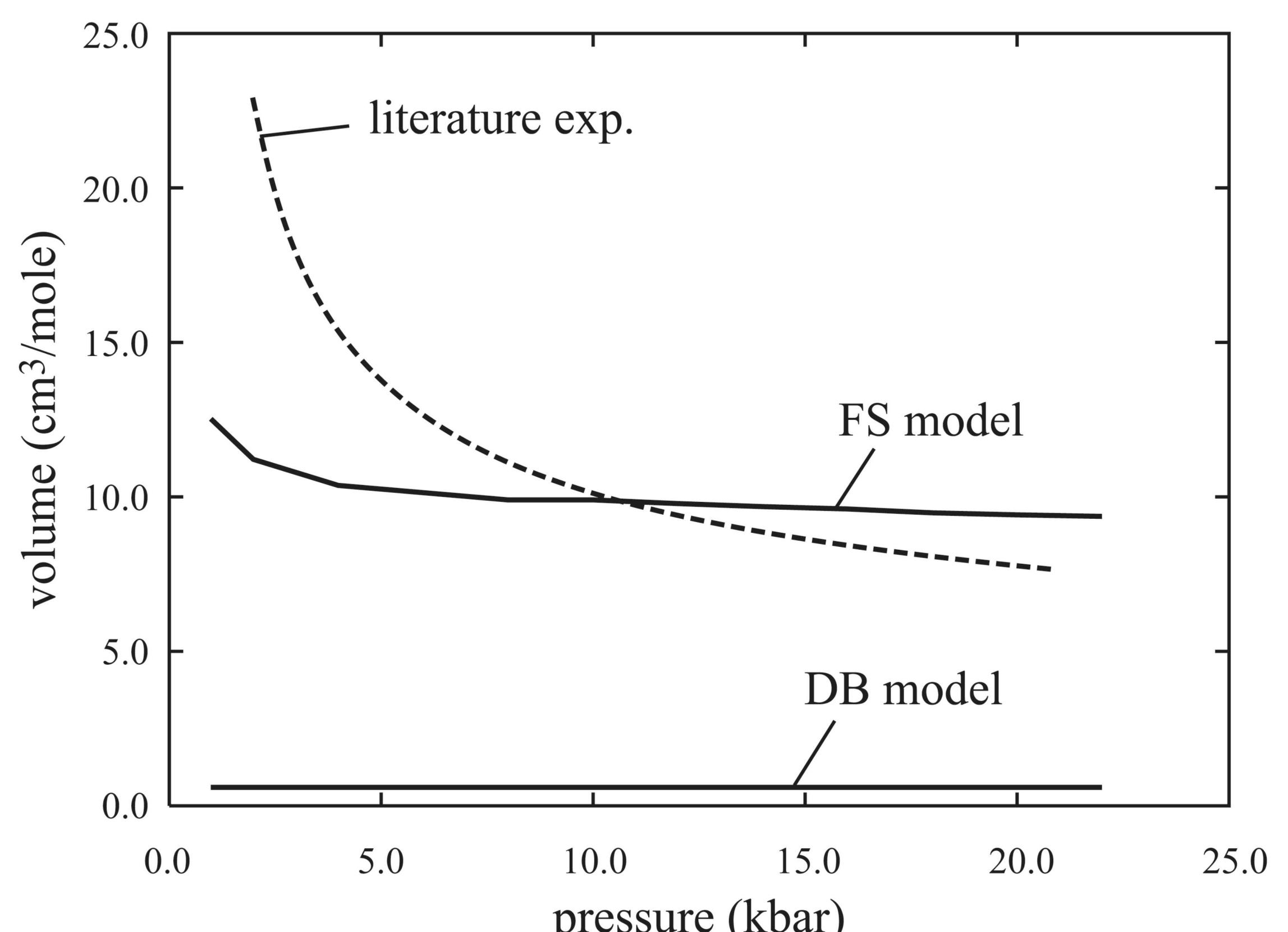

#### Daw-Baskes EAM model

| $E_{0,PdHe}$   | 0.002000  | $r_{0,HHe}$     | 3.120972  | $F_{0,He}$         | 3.288065   | $f_{He}^H$      | 1.592508 |
|----------------|-----------|-----------------|-----------|--------------------|------------|-----------------|----------|
| $a_{PdHe}$     | 11.274271 | $r_{s,HHe}$     | 4.295500  | $F_{2,He}$         | 0          | $\gamma_{He}^H$ | 0.221689 |
| $b_{PdHe}$     | -----     | $r_{c,HHe}$     | 5.655147  | $F_{3,He}$         | 0          | $r_{s,He}^H$    | 2.575412 |
| $r_{0,PdHe}$   | 2.488746  | $E_{0,HeHe}$    | -1.219337 | $r_{0,He}$         | 13.742806  | $r_{c,He}^H$    | 7.975412 |
| $r_{s,PdHe}$   | 1.924805  | $\alpha_{HeHe}$ | 6.401310  | $r_{1,He}$         | 200.000000 | $f_{He}^H$      | 1.592508 |
| $r_{c,PdHe}$   | 2.319795  | $\beta_{HeHe}$  | 2.680178  | $f_{He}^{Pd}$      | 1.592508   | $\gamma_{He}^H$ | 0.221689 |
| $E_{0,HHe}$    | -0.181660 | $r_{0,HeHe}$    | 1.680000  | $\gamma_{He}^{Pd}$ | 0.221689   | $r_{s,He}^H$    | 2.575412 |
| $\alpha_{HHe}$ | 21.168969 | $r_{s,HeHe}$    | 3.289651  | $r_{s,He}^{Pd}$    | 2.575412   | $r_{c,He}^H$    | 7.975412 |
| $\beta_{HHe}$  | 12.057009 | $r_{c,HeHe}$    | 4.440681  | $r_{c,He}^{Pd}$    | 7.975412   |                 |          |

#### Finnis-Sinclair EAM model

| $E_{0,PdHe}$   | 0.002000  | $r_{0,HHe}$     | 3.223129  | $F_{0,He}$         | 3.288065  | $f_{He}^H$      | 1.592508 |
|----------------|-----------|-----------------|-----------|--------------------|-----------|-----------------|----------|
| $a_{PdHe}$     | 11.274271 | $r_{s,HHe}$     | 3.570637  | $F_{2,He}$         | 0.775470  | $\gamma_{He}^H$ | 0.221689 |
| $b_{PdHe}$     | -----     | $r_{c,HHe}$     | 5.151069  | $F_{3,He}$         | 0         | $r_{s,He}^H$    | 2.575412 |
| $r_{0,PdHe}$   | 2.488746  | $E_{0,HeHe}$    | -1.180238 | $r_{0,He}$         | 13.742806 | $r_{c,He}^H$    | 7.975412 |
| $r_{s,PdHe}$   | 1.924805  | $\alpha_{HeHe}$ | 5.027132  | $r_{1,He}$         | 20.000000 | $f_{He}^H$      | 1.808367 |
| $r_{c,PdHe}$   | 2.319795  | $\beta_{HeHe}$  | 2.741660  | $f_{He}^{Pd}$      | 1.592508  | $\gamma_{He}^H$ | 0.321006 |
| $E_{0,HHe}$    | -0.005000 | $r_{0,HeHe}$    | 1.680000  | $\gamma_{He}^{Pd}$ | 0.221689  | $r_{s,He}^H$    | 4.787534 |
| $\alpha_{HHe}$ | 13.048548 | $r_{s,HeHe}$    | 3.042884  | $r_{s,He}^{Pd}$    | 2.575412  | $r_{c,He}^H$    | 5.487536 |
| $\beta_{HHe}$  | 6.467075  | $r_{c,HeHe}$    | 6.658132  | $r_{c,He}^{Pd}$    | 7.975412  |                 |          |

### Stringent Molecular Dynamics Simulation Tests




### Static Properties

Potentials capture well DFT values of diffusion barrier  $Q_{He}$  (eV), swelling volumes  $\Omega_{0,He}$ ,  $\Omega_{He,He}$ , and  $\Omega_{H,He}$  ( $\text{\AA}^3$ ), insertion energy  $E_{He}$  (eV), bond length  $r_{He-He}$  ( $\text{\AA}$ ), bond energy  $E_{He-He}$  (eV) of He neighbors, lattice constant  $a_{PdHe}$  ( $\text{\AA}$ ) and cohesive energy  $E_{c,PdHe}$  (eV/atom) of rock-salt PdHe crystal.

| methods | $Q_{He}$ | $\Omega_{0,He}$ | $\Omega_{He,He}$ | $\Omega_{H,He}$ | $E_{He}$ | $r_{He-He}$ | $E_{He-He}$ | $a_{PdHe}$ | $E_{c,PdHe}$ |
|---------|----------|-----------------|------------------|-----------------|----------|-------------|-------------|------------|--------------|
| DB      | 0.19     | 10.1            | 10.0             | 9.7             | 3.6      | 1.7         | -0.87       | 4.57       | -0.50        |
| FS      | 0.19     | 10.1            | 9.6              | 10.0            | 3.6      | 1.7         | -0.83       | 4.59       | -0.50        |
| DFT     | 0.10     | 10.0            | 10.3             | 9.5             |          | 1.7         | -0.84       | 4.59       | -0.50        |

### Helium Equation of State



The FS model captures an experimental equation of state (R. L. Mills, D. H. Liebenberg, and J. C. Bronson, *Phys. Rev. B*, 21, 5137, 1980)

### Acknowledgements

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

### Conclusions

We have developed two Pd-H-He embedded-atom method potentials based respectively on Daw-Baskes and Finnis-Sinclair formalisms. Both potentials accurately capture He diffusion energy barrier, He swelling volume, He insertion energy, He-He bond length and bond energy, and lattice constant and cohesive energy rock-salt PdHe crystal. The Finnis-Sinclair formalism further captures the He equation of state. Direct molecular dynamics simulations using both potentials indicate nucleation of helium bubbles from helium atoms, opening opportunities to study helium bubble nucleation without any prior assumptions on the bubbles.