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The problem

• Goal to develop capability to assess regional impacts of climate change on

the water cycle that directly affect the US economy (e.g., agriculture and

energy production)

• Cloud-resolving scales desired to reduce systematic errors in climate

simulations due to structural uncertainty in numerical treatments of convection

• Achieving cloud resolving model resolutions for climate-length timescales

requires Zettascale computational resources; the desire for grid refinement is

outpacing computational resources!



Our solution (project goals)

• Develop a "super-parameterized" earth system model with computational

efficiency enabling multi-decadal climate experiments

• Efficient use of next-generation computational resources: leveraging GPU

acceleration to maintain target of 5 SYPD while improving physical realism by

capturing some aspects of a cloud resolving model

• The multi-scale modeling framework/super-parameterization approach is ideal

for this task



The Multi-scale Modeling Framework
(Super-Parameterization)

• Addresses structural uncertainty in cloud

processes by replacing traditional

parameterizations with explicit cloud

resolving modeling within each grid cell of

global climate model

• Dramatically increases arithmetic intensity,

making the MMF approach one of the few

ways to achieve exascale performance on

upcoming architectures

• Exascale + MMF approach will make it

possible for the first time to perform

climate simulation campaigns with some

aspects of cloud resolving resolutions



Model formulation/coupling schematic
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Model overview

Based on E3SM vl (forked from master, with

periodic merges from E3SM master to keep

pace with development)

Similar to older SP-CAM formulations, but with

some key differences:

• Coupling with spectral element dynamical

core

• More vertical levels and higher model top

• New radiation scheme (RRTMGP)

• Explicit scalar momentum transport

• Pseudo-random CRM orientation
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GPU Acceleration

. Super-Parameterization is attractive for GPU acceleration because CRMs do

not communicate directly through MPI; no communication slowdown at scale

• CRM code ported to offload work to GPUs using directives-based approach:

flexible, maintain single codebase for both GPU and CPU-only configurations,

use either PGI or XL compilers (OpenACC or OpenMP)

• Up to -17x speedup possible using GPU, but acceleration is limited by work

per node; smaller workload to achieve throughput constraint limits benefit of

using accelerators (-4-10x speedup estimated on Summit)



Performance

• SP-E3SM vs E3SM: —60x slower (0.1 SYPD vs 6 SYPD on Titan)

• SP-E3SM vs estimated "conventional" E3SM with cloud resolving atmosphere

(3 km) and eddy resolving ocean: —20x algorithmic speedup (0.1 SYPD vs

0.005 SYPD)
o E3SM 3 km figure estimated based on current high-resolution (25 km atmosphere ,18-6 km

ocean) throughput

o We expect —4-10x speedup on Summit with GPU acceleration (-1 SYPD)



Early success



Mesoscale convective systems in SP-E3SM
time = 2011-05-20T10:00:00

• 5-10 day hindcasts with

E3SM and SP-E3SM at

ne30 resolution

• Hindcasts coincide with

observed MCSs from

May-Aug 2011

• Initial conditions

generated from

extended E3SM

simulation with

horizontal winds nudged

to ERA-I
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Mesoscale convective systems in SP-E3SM

Realistic eastward propagation of
MCS in SP-E3SM, regardless of
CRM configuration
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Challenges



Grid imprinting
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Grid imprinting

Enhanced precipitation on corner and edge
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Problematic precipitation

• Distribution of daily rain rates (year

2000, 60S to 60N)

• SP-E3SM has more extremes at both

ends: more heavy rain events, and

more light drizzle rain events
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Dry bias
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Dry bias
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Take-aways

Successes:

• !deal approach to leverage next generation HPC resources while improving

physical realism

• Propagating MCS features are well-captured

• Ripe opportunity to explore coupling between small and large-scale

processes

Remaining questions and biases:

• Coupling with SE dycore leads to grid imprinting in precipitation field

• Precipitation statistics and evaporation bias



Bonus



Radiative transfer in SP-E3SM

• RRTMG replaced with RTE/RRTMGP: optimized for parallel applications

• (show cost of radiation in relation to rest of the model)

• Primary goal: utilize GPU port of radiation kernels

• Bonuses: radiation code is more flexible, portable, and testable than RRTMG

• Available for use in standard E3SM already (add "-rad rrtmgp" to

CAM_CONFIG_OPTS)



Cloud-radiative coupling

• Radiative heating is updated every GCM (physics) timestep

• Calculated through the GCM interface to take advantage of updated aerosol

properties

• Radiative fluxes and heating rates calculated using cloud-scale, but

time-averaged cloud properties

• Cloud scale heating rate applied at next CRM call (next physics timestep)
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Reduced radiation

• Reduce cost of radiation by calculating heating on groups of columns

• Average cloud properties over group of columns, calculate heating from

average, apply back to same group of CRM columns

• Maintain some heterogeneity of cloud properties, but at reduced cost (versus

doing radiation on full CRM resolution)

1 C

CRM integration at Time-averaged Cloud scale CRM integration at
GCM time t cloud props heating GCM time t + dt



Reduced radiation

• Shortwave and longwave
differences compensate

• Little effect on net TOA flux
• Can we use some version of this to

reduce cost, while maintaining
accuracy?

McICA, nxrad = 64 (-50.6771

20

1 0 20 30 40

2

230

FIN

50 00 1 0 20 3.0

• gray = non-SP (ZM)

• black = SP1 crm_nx=32, crm_nx_rad=32

• blue = SP1 crm_nx=32, crm nx_rad=4

• green = SP1 crm_nx=32, crm nx_rad=2

• red SP1 crm_nx =32, crm_nx_rad=1

No McICA, nxrad = 1 (-59.288)

.10

50 0 0 10 20 ao 4.0

Difference (-8.1511)

5 0

—200-175-150-125-10}-75 —50 —25 0
Shortwave cloud forcing (Win-12)

—200-175-150-125-100-75 —50 -25 0
Shortwave cloud forcing (Win-12)

—100 —50 0 50 100
Shortwave cloud forcing (Wirn2)



Early climatology

• Climatology of

precipitation looks

reasonable

• Familiar biases

• Large bias over

Amazon...
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Precip distribution improved with larger CRM

• Distribution of daily rain rates (year

2000, 60S to 60N)

• SP-E3SM has more extremes at both

ends: more heavy rain events, and

more light drizzle rain events
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Grid imprinting reduced with smaller dx
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Dry bias
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